Как работает лампа дневного света

Принцип работы люминесцентной лампы и устройство прибора

Как работает лампа дневного света

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник: https://proprovoda.ru/osveshhenie/lampy/princip-raboty-lyuminescentnoj-lampy.html

Лампы дневного света: как подклюсить устройство, ремонт

Как работает лампа дневного света

Люминесцентные осветительные приборы являются уникальным сочетанием эффективности и экономного использования электрической энергии. Потолочные и настенные лампы дневного света применяются для растений, освещения рабочей поверхности и жилых комнат.

Плюсы и минусы

Энергосберегающие газоразрядные люминесцентные лампы – это модели осветительных приборов для создания дневного света в помещениях, где нет солнечных лучей. Если модели накаливания или диодные не используют для горения специальные соединения газов, то люминесцентные излучают свет благодаря реакции смеси газов, которые находятся в колбе с фитилем.

Фото — светильники дневного света

Ранее считалось, что такие лампы приносят вред зрению, и они редко применялись в бытовых условиях. В большинстве случаев, ими оборудовали производственные помещения (для склада, гаража). Но специальные газовые смеси, в которые входит галофосфат кальция позволяют произвести спокойные желтые лучи, которые отлично воспринимаются глазными кристалликами.

Достоинства ламп дневного света:

  1. Флуоресцентные модели могут обеспечить световую отдачу, которая будет гораздо превышать показатель у ламп накаливания;
  2. Несмотря на яркое свечение, они экономят электроэнергию;
  3. Плафоны часто изготавливаются из прочных материалов, которые являются довольно прочными. Они могут не разбиться даже при падении;
  4. Долговечность газоразрядных светильников в разы больше, чем обычных;
  5. В данный момент у этих приборов освещения довольно широкая цветовая температура. Если раньше они выпускались исключительно низкой (свет был яркого белого цвета), то сейчас в продаже можно найти желтые и естественные варианты.

Недостатки:

  1. Утилизация ламп дневного света может выполняться только специалистами, либо если их сдать в определенные учреждения, т. к. в состав газовой смеси входят опасные для организма компоненты (к примеру, газ фосфор или ртутные соединения). В отличие от их аналогов без газа, их нельзя просто выбросить в мусорное ведро, а для демонтажа нужно вызывать специальных рабочих;
  2. Как и некоторые светодиодные светильники, люминесцентная лампа дневного света не включается сразу, она несколько секунд мигает, а после нагрева газоразрядной смеси происходит полное включение;
  3. Можно вставлять только в специальные патроны;
  4. Любая модель немного гудит, а иногда и моргает во время работы;
  5. Не всегда можно осуществить подключение лампы естественного дневного света своими руками, требуется электронная схема. В некоторых случаях нужен довольно серьезный подход, чтобы обеспечить монтаж и работу светильника. В то время как простой экономный светильник можно вкрутить в патрон в течение нескольких минут.

Бывают разные виды осветительных приборов. Их можно классифицировать по мощности, температуре и форме. В частности, сейчас наибольшей популярностью пользуются:

  1. Линейные варианты (вытянутая электрическая модель, подойдет для освещения коридоров или официальных кабинетов);
  2. Кольцевые (их еще называют круглыми). Идеально подходят для освещения жилых помещений и кухни.

Иногда они распределяются по типу установки. Например, могут быть переносные, подвесные и настенные предложения, которые можно закрепить на любой поверхности. Сейчас в особенности популярная аккумуляторная настольная лампа дневного света, которая позволяет в любом углу комнаты обеспечить естественное мягкое свечение.

Фото — использование

Принцип работы

Лампа дневного света работает благодаря наличию дугового разряда между двумя электродами, которые необходимы для её питания. Внутри колба заполнена газовой смесью из инертных компонентов, в том числе, фосфора и ртути. Освещение обеспечивается благодаря тому, что когда электрический ток проходит через газовое пространство, смесь загорается и начинает производить ультрафиолетовое излучение, практически идентичное натуральному.

Как известно, ультрафиолетовое излучение незаметно для человеческого глаза, поэтому необходим специальный компонент, который сможет сделать свет видимым. Для этого используется вещество, которым покрывается корпус изнутри, чаще всего это производные кальция или цинка. Оно поглощает ультрафиолет и производит видимый световой поток. Светильники в зависимости от вида этого вещества, могут излучать разный цвет: теплый или холодный.

Если прибор мерцает при работе, это значит, что есть определенные проблемы с дуговым разрядом. Для контроля горения электродов используется своеобразный держатель или балласт, который контролирует поток направленных частиц. Устройство лампы дневного света таково, что для включения ток должен пройти через катод, нагреть его и далее удерживать температуру контактов на определенном уровне.

Маркировка

Для того чтобы выбрать нужную модель светильника, нужно знать, как расшифровывается маркировка ламп дневного света. Современные промышленные модели обозначаются кодом, который состоит из трех пунктов:

  1. На первом месте расположено определение индекса свечения. В зависимости от того, какой указан показатель, можно определить, как горит лампа. Чем выше цифра – тем более естественный свет получится в итоге;
  2. Следующие числа помогут определить конкретные показатели температуры, в большинстве случаев, также указывается люмены и мощность светильника.

Но отечественные производители посчитали, что такая маркировка будет сложно читаться, и сейчас в продаже есть более простые и понятные модели типа ЛБ. Эти виды не отличаются от импортных за исключением обозначения.

Л – первая буква, означает «люминесцентное свечение»;

Следующие буквы могут быть такими:

  • Б – белый цвет;
  • Х – холодный;
  • Т – теплый. Выходит, лампа ЛБТ – это холодный белый светильник.

Иногда также можно увидеть букву Е (естественный иди дневной). Нужно отметить, что именно с такой цветопередачей производится любая дневная автомобильная фара, но только для авто нужна кругла светодиодная модель. Еще есть типы для особых случаев, скажем, для освещения выставок нужны ЦЦ – особо яркие.

Как подключить лампу

Для того, чтобы подсоединить лампу, необходимо использовать довольно дорогой дроссель, который является слабой частью устройства. Его нити часто перегорают, а поменять их очень сложно. Поэтому сейчас многие электрики используют бездроссельное подключение ламп дневного света, при котором их характеристики не изменяются, но зато продлевается срок эксплуатации. Для его воспроизведения Вам понадобится схема:

Фото — бездроссельное соединение

Также перед тем, как подключить лампу дневного света, нужно купить все нужные радиоэлементы.

Фото — элементы для схемы

Предлагаем ознакомиться со схемами, где для подключения энергосберегающей лампы дневного естественного света не нужен трансформатор и стартер, вместо них потребуется конденсатор. Она тогда включается так:

Фото — подключение без стартера

Нужно быть осторожным, если запуск производится таким образом. Следите за тем, чтобы не потемнели провода контактов, иначе им потребуется замена. Нужно отметить, что у этой схемы есть серьезный недостаток – если зажечь лампу таким образом, то её управление будет невозможным.

как зажеть лампу дневного света без дросселя

Проверка и ремонт светильников

В случае, если лампа перегорела, её отремонтировать очень сложно, все же это вполне реально. Для начала нужно выяснить, в чем именно неисправность работы. Для того осуществляется проверка дросселя ламп дневного света. Нужно использовать контрольный светильник накаливания. Подключаете два провода от контактов в цоколь проверочной, и включаете конструкцию в сеть. Если пускатель цел, то контрольная модель начинает греть в полную силу, иногда она немного коротит.

При необходимости также можно осуществить ремонт дросселя лампы, но тогда нужно обращать внимание на мощность прибора дневного света, спектр излучения и размеры проводов (их сечения). Если подсоединить несоответствующие части – то она гореть не будет.

Источник: https://www.asutpp.ru/princip-raboty-lamp-dnevnogo-sveta.html

Что такое люминесцентная лампа и как она работает?

Как работает лампа дневного света

Люминесцентными называются электрические газоразрядного типа лампы, отличающиеся большим сроком службы. Изделия обеспечивают искусственное освещение в жилых комплексах, офисных и торговых центрах, промышленных объектах. Разработаны варианты устройств с разными оттенками излучения, видом цоколя, формой трубки, функциональностью и т.д.

Устройство и принцип работы ламп

Согласно истории люминесцентной лампы, первое осветительное устройство газоразрядного типа было сконструировано в 1856 г. Г. Гейслером. Конструкция приборов усовершенствовалась. Лампы дневного света в массовое коммерческое использование поступили в конце 30 г. XX в.

Конструкция относится к газоразрядным источникам освещения, сконструирована с использованием трубки из стекла, которая с двух сторон запаяна. Изнутри на поверхности лампы нанесен слой специального вещества (люминофора). Устройство излучает рассеивающий свет после подключения к источнику электропитания. Изнутри колбу наполняют аргоном.

Люминесцентное устройство включает:

  • катоды, защищенные эмиттерным слоем;
  • выводные штыри;
  • концевую панель;
  • трубки для отвода инертного газа;
  • ртуть;
  • стеклянную штампованную ножку, дополненную электровводами и т.д.

Принцип функционирования основывается на возникновении электроразряда между электродами после подсоединения к электросети. После взаимодействия разряда с газами инертными и испарениями ртути возникает излучение ультрафиолета, воздействующее на люминофор, преобразующий энергию в световое излучение. Для корректировки оттенков ртутьсодержащих устройств применяются люминофоры с разными химическими компонентами.

Дуговой разряд в колбе создается оксидным самокалящимся катодом, на который воздействует электричество. Для включения ламп ДРЛ, ЛД катоды разогревают посредством пропускания разряда тока. Устройства с холодным катодом запускаются ионным воздействием в тлеющем разряде высокого напряжения.

Для функционирования люминесцентным приборам требуется дополнительный узел (балласт), обеспечивающий работу дросселем и стартером. Балласт регулирует силу разряда и выпускается 2 видов (электромагнитный и электронный).

Электромагнитный балласт является механическим. Устройство относится к бюджетным вариантам, в работе прибор может издавать шум.

Электронные узлы дороже по стоимости, работают бесшумно, оперативно включают систему, компактны.

Классификация люминесцентных ламп

По показателю спектрального излучения приборы люминесцентного типа подразделяются на 3 категории:

  • стандартные;
  • с усовершенствованной передачей цвета;
  • со специальными функциональными назначениями.

Стандартные приборы снабжаются люминофорами однослойными, позволяющими излучать разные тона белого. Приборы оптимальны для освещения жилых помещений, административных и производственных блоков.

Люминесцентные лампы с усовершенствованной передачей света оснащаются люминофором с 3-5 слоями. Структура позволяет качественно отражать оттенки за счет усиленной световой отдачи (на 12% больше типовых ламп). Модели подходят для витрин магазинов, выставочных залов и т.д.

ЭТО ИНТЕРЕСНО:  Как выбрать между теплым и холодным светом

Люминесцентные лампы специализированного назначения совершенствуются с помощью разных составов в трубке, позволяющих поддерживать заданную частоту спектра. Устройства применяют в больницах, концертных залах и т.д.

Приборы разделяются на модели высокого и низкого давления.

Конструкции с высоким давлением оптимальны для монтажа в уличных лампах и приборах, имеющих большую мощность.

Лампы невысокого давления применяются в квартирах, административных комплексах, производственных помещениях.

Источник: https://odinelectric.ru/osveshhenie/istochniki-sveta/chto-takoe-lyuminestsentnaya-lampa

Лампа дневного света: маркировка, размеры, состав, напряжение и преимущества

Лампы дневного света – это осветительные приборы, которые позволяют экономить электроэнергию по сравнению с классическими источниками света. Люминесцентные лампы применяются для освещения жилых, рабочих и производственных помещений. Их работа основывается на эффекте люминесценции. Чтобы выбрать подходящую лампочку, нужно знать конструктивные особенности и технические характеристики.

Разновидности ламп дневного света

Разновидности строения ламп дневного света

Классификация люминесцентных ламп может проводиться по мощности, температуре, форме, способу установки, длине. К самым распространенным относятся лампы высокого и низкого давления. Приборы высокого давления используются на улицах и в светильниках большой мощности. Лампочки низкого давления подходят для люстр в жилых и производственных помещениях.

По типу установки источники света классифицируются на следующие группы:

  • подвесные;
  • переносные;
  • потолочные;
  • настенные.

По строению лампы бывают:

  • компактные;
  • кольцевые;
  • U образные;
  • прямые.

Чаще всего для освещения используется кольцевая и прямая короткая или длинная лампа. Также активно применяются приборы, работающие от аккумулятора или батареек.

Область применения

Люминесцентные лампы в школьном классе

Лампы дневного света получили широкое распространение благодаря своим преимуществам. Они используются для освещения в домах и квартирах, офисах, производствах и складах, в уличной подсветке и световой рекламе.

В зависимости от спектра цветопередачи лампы бывают:

  • аналогичные солнечному излучению – используются в подсветке офисов, производственных цехов, административных организациях;
  • с повышенной цветопередачей – подходят для выставок, галерей, музеев, больниц, организаций по продаже красителей, тканей и других художественных приспособлений;
  • с повышенным излучением в красном и синем спектре – используются для подсветки аквариумов, теплиц, в магазинах растений, оранжереях;
  • со смещением в синюю и УФ часть спектра – декорирование аквариумов;
  • свет в УФ спектре – солярии;
  • УФ излучение повышенной мощности – антибактериальные лампы.

До активного использования светодиодов люминесцентные светящиеся лампочки применялись для подсветки жидкокристаллических мониторов. Мощные люминесцентные приборы применяются в уличном освещении трасс, стадионов, площадок.

Технические характеристики

Энергоэффективность различных ламп

К основным техническим характеристикам относятся:

  • Цветопередача. Это одна из главных характеристик источника света. Определяется составом люминофора. Люминесцентные приборы имеют широкую цветовую гамму благодаря множеству различных составов. Самые распространенные для домашнего использования – устройства с цветовой температурой 2700 К, дающие теплый естественный оттенок. В рекламной и архитектурной подсветке используются приборы разных цветов – розовые, голубые.
  • Цоколь. Можно выделить 2 формы цоколя в зависимости от конструкции – штырьковые и патронные. Штырьковые цоколи используются в светильниках, в которые устанавливается U образная колба. Патронные цоколи имеют классический внешний вид с резьбой разного диаметра. Применяются в домашних светильниках.
  • Напряжение. Рабочее питание – 220 В, реже используется последовательное подключение дух ламп, работающее на 127 В.
  • Мощность. Самые распространенные – лампы на 18 В. Есть более мощные источники для прожекторов, достигающие 80 Вт.
  • Срок службы. Может достигать 40000 часов.
  • КПД выше 20%.
  • Физические размеры. Например, лампы Армстронг имеют стандартные размеры под ячейку 600х600 мм.
  • Степень защиты от пыли и влаги. Определяет возможность безопасной работы при определенных климатических условиях.
  • Материал изготовления. Пластик, металл и другие.

При выборе лампы нужно учитывать технические характеристики, а также параметры светильника, в который источник света будет установлен.

Подключение к сети

Газоразрядные источники света не могут подключаться напрямую к электросети. Это связано с тем, что в выключенном состоянии у лампы повышенное сопротивление, поэтому для зажигания нужен импульс высокого напряжения. После появления заряда у лампочки появляется отрицательное дифференциальное сопротивление, что требует включения в цепь дополнительного резистора. В ином случае источник света сломается.

Чтобы решить эти проблемы, применяются балласты. К самым распространенным относятся два вида –  электромагнитные балласты ЭмПРА и электронные балласты ЭПРА.

ЭмПРА

Устройства с электромагнитным пускорегулирующим аппаратом представляют собой дроссель, у которого есть набор индуктивных сопротивлений. Он подключается параллельно люминесцентному источнику определенной мощности. С помощью дросселя формируется запускающий импульс и ограничивается электрический ток, проходящий через лампочку. К преимуществам относятся:

  • высокая надежность;
  • простота конструкции;
  • долгий срок службы.

Недостатки:

  • длительность запуска составляет 1-3 секунды;
  • требуется большее количество энергии по сравнению с ЭПРА;
  • гудение;
  • мерцание;
  • крупные размеры;
  • не работает при отрицательных температурах.

В схеме подключения используется стартер, который представляет собой неоновую лампу, подключенную параллельно конденсатору. У стартера есть 2 электрода – жесткий неподвижный и биметаллический, который изгибается при нагреве. Электроды в обычном состоянии разомкнуты, они замыкаются при подаче электрического тока.

Для создания резонансного контура параллельно подключается конденсатор с малой емкостью. Это помогает сформировать импульс большой длительности для зажигания лампочки.

ЭПРА

Электронный пускорегулирующий аппарат отличается отсутствием мигания лампочки. Он питает источник света высокочастотным напряжением, достигающем 133 кГц. Есть 2 вида ЭПРА по способу запуска:

  • холодный – лампочка светится сразу же после включения, подходит для светильников, которые используются редко;
  • горячий запуск – электроды прогреваются, лампа загорается через 0,5 – 1 сек.

Преимущества:

  • быстрый запуск;
  • потребление энергии ниже на 20-25%;
  • меньше материальных затрат на утилизацию;
  • наличие в продаже устройств с диммером.

По сравнению с лампами, использующими электромеханический балласт, для работы ЭПРА не требуется стартер. Балласт может самостоятельно сформировать необходимую последовательность напряжений. Есть разные способы запуска ламп. Обычно применяется подогрев катодов напряжением большей частоты, чем сетевое.

В контуре компоненты выбираются таким образом, чтобы при отсутствии заряда возникал электрический резонанс. Он приводит к повышению напряжения между катодами. Это приводит к более легкому зажиганию лампочки.

Основные неисправности

Неисправности люминесцентных ламп

К основным причинам, по которым люминесцентные лампы дневного света выходят из строя, относятся:

  • Износ вольфрамовой нити. Из вольфрамовой нити, которая покрыта активной массой, делаются электроды. Со временем покрытие разрушается и осыпается, из-за чего нить выходит из строя.
  • Постоянное срабатывание стартера в лампочках с ЭмПРА. Оно напрямую связано с выгоранием электродов. При постоянном срабатывании стартеров светильник начинает мигать, что негативно сказывается на здоровье человека.
  • Неисправность дросселя. Если сломался дроссель, электрический ток в цепи значительно возрастает, из-за чего резко нагреваются электроды. Под действием высоких температур электроды разрушаются, и лампа перестает работать.
  • Некачественная защита в лампах с ЭПРА. В приборах с электронным балластом устанавливается схема автоматического отключения при перегорании лампы. В дешевых устройствах неизвестного производителя защита может быть некачественной или отсутствовать вовсе. Это приводит к повышению напряжения и перегоранию транзисторов балласта.
  • Неправильный выбор конденсатора. Если конденсатор не подходит под мощность лампы, произойдет пробой.

Если лампа сломалась, осуществить самостоятельный ремонт сложно. Рекомендуется обратиться к специалисту или приобрести новый прибор.

Маркировка люминесцентных ламп

Отечественная маркировка люминесцентных ламп

Есть 2 типа маркировки люминесцентных ламп – отечественная и зарубежная.

Отечественная маркировка записывается в цифробуквенном виде:

  • Первая буква – Л, обозначает «лампа».
  • Вторая характеризует световой поток (Д – дневной, ХБ – холодный белый, ТБ – теплый белый, ЕБ – естественный белый, Б – белый, УФ – ультрафиолет, К – красный, З – зеленый, Г – голубой, С – синий, Ж – желтый).
  • Третья буква – качество цветопередачи. Бывает Ц – улучшенное качество и ЦЦ – особо высокая цветопередача.
  • Четвертая буква – конструкция. А – амальгамная, К – кольцевая, У – U-образная, Б – быстрого запуска, Р – рефлектнорая.
  • Цифра обозначает мощность лампы в Ватт.

Зарубежная маркировка ламп дневного света

Также естественный белый цвет может маркироваться символами ЛЕ – естественный и ЛХЕ – холодный естественный.

Лампы специального назначения также имеют свою маркировку. Буквами ЛН, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР, ЛУФ маркируются лампы цветного свечения.

В зарубежной маркировке используется трехзначный код и подпись на английском языке. В цифровой форме записывается индекс цветопередачи (первая цифра в формате 1х10 Ra) и цветовая температура (последние 2 цифры). В домах применяются источники с маркировкой 830, 840, 930.

Утилизация лампочек

Вредные вещества, входящие в состав лампы, требуют особой утилизации прибора после выхода из строя. Выбрасывать лампы вместе с бытовым мусором запрещено – это может привести к ухудшению экологической среды.

Чтобы правильно утилизировать приборы, созданы специальные пункты сбора. Они есть в управляющих компаниях района, это прописано по закону. Сдать лампочку можно бесплатно.

Источник: https://StrojDvor.ru/elektrosnabzhenie/princip-raboty-i-ustrojstvo-lamp-dnevnogo-sveta/

Виды и принцип работы люминесцентной лампы

В современном мире наблюдается настоящий бум в сфере экономии любого вида ресурсов, в том числе и электроэнергии. Одно из его проявлений – повышенный спрос на энергосберегающие приборы.

Однако, помимо всем известных светодиодов, уже более 50 лет существует еще один тип экономных источников света – это всевозможные виды люминесцентных ламп.

Второе название этого типа приборов – ЛДС (лампы дневного света). Они все также востребованы на рынке благодаря своему долгому сроку службы и низкой стоимости.

Встать на одну ступень с диодным освещением ЛДС мешает проблема с их утилизацией.

Принцип работы и устройство

Люминесцентные приборы относятся к газоразрядным источникам света низкого давления. Корпус, выполненный из стекла имеет прямую, U-изогнутую или спиралевидную форму, чей наружный диаметр варьируется от 1,2 до 3,8 см.

Электроды, изготовленные из вольфрама, припаиваются одной стороной к штырям цоколя. В ряде случаев на проводники тонким слоем наносится оксид бария, кальция, стронция или тория. Данные вещества являются активаторами, усиливающими и ускоряющими реакцию электродов в условиях вакуума.

У основания последних расположен штенгель, ответственный за откачку воздуха из колбы. Пространство внутри заполнено инертным газом. Это может быть неон, аргон, криптон или смешанный состав, позволяющий добиваться нужного спектра свечения.

Сама колба изготавливается из кварцевого стекла и покрывается изнутри тонким слоем люминофора. Еще один важный элемент конструкции – это капли ртути, которые при нагревании преобразуются в пары. Именно этот металл и является причиной, по которой данному виду присвоен I класс опасности отходов.

Одним из главных отличий в работе люминесцентных ламп является использование дросселя и стартера. Первый необходим для регулировки тока и температуры, так как ее быстрое повышение может привести к поломке или даже взрыву колбы. Стартер же обеспечивает размыкание и замыкание цепи.

Зная, из чего состоит лампа, можно понять и принцип ее работы. Он включает в себя следующую цепь операций:

  • на проводники, через штырьковые элементы цоколя подается напряжение;
  • стартер и дроссель способствуют увеличению силы тока и возникновению тлеющего разряда;
  • ртутная капля начинает испаряться, смешиваясь с инертным газом и высвобождая энергию, которая представлена в виде ультрафиолетового светового потока;
  • проходя через люминофорное покрытие, УФ-излучение становится светом видимого спектра, проще говоря, лампа начинает светиться.

Несмотря на то, что конструкция и принцип работы люминесцентных ламп более сложны, чем у диодных, они все так же востребованы как в быту, так и на производстве.

Классификация

Существует несколько типов классификаций ЛДС. В зависимости от характеристик люминофорного покрытия они делятся на:

  • стандартные (1 слой);
  • с повышенной светопередачей (от 3 до 5 слоев);
  • специальные (люминофорное покрытие с добавками).

По форме и размеру люминесцентные лампы можно разделить на линейные и компактные.

Варианты исполнения

В большинстве случаев ЛДС представляются в виде стеклянной белой матовой трубки со штырьковыми цоколями с двух сторон. Ассортимент, представленный большинством производителей, включает в себя не только трубчатые колбы, но также и приборы U-образной, полуспиральной, спиралевидной, кольцевой и классической, как, у обычных лампочек, формы.

Важно! Помимо этого отличие прослеживается и в цоколе. Он может быть штырьковым с 2-мя контактами и обозначаться буквой «G» или резьбовым с маркировкой «Е». Сразу после обозначения типа цоколя указывается его диаметр в миллиметрах.

Линейные лампы

Линейную конструкцию наиболее часто можно встретить в условиях промышленных цехов, складов, больших по площади офисных помещений, торговых залов и медицинских учреждений. Все значения касательно размера и конфигурации цокольной части обозначаются в маркировке. Чем больше люминесцентная линейная лампа по габаритам, тем выше показатели ее мощности.

Для большинства ЛЛ используется цоколь стандарта «G13», диаметр лампы обозначается буквой Т, а число рядом информирует о диаметре стеклянной колбы в дюймах. Чаще всего можно увидеть обозначения от Т4 до Т12.

К отличительным особенностям линейных ламп можно отнести устройство, включающее припаянные по краям проводники, направленные внутрь колбы и установленные с 2-ух сторон штырьковые цоколи, обеспечивающие фиксацию и проводимость тока. Основное достоинство люминесцентных  линейных ламп – это их низкое энергопотребление. При таком же световом потоке, как и у ламп с нитью накала, они потребляют энергии в 6-7 раз меньше.

Интересно! Существуют и лампы с цоколем Т2. Они выпускаются немецким производителем Osram, имеют диаметр в 7 мм и используются в работе сканеров.

Компактные

Компактные лампы (КЛЛ) типа чаще всего устанавливаются в жилых помещениях, домах, квартирах и небольших офисах. Благодаря своему размеру, низкому энергопотреблению и долгому сроку работы они быстро вытеснили классические лампы накаливания.

Данный вид приборов различается по таким признакам, как:

Чаще всего колбы КЛЛ выглядят как спираль или полуспираль. Нередко можно увидеть и приборы с U-образной формой.  Небольшой размер делает их удобными в применении в быту.

Что касается цоколя, то здесь производители предлагают 2 варианта: стандартный резьбовой и штырьковый. Первые чаще всего встречаются в формате «Е27», среди вторых наиболее востребованы «G11» и «G23».

Еще одна разновидность – это компактные лампы с более высокой светопередачей. Они чуть дороже по стоимости, но и световой поток, который они проецируют, более качественен. На рынке этот вид представлен как в компактном, так и в линейном исполнении.

Интересно! В России компактные виды обозначаются не только аббревиатурой КЛЛ, но и КЛУ (компактная лампа универсальная).

Специальные

Разный состав люминофорного покрытия, влияющий на производимый спектр света, определяет специальное назначение люминесцентной лампы.

Данный вид включает в себя:

  • приборы с повышенной цветопередачей для работы в условиях музеев, типографий или картинных галерей;
  • лампы для светотерапии, используемые в условиях физиокабинетов медицинских учреждений;
  • приборы с обозначением «fluora», применяемые для целей растениеводства и цветоводства, в том числе в промышленных теплицах (основной особенностью является испускаемый синий и красный спектр света, оказывающий положительное воздействие на процессы фотосинтеза);
  • аквариумные лампы с синим спектром и ультрафиолетовым излучением, увеличивающим скорость роста кораллов;
  • устройства, проецирующие ближний спектр ультрафиолета (применяются на птицефабриках, создают оптимальные условия для содержания птиц, могут работать как в холодный период, так и круглогодично);
  • приборы разной цветности, применяемые при организации шоу-программ, выступлений, для создания красочных световых эффектах на концертах и в клубах;
  • специальные лампы для искусственного загара (используются в работе соляриев);
  • УФ-лампы из черного кварцевого стекла для применения в лабораторных условиях;
  • стерилизационные и озонирующие (бактерицидные и ртутно-кварцевые лампы для медучреждений).
ЭТО ИНТЕРЕСНО:  Что такое люмен в фонарях

Цветные лампы, с розовым люминофорным покрытием нередко используются для подсветки мясных витрин в магазинах и супермаркетах. Излучаемый спектр повышает привлекательность продукта и последний раскупается активнее.

Люминофоры и спектр излучаемого света

Состав люминофора, наносимого на внутренний слой стеклянной колбы, влияет спектр цвета. Так, недорогой галофосфатный вид проецирует в основном желтый и синий спектр с минимальным количеством красного и зеленого. В результате, несмотря на высокую светоотдачу, при отражении наблюдается искажение оттенка цвета.

В лампах с повышенной отдачей светопотока присутствует 3-ех и 5-типолосный люминофор, который значительно улучшает фотометрические свойства прибора. Освещение становится более равномерным и качественным, без присутствия искажений.

Преимущества и недостатки

Основным преимуществом ЛДС являются их энергосберегающие свойства. Однако помимо этого у данного типа прибора можно выделить еще массу достоинств:

  1. Высокий показатель КПД.
  2. Хорошая светоотдача (в сравнении с лампами накаливания).
  3. Вариативность цветовых оттенков.
  4. Близкое к солнечному излучение.
  5. Рассеивание света по всему объему колбы.
  6. Долгий срок эксплуатации (до 20 тысяч рабочих часов).
  7. Питание от стандартной сети в 220 В.
  8. Более низкая стоимость по сравнению со светодиодами.
  9. Универсальность применения (в быту, в промышленности, в с\х).
  10. Малый вес прибора.

Если говорить о недостатках, то стоит упомянуть наличие ртути в конструкции ЛДС. В связи с чем, люминесцентные лампы требуют особой процедуры утилизации.

Дополнительными минусами являются:

  • мерцание (при отсутствии в устройстве балласта);
  • хрупкость конструкции;
  • необходимость использования ПРА или ЭПРА;
  • ограничение работы температурным режимом;
  • износ люминофора;
  • чувствительность к влаге;
  • задержка при включении.

И все же, несмотря на это люминесцентные лампы незначительно уступают диодным аналогам.

Основные выводы

Лампы дневного света активно применяются и сегодня.

  1. На рынке они представлены в разных вариантах исполнения: от больших трубчатых до удобных компактных.
  2. Люминесцентные приборы используются как в быту, так и в промышленном, сельскохозяйственном производстве, торговле, в концертных залах и в картинных галереях.
  3. Основным преимуществом являются – низкое энергопотребление и стоимость, недостатком – проблемы с утилизацией.
  4. Все технические характеристики прибора можно узнать из маркировки на коробке с изделием.

ЛДС имеет свои конструкционные и эксплуатационные особенности, которые стоит учитывать при подборе прибора для бытового и промышленного использования.

ПредыдущаяСледующая

Источник: https://svetilnik.info/lampy-i-svetilniki/lyuminestsentnye-lampy-vidy.html

Принцип работы люминесцентной лампы

Среди газоразрядных осветительных приборов широкую известность получили люминесцентные лампы. Они изготавливаются в форме стеклянных цилиндров, на внутреннюю поверхность которых нанесен слой люминофора. Принцип работы люминесцентной лампы состоит в появлении внутри колбы газового разряда в газовой среде, смешанной с разреженными ртутными парами. Далее под влиянием ультрафиолетового излучения начинает светиться люминофор, являющийся источником основного светового потока.

Как появились люминесцентные лампы

Прежде чем рассматривать вопрос, как работает люминесцентная лампа, необходимо хотя бы в общих чертах изучить историю ее появления. Впервые эффект свечения наблюдал известный русский ученый М.В. Ломоносов еще в середине 18 века.

В эксперименте был использован стеклянный шар, наполненный водородом. После того как к нему был приложен электрический ток, шар начал испускать видимый свет.

Однако это устройство не рассматривалось в качестве источника освещения, а полноценная работа в этой области началась уже в 19 веке.

В 1856 году немецкому стеклодуву Гейслеру удалось откачать воздух из стеклянной колбы с помощью изобретенного им же вакуумного насоса. Используя высоковольтную катушку, он вызвал внутри колбы свечение зеленоватого цвета. Данное устройство получило название трубки Гейслера.

Немного позднее, в 1859 году Александр Беккерель осуществил покрытие трубок изнутри веществами, обладающими люминесцирующими свойствами.

Именно с этого момента началось развитие технологий данного типа освещения.

Проводимые работы так и остались экспериментами, но сама идея получила дальнейшее развитие на практике.

Первую демонстрацию трубок Гейслера в 1891 году провел американский ученый Никола Тесла. Он на практике показал возможность светиться у трубок с различными покрытиями под действием высокочастотного электрического поля. В этом же году Тесла получил патент на аргоновые газоразрядные лампы, спроектированные для систем освещения.

Первые лампы для светильника на основе ртути удалось получить американцу Питеру Хьюитту. Ртутные пары светились мягким сине-зеленым светом, а по техническим характеристикам эти устройства превосходили лампы Эдисона. Однако полученные цветовые оттенки не нашли широкого применения в искусственном освещении.

Ровное белое свечение было получено в 1926 году немецким изобретателем Эдмундом Гермером. На внутреннюю часть колбы наносился флуоресцентный порошок – люминофор, после чего внутри нее увеличивалось давление. Свет от такого источника был гораздо ярче по сравнению с лампами накаливания.

Конструкция этих устройств считается максимально близкой к современным люминесцентным лампам.

С 1934 года компания General Electric приобрела патент и приступила к выпуску осветительных приборов нового типа. Они сразу же приобрели широкую популярность и стали повсеместно использоваться в искусственном освещении вместо обычных лампочек.

Как проверить лампочку мультиметром — инструкция

Особенности конструкции

Колбы всех ламп, независимо от конфигурации, всегда имеют цилиндрическую форму. Их наружный диаметр составляет 12, 16, 26 и 38 мм. Чаще всего источники света изготавливаются прямыми, но некоторые из них сформированы в кольцо, букву U, спираль и т.д.

Устройство люминесцентной лампы предполагает герметичное соединение торцов со стеклянными ножками, внутри которых установлены зажигательные электроды. Они изготавливаются из вольфрама и закручиваются в спираль, так же как у обычных ламп накаливания. Снаружи электроды соединяются со штырьками цоколя, выполняющими функцию контактов.

Устройства прямой и U-образной формы для светильника оборудованы двумя видами цоколей – G5 и G13. В указанной маркировке цифры означают размер зазора между штыревыми контактами в миллиметрах.

Рассматривая вопрос, как устроена лампа, следует помнить, что в одну из стеклянных ножек впаян специальный штенгель, через который производится откачка воздуха изнутри колбы. После этого внутрь закачивается инертный газ с небольшим количеством ртути, примерно 30 мг.

Вместо чистой ртути может использоваться амальгама, представляющая собой ее сплавы с такими металлами, как индий, висмут и другие. Вольфрамовые электроды покрываются активирующим веществом. Для этой цели используются оксиды бария, кальция или стронция. В некоторых случаях к ним добавляется торий.

Основной функцией электродов является отдача и прием ионов и электронов, обеспечивающих течение электрического тока в пространстве, где образуется разряд. Чтобы запустить процесс термоэмиссии, они разогреваются до температуры 1100-1200 градусов. Электроны начинают вылетать с поверхности активирующего вещества.

В процессе эксплуатации слой этих веществ постепенно уменьшается, происходит его оседание на стеклянных стенках, что делает зависимым от этого общий срок эксплуатации люминесцентной лампы.

Максимальное ультрафиолетовое излучение ртути достигается наиболее эффективным использованием разряда. Для этого внутри колбы должна поддерживаться определенная температура.

Ее диаметр определяется именно этим техническим условием.

Работоспособность лампы для светильника во многом зависит от плотности тока. Чтобы найти эту величину, необходимо значение тока разделить на площадь сечения цилиндра. Мощность лампы находится в прямой зависимости с ее длиной, поэтому просто так колбу нельзя сделать короче. В связи с этим, габариты стали уменьшаться за счет измененной конфигурации, при которой общая протяженность изделия остается прежней.

Как работает устройство с люминофором

Принцип работы люминесцентных ламп во многом зависит от ее конструкции. Газ, наполняющий внутреннее пространство колбы, создает электропроводную среду с отрицательным сопротивлением. Его проявление заключается в изменении напряжения между электродами, расположенными с противоположных сторон. Напряжение начинает снижаться при возрастании тока, который требует ограничения.

Включение в работу люминесцентной лампы для светильника осуществляется при помощи электромеханической пускорегулирующей аппаратуры – ЭмПРА. Основными компонентами данной схемы служат дроссель и стартер.

Первое устройство создает импульс напряжения с большой величиной, обеспечивающий зажигание. Второй компонент представляет собой лампу тлеющего разряда, внутри которой в газовой среде размещаются два электрода.

Один электрод является биметаллической пластиной, а в исходном положении они оба разомкнуты.

Светодиодное дерево своими руками

Запуск лампы и ее принцип действия происходят в следующей последовательности:

  • В пусковую схему изначально поступает напряжение. Изначально ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идет на стартер и дает толчок к образованию внутри него тлеющего разряда.
  • После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате, металл становится проводником и действие разряда прекращается.
  • На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов. В дросселе под влиянием самоиндукции образуется импульс высокого напряжения, дающий толчок к зажиганию лампы.
  • Ток, проходящий через лампу для светильника, постепенно уменьшается в два раза из-за падения напряжения на дросселе. Его не хватает, чтобы повторно запустить стартер с разомкнутыми контактами, но сама лампа будет продолжать свою работу.

Если в один светильник установлены сразу две светящиеся лампы, схема включения предусматривает для них общий дроссель. Подключение ламп осуществляется последовательно, однако к каждой из них параллельно подключен собственный стартер.

При выходе из строя одной из ламп, вторая также отключается. В схеме включения рекомендуется устанавливать только качественные выключатели. У бюджетных моделей возможно залипание контактов под влиянием пусковых токов.

Поскольку дроссель и стартер являются основными компонентами пусковой схемы, их работу следует рассмотреть более подробно.

Дроссель: назначение и устройство

Люминесцентные светильники не могут быть включены как обычные лампы, одной лишь подачей электроэнергии. Для того чтобы они заработали и начали светиться, необходимо использовать специальную пускорегулирующую аппаратуру.

Ток, протекающий через электроды требуется ограничить, поэтому в схеме используется сопротивление, называемое балластом. Его функции выполняет дроссель, в котором присутствует реактивное сопротивление, не выделяя при этом лишнего тепла. Он ограничивает ток, тем самым предупреждая его нарастание после подключения к сети.

Помимо включения, дроссель в пусковой схеме выполняет следующие функции:

  • Создает безопасный ток, достаточный для быстрого разогрева электродов в лампе при розжиге.
  • В обмотке образуется импульс высокого напряжения, благодаря которому внутри колбы возникает разряд.
  • Стабилизирует разряд при достижении током номинального значения.
  • Обеспечивает устойчивую работу лампы, несмотря на скачки и перепады сетевого напряжения.

Основным элементом дросселя служит катушка индуктивности, которая состоит из проводов, намотанных на сердечник. Именно она выполняет основную ограничивающую функцию. Вся конструкция залита компаундом – специальной массой, устойчивой к возгоранию. За счет этого обеспечивается дополнительная изоляция проводов. Катушка помещается в корпусе из термоустойчивой пластмассы.

Как сделать удлинитель своими руками

Функции стартера в схеме подключения

Вторым компонентом, входящим в состав пускорегулирующей аппаратуры, является стартер, имеющий довольно простую конструкцию. Продукция разных производителей отличается собственными параметрами и техническими характеристиками, которые необходимо учитывать при покупке ламп. Однако устройство и принцип работы этих приборов одинаковый.

Конструкция стартера выполнена в виде стеклянного баллона, заполненного инертным газом – неоном или смесью водорода с гелием. В цоколь баллона неподвижно впаяны металлические электроды, выведенные наружу. Сама стеклянная конструкция располагается в металлическом или пластмассовом корпусе, покрытом термоизоляционным составом.

Параллельно с электродами подключен конденсатор емкостью 0,003-0,1 мкф, предназначенный для борьбы с радиопомехами, возникающими при контакте электродов. Кроме того, данный элемент принимает участие в запуске лампы и понижает величину импульса напряжения, возникающего во время размыкания электродов.

Параллельное включение конденсатора существенно понижает вероятность залипания электродов под действием электрической дуги.

Основной функцией стартера является замыкание и размыкание электрической цепи, запуск механизма розжига инертного газа, закачанного в колбу. При замыкании цепи электроды самой лампы нагреваются, и весь процесс зажигания заметно облегчается.

После нагрева цепь разрывается с одновременным образованием импульса повышенного напряжения, пробивающего газовый промежуток колбы. Такой принцип работы каждого стартера.

Несмотря на устойчивую и долговременную работу, схемы ЭмПРА с использованием стартера считается несовершенной. Рабочий процесс нередко сопровождается мерцанием, шумом дросселя и другими неприятными явлениями. Поэтому все современные люминесцентные лампы работают с более совершенной электронной пусковой схемой – ЭПРА.

Подключение через электронный балласт – ЭПРА

Схема ЭПРА с люминесцентными лампами функционирует на основе полупроводниковых элементов, что позволило снизить габариты и повысить качество работы этих устройств. Заметно возросли сроки эксплуатации, повысился КПД, появилась возможность плавной регулировки яркости, увеличился коэффициент мощности.

В состав схемы электронного пускорегулирующего устройства входят следующие компоненты:

  • Устройство для выпрямления тока и напряжения.
  • Фильтр электромагнитных излучений.
  • Корректор для регулировки коэффициента мощности.
  • Фильтр сглаживания напряжения.
  • Инверторная схема.
  • Элемент с функциями дросселя.

Схема ЭПРА может быть мостовой или полумостовой. Первый вариант предназначен для очень мощных ламп, а второй используют все остальные люминесцентные лампы низкого давления.

В основе работы электронного балласта лежат увеличенные частотные характеристики, обеспечивающие равномерное свечение, без каких-либо мерцаний. Современные микросхемы, используемые в конструкции, позволили существенно уменьшить размеры устройства и обеспечить равномерный подогрев электродов. Благодаря ЭПРА, люминесцентная лампа может быть автоматически подстроена под конкретные технические характеристики.

Источник: https://electric-220.ru/news/princip_raboty_ljuminescentnoj_lampy/2018-12-24-1622

Как работает люминесцентная лампа

Люминесцентная лампа, явившаяся результатом целого ряда открытий и исследований (подробнее об этом в статье история люминесцентной лампы), сегодня стала одним из основных источников искусственного света, как в офисных помещениях, так и в частных домах и квартирах.

Ряд выгодных отличий от популярной еще пару десятков лет назад лампы накаливания, позволили люминесцентной лампе достаточно успешно конкурировать с «фаворитными» источниками света, а также привело к созданию ее боле совершенных и компактных модификаций.

Но речь в этой статье пойдет не о ее достоинствах или недостатках, а о том, как она работает.

Все виды люминесцентных ламп, будь то популярные сейчас «экономки» или старые длинные лампы дневного света, построены и работают примерно по одному и тому же принципу. Отличие может быть лишь в электронной схеме подключения к источнику питания.

ЭТО ИНТЕРЕСНО:  В чем разница между холодным и теплым светом

Конструкция люминесцентной лампы

Лампа состоит из стеклянной колбы (может быть самой разнообразной формы и размеров), двух (иногда четырех) электродов, инертного газа, ртути (паров), люминофора и схемы запуска (в экономках она находится внутри корпуса лампы).

Электрод представляет собой два проводящих электрических контакта (обычно из проволоки), к которым подводится электрический ток и нить накала, покрытую специальным эмиссионным веществом для более эффективного испускания электронов в процессе работы и большей продолжительности  службы самой лампы.

Принцип работы люминесцентной лампы

Когда электрическая цепь лампы подает на электроды ток, они начинают постепенно разогреваться и испускать электроны. Но этих электронов недостаточно, чтобы зажечь между электродами, так называемый тлеющий разряд – поток ионизированных частиц газа.

Тогда в работу вступает та часть схемы управления, которая отвечает за запуск лампы. Кратковременный импульс напряжения зажигает инертный газ в лампе, а затем и пары ртути.

Симбиоз этих веществ, ионизированных электрическим током, приводит к возникновению свечения в невидимой для нас ультрафиолетовой области спектра.

Чтобы преобразовать ультрафиолетовый свет в видимый свет, используется люминофор, нанесенный на стенки стеклянной колбы. Получается двойное преобразование. Сначала электроны, испускаемые электродами лампы, ионизируют газ и пары ртути, а затем ионизированные частицы возбуждают люминофор, заставляя его испускать видимый для нашего глаза свет.

Разница в принципе работы обычной длинной лампы дневного света и «экономки» лишь в том, что в первом случае схема запуска состоит из дросселя (индуктивности), конденсатора и стартера. Во втором же эти функции выполняет более сложная электрическая схема, в состав которой входят другие электронные компоненты.

Сейчас производители используют различный состав люминофора, чтобы менять цвет свечения люминесцентных ламп или как еще говорят – его температуру. Более желтое (теплое) свечение имеет температуру порядка 2700 К, естественное дневное (белое) – порядка 4100 К, я яркое (холодный свет) – примерно 6000 К. Подобную маркировку можно встретить и на самих лампах.

Источник: http://scsiexplorer.com.ua/index.php/ljudi-i-tehnologii/kak-eto-rabotaet/1280-kak-rabotaet-ljuminestsentnaja-lampa.html

Люминесцентные лампы

ХАРАКТЕРИСТИКИ
ПРИМЕНЕНИЕ
ПОДКЛЮЧЕНИЕ

Люминесцентные лампы являются одним из основных источников освещения в офисных помещениях, на предприятиях, в общественных местах.

До недавнего времени такая ситуация была обусловлена несколькими факторами: утилитарным внешним видом, ограниченным модельным рядом и довольно сложным, для рядового пользователя, обслуживанием.

Однако, с недавних пор, появился довольно большой выбор бытовых люминесцентных ламп, как в плане новых конструкций и эксплуатационных характеристик, так и по внешнему виду и удобству эксплуатации.

При этом замена в квартире всех лампочек накаливания на энергосберегающие люминесцентные источники света сэкономит до 80% электроэнергии.

Устройство и принцип действия люминесцентной лампы.

Стеклянная колба, наполненная инертным газом и парами ртути, покрыта изнутри слоем люминофора. Она может иметь различные размеры и разнообразные формы. Для подачи электроэнергии имеется от 2 до 4 электродов и набор элементов под общим названием — схема запуска.

В бытовых устройствах она располагается внутри корпуса, у офисных и промышленных образцов схема запуска является частью осветительного прибора предназначенного для использования определённого типа люминесцентных ламп.

Группа электродов состоит из двух или четырех токопроводящих контактных стержней, между которыми натянута нить накаливания. Ее покрывают специальным эмиссионным веществом для более интенсивного излучения электронов в процессе функционирования, а также для увеличения срока службы изделия.

Все люминесцентные лампы, независимо от особенностей их конструкции, имеют сходный принцип функционирования. На электроды подается ток, после чего они разогреваются и начинают постепенно испускать электроны.

Однако интенсивности электронного потока недостаточно для возникновения между электродами тлеющего разряда — потока ионизированного газа.

После того как электроды разогрелись, активизируется схема управления отвечающая за запуск. Этот элемент посылает кратковременный импульс напряжения, зажигающий в колбе лампы, вначале инертный газ, а затем ртутные пары. Ионизация электрическим током соединения этих двух веществ дает свет в ультрафиолетовом диапазоне.

Так как ультрафиолетовое излучение находится в невидимой для человека части спектра, его необходимо преобразовать в видимое свечение. Это осуществляет люминофор – специальное вещество нанесённые на внутреннюю часть колбы.

Основные технические и световые характеристики

Цветопередача.

Является одной из главных характеристик изделия, зависит от состава люминофора. На сегодняшний день разработано множество составов, которые дают довольно широкую цветовую гамму. Наиболее распространенными оттенками для домашнего использования являются жёлтые, тёплые цвета, имеющие температуру около 2700 К.

Для офисных помещений наибольшее распространение получило белое «дневное» искусственное освещение, которое находятся в диапазоне температур 4000 — 4500К. Довольно часто можно встретить лампы холодного белого цвета, используемые в специальных осветительных приборах на производстве и в медицине, они имеют цвет свечения до 6000 — 6500 К.

Для удобства пользователя была разработана специальная классификация цветов люминесцентных ламп:

  • ЛКБ – естественный холодный;
  • ЛДЦ – дневной с улучшенной цветопередачей;
  • ЛТБ – белый теплый;
  • ЛД – дневной;
  • ЛБ – белый;
  • ЛЕЦ – естественный с улучшенной цветопередачей;
  • ЛХБ – холодный белый.

Кроме этого определённые добавки в люминофор могут изменять и цветность лампового света, делать его розовым, голубым, зелёным. Этот эффект широко используется в рекламной индустрии и коммерции. К примеру, люминесценции лампы розового цвета часто используют для подсветки стеклянных витрин мясных отделов. Это значительно улучшает внешний вид продукта.

Цоколь.

В зависимости от конструкции используются две принципиальных формы цоколя.

Лампы в виде прямой трубки имеют двухконтактные штырьковые цоколи, расположенные по краям. Одной из разновидностей такой конструкции, использующейся в изделиях небольшого размера, является штырьковый цоколь для U-образной колбы, встроенный в пускорегулирующее устройство.

Патронные цоколи – имеют классическую форму с резьбой и могут быть использованы в бытовых устройствах освещения, без каких либо ограничений.

Область и особенности применения

Выпускается множество разновидностей люминесцентных ламп, которые получили широкое применение в самых разнообразных областях.

Иногда их называют лампами дневного света, вместе с тем, в зависимости от спектра цветопередачи различают следующие типы:

  • с цветопередачей, аналогичной солнечному свету — получили наибольшее распространение в офисах, производственных цехах, общественных организациях, образовательных учреждениях;
  • с улучшенной цветопередачей — выставочные залы, галереи, музеи, больницы, коммерческие организации специализирующиеся на продаже художественных товаров, красок, тканей и т.п.;
  • с высоким уровнем изучения в красном и синем спектре — подсветка аквариумов, теплиц, оранжерей, используется в магазинах торгующих растениями;
  • со смещением спектра в синий и УФ диапазон — применяется в сочетании с искусственными источниками дневного света для декорирования аквариумов с кораллами.
  • со светом в чистом ультрафиолетовом диапазоне — солярии и косметические салоны, в устройствах автозагара;
  • с ультрафиолетовым излучением высокой мощности — в медицинских учреждениях в качестве антибактериального освещения (аналогично кварцевым лампам).

Достоинства и недостатки.

Из основных достоинств люминесцентных ламп можно выделить следующие:

  1. Сравнительно высокий КПД до 20-25%.

    Это значительно выше, чем у лампочки накаливания — 7-8%;

  2. Высокий уровень светоотдачи, в 10 раз выше, чем у лампочки накаливания;
  3. Длительный срок службы — 15000-20000 часов (до 1000 часов у лампочки накаливания);
  4. Низкая температура стеклянной колбы позволяет использовать в осветительных приборах из чувствительных к температуре материалов;
  5. Можно довольно точно подбирать цветовые оттенки, даже из различных партий и производителей изделий.

Однако у люминесцентных изделий есть и некоторые недостатки:

  1. Достаточно высокая стоимость;
  2. Опасность химического заражения и отравления ртутными испарениями при разрушении;
  3. Мерцание при неисправной работе стартера, перепадах напряжения в электросети, окончании срока эксплуатации;
  4. Появление раздражающего звука при эксплуатации;
  5. Довольно требовательны эксплуатационным температурам окружающей среды. Не работают при отрицательных, максимальная температура эксплуатации у большинства моделей около 55°С.

На данный момент новые модели с электронными пускорегулирующими аппаратами значительно расширили рабочий диапазон температур

.

Линейные люминесцентные лампы.

Вопреки названию линейная люминесцентная лампа может иметь, как прямую, так и u-образную и даже кольцевую форму. В соответствии с ГОСТ 6825-64 существовало три типа таких изделий с различной мощностью и длиной трубки:

  • 20 Ватт — 600 мм;
  • 40 Ватт — 1200 мм;
  • 80 Ватт — 1500 мм.

На данный момент рынок заполнен различными моделями среди которых наиболее популярными считаются изделия стандартов Т4, Т5 и Т8. Диаметр трубок составляет 12,5, 16 и 26 мм соответственно.

Наиболее популярная длина трубки 590 мм. Это связано со стандартом ячейки потолка Армстронг (600х600 мм) на который ориентируется большинство производителей осветительных приборов для офисных и общественных помещений.

Подключение люминесцентной ламы

Двумя элементами, без которых функционирование люминесцентной лампы является невозможным, являются стартер и дроссель.

Стартер представляет собой небольшую неоновую лампочку с расположенными в ней двумя биметаллическими электродами, которые в нормальном положении разомкнуты. После подачи электроэнергии электроды в стартере замыкаются. Электроэнергия передается на дроссель, в результате чего сила тока возрастает почти в три раза, практически моментально разогревая электроды внутри колбы.

Остывая, биметаллические контакты размыкаются. В момент их размыкания дроссель создает высоковольтный запускающий импульс, благодаря самоиндукции, возникающей в его обмотке. Этот импульс приводит к возникновению разряда в газоконденсатной среде внутри колбы, зажигая ее.

Существуют стартеры на 127 Вольт, которые работают в двухламповых схемах и на 220 Вольт, предназначенные для одной ламповых схем. Они НЕ взаимозаменяемы, так что перед установкой необходимо прочитать маркировку.

Стартер является элементом, который наиболее часто выходит из строя. Если в осветительном приборе погасла одна или несколько ламп необходимо, прежде всего, заменить стартеры.

Данная схема запуска характерна для светильников использующих электромагнитный балласт или по другому – электромагнитный пускорегулирующий аппарат (ЭмПРА). Его применение довольно широко распространено, однако системы подключения основанные на ЭмПРА, на данный момент являются морально устаревшим оборудованием.

Они имеют следующие недостатки:

  • довольно долгий запуск 1-3 сек, в зависимости от степени износа изделия;
  • неприятный звук, возникающий в процессе функционирования пластин дросселя, который со временем усиливается;
  • мерцание (эффект стробоскопа), негативно влияющее на зрение.

Подключение люминесцентной лампы при помощи электронного пускорегулирующего устройства (ЭПРА) имеет принципиально другую схему активации. Прежде всего ЭПРА функционирует в высокочастотном диапазоне 25-133 кГц, используя выходной каскад на транзисторах и трансформатор.

Применение ЭПРА имеет следующие преимущества:

  • отсутствие мерцания и шума в процессе функционирования;
  • отсутствие стартеров в схеме управления;
  • увеличение срока службы и экономия электроэнергии до 20%;
  • некоторые модели выпускаются с возможностью регулировки яркости свечения.

Применение люминесцентных ламп, безусловно, даст положительный экономический эффект в любой организации, частном доме или квартире. Кроме того, можно довольно точно подобрать цвет к уже использующимся образцам.

Однако стремительное распространение светодиодных ламп составило значительную конкуренцию, так как они превосходят люминесцентные по многим параметрам кроме стоимости.

На данный момент наиболее популярными производителями являются:

  • Космос (Россия);
  • OSRAM (Германия);

Источник: https://eltechbook.ru/lampa_ljuminescentnaja.html

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как определяется коэффициент трансформации

Закрыть