Что такое фазировка трансформаторов для чего и как она выполняется

Фазировка электрической линии как считать

Что такое фазировка трансформаторов для чего и как она выполняется

› Разное

статьи (пока оценок нет)

Проверке фазировки подлежатраспределительные устройства и электрооборудование, работающее на трехфазном токе (трансформаторы, линии электропередач, синхронные компенсаторы, холодильные камеры и др.) как перед вводом в эксплуатацию, так и после ремонта. Также контроль фазировки производится при проведении планово-предупредительных ремонтов (ППР) оборудования. Почему?

Зачем нужно проверять фазировку?

Цель проверки фазировки заключается в контроле напряжения на каждой из токоведущих жил электрооборудования на предмет совпадения с напряжением на соответствующих жилах электросети.. Ведь в случае несоблюдения, возникают нежелательные явления, такие как перекос фаз. В промышленных электрических приборах (например, холодильных камерах) происходит существенное понижение мощности. А В быту это явление может привести к выходу из строя бытовой техники и различных электроустановок.

Выполнять такие работы по действующему законодательству должны специалисты в количестве не менее двух человек, прошедшие обучение, знающие требования нормативно-технической документации на проводимые работы, имеющие группу по электробезопасности 3 и выше.
При этом они должны обязательно ознакомиться с паспортными данными на подключаемое к сети оборудование и иметь необходимые для проведения таких работ средства измерения.

Проверка фазировки распределительных устройств

Проверка фазировки распределительных устройств (РУ) заключается в определении правильности порядка следования и чередования фаз в соответствии с фазами оборудования вводимого в эксплуатацию.

Оборудование, работающее от трехфазной сети, подлежит обязательной фазировке перед первичным запуском в работу, после проведения капитального ремонта и др. работ, связанных с нарушением порядка чередования фаз и их следования.

Проще говоря, проверяется совпадение по фазе напряжения каждой из фаз электроустановки с фазами напряжения электрической сети.

Перед запуском электрооборудования в эксплуатацию проверяют:

  • целостность жил и изоляции проводников;
  • фазировку жил;
  • чередование фаз.

Порядок работы

Работы проводятся в таком порядке лицензированной РТН электролабораторией:

  • проверяется отсутствие напряжения на вводимом в эксплуатацию оборудовании;
  • отсоединяется кабель от шин;
  • заземляется одна из жил проводника;
  • измеряется сопротивление изоляции жил проводника относительно земли;
  • выполняется маркировка жилы, сопротивление которой относительно земли будет нулевым;
  • выполняется фазировка остальных жил кабеля;
  • выполняется подключение кабеля к РУ согласно маркировке;
  • выполняется операция прозвонки;
  • производится фазировка под напряжением. Проверка осуществляется между одноимёнными фазами и остальными. Если между одноименными фазами напряжение отсутствует, а между разноименными имеется, то такой кабель включается в работу, а следовательно и распределительное устройство.

Компания Перестройка МСК имеет все необходимые разрешения и специалистов, которые выполнят услугу по проверке фазировки РУ и электрооборудования в кратчайшие сроки по самым выгодным ценам в Москве и МО. Заказчику выдается документ, удостоверяющий качество проведенных работ.

Проверка фазировки электрооборудования

Электрооборудование трехфазного тока (трансформаторы, генераторы, кабельные линии электропередач) подлежит обязательной фазировке, перед тем как оно впервые будет включено в сеть или же по окончании очередного ремонта, в результате которого могло произойти нарушение порядка чередования, следования фаз. Фазировка заключается в проверке совпадения по фазе напряжений каждой из 3-х фаз включаемой электроустановки с соответствующими напряжениями сети.

Подобного рода проверка, безусловно, необходима, ведь в процессе сборки, монтирования и ремонта электрооборудования фазы могли быть переставлены местами. У электромашин, например, не исключается и ошибочное обозначение силовых выводов статорных обмоток; у кабелей в соединительных муфтах могут быть между собой соединены жилы разноимённых фаз. Во всех этих случаях единственным выходом считается выполнение фазировки.

Как правило, эта технологическая операция состоит из 3-х основных перечисленных ниже этапов.

Проверка и сравнение порядка чередования фаз у электрической установки и сети.

Данная операция выполняется перед непосредственным включением на параллельную работу нескольких сетей, работающих независимо, нового генератора и генератора, прошедшего капитальный ремонт, при котором могла измениться схема присоединения обмоток статора к сети.
Лишь при получении положительных результатов, полученных при фазировке, генераторы или, скажем трансформаторы синхронизируются и включаются на параллельную работу.

Проверка одноимённости или расцветки фазных проводников, которые впоследствии надо будет соединить. Эта операция ставит перед собой цель проверить правильность соединения всех элементов установки между собой. Проще говоря, выверяется правильность подвода токоведущих жил к включающему аппарату.

Проверка совпадения по фазе одноимённых напряжений, то есть отсутствия между ними угла сдвига фаз. В электрических сетях во время фазировки линий электропередач и силовых трансформаторов, которые принадлежат одной электрической системе, достаточно выполнить 2 последние операции, поскольку у всех генераторов, работающих синхронно с сетью, порядок следования фаз одинаков.

Приборы для фазировки

Сегодня существует множество методик, которые зависят от прямого назначения электрооборудования, схем соединения обмоток и от используемых приспособлений и приборов.

К основным приборам и приспособлениям можно отнести:

  • Вольтметры переменного тока, используемые при фазировки электроустановок до 1 кВ и подключаемые непосредственно к выводам электрооборудования.
  • Фазоуказатели, принцип действие которых похож на принцип действия АД (асинхронного двигателя), когда при подключении катушки приборов к 3-х фазной сети токов происходит образование вращающегося магнитного поля, которое заставляет вращаться рабочий диск. При этом по направлению вращения диска можно судить о правильности порядка следования фаз токов, проходящих по катушкам.
  • Универсальные приборы (портативные вольтамперфазоиндикаторы, универсальные фазоуказатели).
  • Мегаомметры, представляющие собой переносные приборы, необходимые для измерения сопротивлений изоляции в широких диапазонах, что очень хорошо себя зарекомендовало при производстве фазировки.
  • Указатели напряжения для фазировки. Данные устройства хорошо подходят для фазировки электроустановок выше 1 кВ. При выполнении операции на отключенный аппарат (разъединитель, выключатель) на каждую сторону подаются фазируемые напряжения. При этом, щупы прибора подносятся к токоведущим частям фазируемого аппарата, и дальше осуществляется наблюдение за свечением сигнальной лампы на устройстве. Стоит учесть, что горение лампы говорит о несовпадении фаз, а отсутствие свечения лампочки – о согласованном включении и возможности включения коммутационного аппарата.

Фазировка кабельных и воздушных линий

Электроснабжение > Провода и шнуры различного назначения

ПРЯМЫЕ МЕТОДЫ ФАЗИРОВКИ

КОСВЕННЫЕ МЕТОДЫ ФАЗИРОВКИ

П РЯМЫЕ МЕТОДЫ ФАЗИРОВКИ

Фазировка кабельных и воздушных линий 6-10 кВ, имеющих между собой электрическую связь.
Принципиальная схема, поясняющая метод фазировки, представлена на рис. 29. В качестве указателя напряжения используется указатель типа УВН. Фазировка производится в следующей последовательности. На выводы разъединителя или выключателя с каждой из его сторон подают фазируемые напряжения. Проверяют исправность указателя напряжения.

Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки на несколько секунд подносят к одному из зажимов аппарата, находящемуся под напряжением (рис. 30, а). При этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной токоведущей части (рис. 30,6). Лампа указателя при этом не должна гореть. Проверяют напряжение на всех шести выводах коммутационного аппарата, как показано на рис. 30,в.

Проверка производится для того, чтобы исключить ошибку в случае фазировки линии, имеющей обрыв (например, вследствие перегорания предохранителя). Абсолютные значения напряжений между фазой и землей здесь не играют роли, так как при фазировке присоединение указателя будет производиться или на линейное напряжение (несовпадение фаз) или на разность напряжений между одноименными фазами (совпадение фаз), которая практически близка к нулю.

Поэтому о наличии напряжения судят просто по свечению лампы указателя.

Рис. 29. Схема фазировки линий, имеющих непосредственную электрическую связь (не через трансформатор).

Рис. 30. Последовательность операций при фазировке линий 10 кВ указателем УВН. а – проверка исправности указателя при встречном включении; б – то же при согласном; в – проверка наличия напряжения; г – фазировка.

Процесс собственно фазировки состоит в том, что щупом одной трубки указателя касаются любого крайнего вывода аппарата, например фазы С, а щупом другой трубки – поочередно к трем выводам со стороны фазируемой линии (рис. 30, г).

В двух случаях касаний (С – А1 и С – В1) лампа будет ярко загораться, в третьем (С- C1) гореть не будет, что укажет на одноименность фаз.После определения первой пары одноименных выводов щупами поочередно касаются других пар выводов, например А – А1 и А – В1.

Отсутствие свечения лампы в одном из касаний укажет на одноименность следующей пары выводов.Совпадение фаз третьей пары выводов В – В1 можно уже не проверять – фазы должны совпасть.

Одноименные фазы соединяют на параллельную работу. Если одноименные фазы у разъединителя или выключателя не находятся друг против друга, то с установки снимают напряжение и пересоединяют шины в том порядке, который необходим для совпадения фаз.

Источник: https://electrik-ufa.ru/raznoe/fazirovka-elektricheskoj-linii-kak-schitat

Анализ работы дифференциальной защиты трансформатора при помощи программы «FastView» 4.2

Что такое фазировка трансформаторов для чего и как она выполняется

  • 21 июня 2013 г. в 10:26
  • 1287

Анализ работы дифференциальной защиты трансформаторов, реализованной в блоках БМРЗ-ТД, БМРЗ-153-УЗТ осуществляется с целью проверки подключения токовых цепей и задания исходных параметров, а также проверки причин срабатывания дифференциальных защит.

Анализ осуществляется путем расчета векторных диаграмм токов циркуляции в доаварийном режиме и расчета действующих значений дифференциальных токов и токов торможения в процессе возникновения и развития аварии.

Исходные данные

Для анализа работы дифференциальной защиты трансформаторов, реализованной в блоках БМРЗ-ТД и БМРЗ-153-УЗТ необходима осциллограмма токов в нагруженном режиме силового трансформатора или осциллограмма срабатывания блока (файл в формате OSC или Comtrade) и следующие уставки и параметры защит блока:

  • схема соединения обмоток и часовая группа силового трансформатора;
  • номинальная мощность силового трансформатора;
  • номинальные напряжения сторон силового трансформатора;
  • коэффициенты трансформации трансформаторов тока сторон;
  • процент регулирования и количество ступеней учитываемых РПН;
  • уставки и программные ключи защит (ДТО, ДЗТ, ИПБ).

Пример исходных данных представлен в таблице 1.

Таблица 1 Наименование Значение Уставки защит Программа 1 Программа 2
Схема соединения №7, Y/Y/Д-11, РПН ВН
Номинальная мощность 25 МВА
Номинальное напряжение ВН/СН/НН 115/38,5/11 кВ
Коэффициенты трансформации ВН/СН/НН 120/120/300
Шаг РПН 1,78%
Число ступеней РПН 1
Кнб.с. 4 Iдзт нач 4 Iдзт нач
Iдто 5 Iном 5 Iном
S910 (Ввод ДТО) введена введена
Iдзт нач (грубые) 0,5 Iном 0,4 Iном
Кторм.2 (грубые) 0,38 0,48
Кторм.3 (грубые) 0,78 0,83
Iдзт нач (точные) 0,4 Iном 0,4 Iном
Кторм.2 (точные) 0,2 0,28
Кторм.3 (точные) 0,59 0,64
S920 (Ввод ДЗТ) введена введена
Кипб 0,16 0,16
Тпб ипб 0,72 с 0,72 с
S951 (ИПБ перекрестно принудит.) введена введена

Расчет токов циркуляции. Настройка каналов тока

В анализируемой осциллограмме для расчета используют вторичные мгновенные значения токов, поэтому переключатели программы «FastView» устанавливают в положения в соответствии с рис. 1.

Рисунок 1. Настройка анализируемых каналов тока в осциллограмме.

Согласование векторных групп и удаление токов нулевой последовательности

В блоках защиты силовых трансформаторов БМРЗ осуществляется удаление токов нулевой последовательности для сторон силового трансформатора, соединенных в схему «звезда», осуществляется поворот и согласование векторных групп сторон. Для этого применяются операции «цифровой треугольник» (ЦТ) или вычитание тока нулевой последовательности.

Операции применяются по следующему правилу:

а) для трансформаторов со схемой соединения обмоток «треугольник-треугольник
(-треугольник)» операции не требуются;

б) для трансформаторов со схемой соединения обмоток «звезда-звезда(-звезда)» для всех сторон осуществляется удаление нулевой последовательности путем вычитания из фазных токов расчетного тока I0 соответствующей стороны:

в) для прочих схем соединения:

  • для сторон со схемой соединения «треугольник» операции не выполняются, все прочие стороны рассматриваются относительно данной стороны;
  • для сторон со схемой «звезда» выполняется операция ЦТ:

— одноименная часовой группе силового трансформатора для стороны;

— большего напряжения (относительно стороны, соединенной в треугольник);

— противоположная часовой группе силового трансформатора для стороны;

меньшего напряжения (относительно стороны, соединенной в треугольник).

ЦТ-1 ЦТ-11

Пример выбора операций выравнивания сторон

Для рассматриваемого трансформатора Y/Y/Д-11 должны быть проведены следующие операции:

  • сторона НН — без изменений;
  • сторона ВН — ЦТ-11;
  • сторона СН — ЦТ-11.

Для трансформатора со схемой соединения Д/Y-1 должны проводиться операции:

  • сторона ВН — без изменений;
  • сторона НН — ЦТ-11 (одиннадцатая группа — в соответствии с указанным выше правилом).

Цифровое выравнивание сторон

Для цифрового выравнивания сторон осуществляют пересчет токов сторон в относительные единицы путем деления токов циркуляции Iц, определенных в соответствии с указанным выше, на величину номинального вторичного тока соответствующей стороны Iном вн, Iном сн, Iном нн.

Величины номинальных вторичных токов сторон трансформатора Iном вн, Iном сн, Iном нн вычисляют по выражению:

ЭТО ИНТЕРЕСНО:  Как проверить исправность ротора генератора

где:

Источник: https://www.elec.ru/analytics/analiz-raboty-differencialnoj-zashity-transformato/

Чередование фаз в трехфахной сети: что это и как выполнить проверку? — Электрик

Что такое фазировка трансформаторов для чего и как она выполняется

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.

Графическое отображение сдвига фаз на 120° трехфазной сети

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.

Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Что такое фазировка трехфазной сети

Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.

Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр. Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва).

Проверка на обрыв и нахождение одноименных фаз в трехфазной сети

Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.

Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.

Отличие фазного и линейного напряжения в трехфазной сети

Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.

  Как сплести из резинок какую нибудь фигурку

Для чего проводят чередование фаз

Фазирование или фазировка – это уточнение аналогичности фаз под током каждой из 3 линий. Сфазированные обмотки согласуются, что обеспечивает правильную работу разных электрических приборов.

В настоящее время сделать это можно самостоятельно.

Проверка чередования фаз обязательно проводится при применении трехфазных электродвигателей с использованием переменного тока.

Нюансы:

  1. Фазировка влияет на направление вращения двигателя, что является очень важным условием, особенно, если сразу несколько механизмов используют двигатели одного порядка.
  2. Другим случаем, когда обязательно нужно обратить внимание на чередование фаз, является работа с помощью электросчетчика индукционного типа. При обратном порядке, нередко случается самопроизвольное вращение диска, расположенного на счётчике. Эти счетчики в настоящее время менее требовательны к фазировке, однако на индикаторе также появляются соответствующие данные.
  3. В некоторых случаях контроль расположения фаз можно выполнить без использования специальных приборов. Например, если подключение трехфазной сети питания происходит при соединении силовых кабелей. Если жилы внутри этого кабеля различны по своему цвету, то прозвонка происходит в разы быстрее. В некоторых случаях нужно просто очистить наружную изоляцию кабеля, чтобы узнать, где находится какая фаза. Жилы одинакового цвета обозначают, что фазы одинаковые.

Однако, цветовая маркировка не всегда гарантия правильного расположения фаз, ведь далеко не все производители придерживаются таких норм. Иногда на разных концах кабеля можно встретить различные цвета, поэтому идеальным и самым надежным способом определить, где какая фаза, является использование прозвонки жил.

Универсальность определителя фаз

Для этого лучше всего подходит механизм вычисления последовательности фазировки, то есть определитель. Он предназначен для обнаружения фазировки, в которой напряжение отстает от значения в фазе.

Взятая для начала отсчета точка этого отставания нужна, чтобы правильно подключить к сети, приборы, которые требуют соблюдения последовательности чередования фаз.

Одним из примеров такого прибора может быть трехфазный четырехпроводный электросчетчик.

Конструкция такого устройства отличается простотой:

  1. Основа представляет электроизоляционный материал, например, текстолит.
  2. В нём размещены 2 настенных электропатрона, внутри которых находится обычные лампы накаливания, закрытые полупрозрачными кожухами.
  3. На их основании укрепляют конденсатор и клеммник подсоединения проводов.

Нередко такие определители делают самостоятельно в домашних условиях. При подключении такого определителя к 3-фазной сети, из-за вставленного конденсатора в каждой фазе, меняется напряжение, поэтому лампы накаливания светятся по-разному. По интенсивности свечения ламп можно судить о принадлежности оставшихся двух проводов к оставшимся фазам.

При подключении данного элемента для вычисления чередования фазировки при обесточенной трехфазной сети, в качестве средней выбирается линия В.

По отношению к этой фазе, 1 из не подсоединенных проводов, например, А, будет опережающим. То есть, напряжение в ней будет опережать значение в фазе В. А последняя фаза С будет отстающей, в ней напряжение будет отставать от В.

Схема такого подключения выглядит следующим образом. При подаче на определитель напряжения, одна из светоисточников будет гореть ярче, а другой хуже. Линия, где диод горит ярче, является отстающей. Фаза, где лампа горит наполовину, является опережающей.

Таким образом, можно определить, правильное ли чередование фаз.

  Как выбрать бензопилу для дома хорошую

Советы: как определить фазы в трехфазной цепи

В некоторых случаях, определять фазы в трехфазной цепи не нужно. Например, если к трехфазной сети подключен такой же двигатель, то он способен вращается в обе стороны. Чтобы изменить направление, нужно поменять местами любые 2 фазы. Также можно равномерно распределить нагрузку на все фазы, чтобы избежать перекоса.

Если условно обозначить разные линии в любой 3-фазной сети, как буквы А, В, С, то можно выделить такие варианты их чередования:

  • Обратные (CBA, BAC, ACB).
  • Прямые (ABC, BCA, CAB);

В случае подключения оборудования к 3-фазной линии с силовым проводом, порядок следования фаз можно проверить, не используя специальные приборы. В таком случае смотрят на разноцветную либо цифирную маркировку изоляции проводов.

Также нужно отметить, что на практике маркировка изоляцией может оказаться не самым точным критерием. Ведь, не все производители гарантируют совпадение цвета изоляции в начале и в конце кабеля.

Добиться самых правильных показаний может метод прозвонки кабеля. Например, использование 2 теле-трубок. 1 из них в таком случае является активной, то есть обладает батареей питания, другая же пассивная и не имеет тока.

Также существует парные гарнитуры, которая снабжена наушниками, а также зажимами, или специально предназначенные для использования фазирования. Еще можно использовать мегомметр.

При этом, нужно обязательно строго соблюдать меры безопасности.

Принципы проверки фазировки

Такая операция выполняется перед подключением в параллельную работу 2 и более линий, которые работают независимым способом. Еще от обновленного генератора, после капремонта, во время которого могла поменяться схема присоединения статора к сети. Проверить одноименность или расцветку фазных проводников обязательно нужно. Ведь в последствии их нужно будет соединить.

Такая операция:

  1. Направлена на предотвращение ошибки во время присоединения линий установки параллельно.
  2. Она позволяет правильно проверить все контакты.
  3. Проверяется правильность присоединения токоведущих кабелей, включаемых к аппарату.

Проверяется совпадение по линии одинаковых токов, а именно отсутствие углового сдвига. Только при получении положительных результатов во время фазировки, генераторы либо трансформаторы работают параллельно и подключаются на одновременную работу.

Особенности прямой последовательности фаз

Это также называется способом асимметричных компонентов. Подробнее, элемент определения асимметричных электронных компонентов. Он основан на разложение несимметричной системы на 3 симметричные: прямая, обратная, нулевая.

Где применяется прямая последовательность фаз:

  1. Метод используется для определения асимметричных порядков действия электроэнергетических компонентов.
  2. Данный способ применяют некоторые элементы РЗиА. Например, на этом построен принцип действия трансформатора напряжения при последовательности в ноль. Основан принцип на суммировании значений напряжения во всех фазах.
  3. Для 3-фазных транспортных ЛЭП, в итоге получается матрица точных собственных направлений.

Этот способ определения удачно применяется, чтобы рассчитать несимметричные режимы 3-фазной линии, либо возникновения замыкания цепи. Фазоуказатель помогает определить прямую последовательность фаз, что нужно для работы некоторых устройств. При необходимости, можно легко изменить последовательность фаз.

Как проверить трехфазный электродвигатель (видео)

Фазировка электрической линии обязательно выполняется при работе с электрическими приборами, генераторами, трансформаторами. Удобнее всего определить, где какая фаза, используя указатель очередности. Этот индикатор можно сделать своими руками, и он будет успешно определять фазы.

  Разборка бензопилы штиль 270

Фазировка заключается в проверке совпадения по фазе напряжений каждой из 3-х фаз включаемой электроустановки с соответствующими напряжениями сети. Подобного рода проверка, безусловно, необходима, ведь в процессе сборки, монтирования и ремонта электрооборудования фазы могли быть переставлены местами.

У электромашин, например, не исключается и ошибочное обозначение силовых выводов статорных обмоток; у кабелей в соединительных муфтах могут быть между собой соединены жилы разноимённых фаз.

Источник: https://orensbyt.ru/osveshhenie/cheredovanie-faz-v-trehfahnoj-seti-chto-eto-i-kak-vypolnit-proverku.html

Фазировка

Фазировка — согласование электрических фаз между собой по полярности и направлению чередования при подключении. Правильно сфазированные обмотки соединяются в звезду и треугольник. (См. Схемы электрических соединений нейтралей электрических машин).

Под фазировкой, в обычном смысле слова, понимают подключение трёх-фазного источника питания к трёх-фазному потребителю, где принципиально важно соблюдение чередования фаз.

Например, при неправильном подключении трёх-фазных электродвигателей, они начинают вращение в обратную сторону, что приводит к нарушению технологического цикла, в котором используются эти электродвигатели в качестве приводов.

Виды фазировки

  • Фазировка линии.
  • Фазировка трансформаторов.
  • Фазировка генераторов.
  • Фазировка кабеля.
  • Фазировка электродвигателя.

Фазировка электроаппарата (машины)

Фазировкой электроаппарата или электрической машины называют правильное соединение обмоток трёх-фазного электроаппарата между собой для обеспечения правильного функционала. Так, например, фазировкой системы освещения называют правильно сфазированное подключение осветительных приборов к трёх-фазной осветительной сети для обеспечения симметрии нагрузки, работы осветительного прибора на нужном уровне напряжения и т.д.

При сборе схемы подключения трёх-фазного генератора неправильная фазировка его обмоток между собой приведёт к тому, что  токи между обмотками будут достигать значений близких к значениям токов короткого замыкания. Трехфазный генератор состоит из трёх разных обмоток, сдвинутых относительно друг друга на угол 120 градусов. Соответственно, для совместной работы их нужно сфазировать.

При подключении таких потребителей к трёхфазной сети, как ламп, электрических печей и другой активной нагрузки фазировка не важна. Однако, при подключении к трехфазной сети групп таких электроприборов следует выполнить некоторые мероприятия, которые можно отнести к фазировке.

Так, при подключении линии освещения к трёхфазному источнику питания (трансформатору 10/0.

4кВ, например) важно распределить нагрузку по фазам равномерно, иначе получится так называемый перекос мощности, который негативно сказывается на сети в целом, важно так же подключить осветительный прибор на фазное напряжение, так как при подключении их на линейное напряжение они попросту выйдут из строя.

Фазировка электроаппарата (машины) с сетью

Фазировкой самих обмоток электрических машин (фазировка выводов генератора, трансформатора и т.д.

) далеко не исчерпываются задачи, стоящие при включении в сеть электрооборудования, так как правильно сфазированный сам аппарат или электрическую машину нужно еще сфазировать с сетью, к которой он или она присоединяется.

Задача фазировки состоит в том, что нужно не только исключить короткие замыкания при соединении двух источников тока, но и не допустить между ними уравнительных токов, а в отношении электродвигателей — обеспечить необходимое направление вращения.

ЭТО ИНТЕРЕСНО:  Что такое пусковой ток в аккумуляторе

Для того чтобы изменить направление вращения электродвигателя, достаточно поменять местами на его зажимах любые две фазы. Действительно, для электродвигателя важно только направление вращения, а оно сохраняется при трех вариантах присоединения (a-a, b-b, c-c; a-b, b-c, c-a; a-c, b-a, c-b), но изменяется на обратное, если в любом из этих вариантов поменять местами любые две фазы.

Трансформаторы могут иметь равные вторичные напряжения, одинаковые группы соединения обмоток и, значит, могут работать параллельно, но они могут  быть не сфазированы. Задача фазировки трансформаторов на параллельную работу состоит в том, чтобы их сфазировать их вывода «а» с  «a», «b» c «b» и «с» c «c», иначе возникнет уравнительные ток, равный или близкий к току короткого замыкания.

Проверка фазировки

Проверку фазировки проводят:

  • Индикатором напряжения. При совпадении фаз одного напряжения, например А-А, потенциал между сфазированными фазами будет близок к нулю.
  • Вольт-ампер-фазометром. ВАФ (Вольт-ампер-фазометр) показывает угол в градусах между фазами. Соответственно, по векторной диаграмме можно определить совпадающие фазы.
  • Фазоуказателем. Фазоуказатель показывает направление вращения векторов трёхфазной системы. Применяется при фазировке электродвигателей. Фазоуказатель не показывает соответствие фаз.

Причины нарушения фазировки

  1. Брак на заводе изготовителе. Ошибка маркировки выводов электрического аппарата.
  2. Человеческий фактор, ошибка при монтаже, ремонте муфт кабелей или ошиновки и т.д.
  3. Объединение разных участков сети, которые раньше работали от разных трансформаторов, вторичные напряжения которых по-разному сфазированы.

См. также

  • Схемы соединения нейтралей.
  • Линейное напряжение.
  • Фазное напряжение.

Ссылки и примечания

  • Е.А. Каминский. Звезда и треугольник. Библиотека электромонтёра. Москва, 1961 год.

Просмотров всего: 718, Просмотров за день: 1

Источник: https://www.el-info.ru/biblioteka/enciklopediya/fazirovka/

Что такое чередование фаз и как его проверить? — Электро Помощь

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.

Графическое отображение сдвига фаз на 120° трехфазной сети

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.

Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Эксплуатация трансформаторов. Элементы конструкции трансформатора. Текущие и капитальные ремонты трансформаторов, страница 3

Дляопределения угла сдвига пользуются часовым обозначением, которое принято ГОСТ изаключается в следующем: вектор линейной ЭДС  обмотки ВН изображается начасовом циферблате минутной стрелкой и всегда устанавливается на 12ч, а векторлинейной ЭДС  обмотки СН (трехобмоточного трансформатора) или НН изображаетсячасовой стрелкой и укажет группу в часовом обозначении. Так, сдвиг фаз 0° или360° соответствует 0ч, 330° — 11ч, 150° — 5ч, 180° — 6ч и т.д.

Вусловиях эксплуатации имеется возможность изменить схему соединения обмоток ипорядок чередования фаз, т.е. группу соединения. При этом нужно помнить, что:

·  четныегруппы соединения обмоток трансформатора (0,2,4,6,8,10) получаются, если обеобмотки (ВН и НН) имеют одинаковые схемы (соединены в звезду или треугольник);

·  нечетныегруппы соединения обмоток трансформатора (1,3,5,7,9,11) получаются, еслиобмотки имеют разные схемы (одна обмотка соединена в звезду, а другая — втреугольник);

·  любаянечетная или четная группы могут быть получены при соответствующей заменепорядка чередования фаз на вводах трансформаторов;

·  переходиз четной группы в нечетную может быть осуществлен только изменением схемысоединения обмоток (требуется перейти от схемы звезды к схеме треугольника илинаоборот), но такой переход всегда влечет за собой изменение напряжений однойиз обмоток в  раз;

·  переключениеконцов любой обмотки на обратное приводит к изменению группы на 6 ч.

8.6Выбор правильной группы из схемы соединения трансформаторов в схеме.

У  ПРТСН Y/∆-11,т.к. вектор напряженія не должен менять фазу,т.е. ∆ соединяется с ∆, а Y со Y.

На ВН обычно Y,это позволяет сэкономить на изоляции, а на НН-∆, получаются меньшиетоки, меньший расход меди.

8.7 Фазировкатрансформаторов до 1000 В.

Фазировкасиловых трансформаторов осуществляется после монтажа или после капитальногоремонта, в процессе которых могли произойти изменения в первичных целяхтрансформатора, что приводит к изменению его группы соединения обмоток. Сутьфазировки заключается в проверке тождественности фаз присоединяемоготрансформатора с фазами действующей установки.

Фазировкапроизводится в месте разрыва фазируемой цепи и действующей установки. Такимместом разрыва цепи могут быть разъединители, рубильники, автоматы и т.д.

Какправило, фазировка производится в условиях синхронной работы подключаемоготрансформатора и действующей электроустановки. Перед фазировкой производитсяпроверка симметрии напряжений на каждой из фазируемых сторон.

Если асимметриянапряжений составляет более 10%, то фазировка не производится, а выясняются иустраняются причины, вызывающие асимметрию напряжения.

Фазировкатрансформаторов на напряжение до 1000В может производиться с помощьювольтметра, рассчитанного на двойное линейное напряжение установки, иликонтрольной лампы.

8.8Фазировка трансформаторов выше 1000 В

Принапряжении свыше 1000В для фазировки используются измерительные трансформаторынапряжения. При напряжении до 10 кВ могут применяться переносные трансформаторынапряжения, а свыше 10 кВ — только стационарные. Измерения при фазировкецелесообразно производить при помощи одного и того же измерительногоустройства.

При фазировке могутбыть два случая: фазируется трансформатор с заземленной нейтралью на фазируемойстороне с сетью, в которой имеется трансформатор с заземленной нейтралью, ифазируется трансформатор не имеющий заземленной нейтрали.

Б)  Путьпротекания токов при фазировке  тр. с

Изолированными нейтралями.

с заземл.нейтралями на фазируемой стороне

Послетого как обеспечены показания измерительного прибора производится фазировка,состоящая из трех основных операций:

Источник: https://vunivere.ru/work48889/page3

Как сделать фазировку мультиметром

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).

При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло короткое замыкание, при котором сработала защита сразу на двух вводных автоматических выключателях.

Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.

Он состоит из трех обмоток, расположенных на сердечниках, и алюминиевого диска.

Если все три обмотки включить в сеть трехфазного напряжения, то они образуют в пространстве вращающееся магнитное поле, которое приводит во вращение алюминиевый диск. Алюминиевый диск имеет фон черно-белого цвета. Направление магнитного поля и алюминиевого диска зависит исключительно от порядка чередования (следования) фаз питающего трехфазного напряжения.

Фазоуказатель ФУ-2 предназначен для включения в сеть трехфазного напряжения от 50 до 500 (В). Время его включения ограничивается временем 5 секунд. При нажатии на кнопку (она находится сбоку) диск начнет вращаться ту или иную сторону.

Рассмотрим работу фазоуказателя ФУ-2 более подробно.

Проверка чередования (следования) фаз на стенде

На моем испытательном стенде имеется источник трехфазного напряжения. Порядок чередования фаз мне неизвестен.

Проведем проверку чередования (следования) фаз с помощью фазоуказателя ФУ-2.

Подключаем зажимы А, В и С фазоуказателя ФУ-2 к выводам трехфазного напряжения на стенде.

Подаю напряжение на источник трехфазного напряжения порядка 80 (В).

Нажимаем на кнопку и смотрим куда начал вращаться диск прибора. Диск начал вращаться в обратную сторону — против стрелки. Это значит, что трехфазное напряжение на испытательном стенде имеет обратную последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: СВА, АСВ или ВАС.

Чтобы изменить обратную последовательность фаз на прямую, достаточно поменять местами две любые фазы. Меняю местами две крайние фазы (справа) на стенде и снова провожу измерение.

Теперь диск фазоуказателя начал вращаться в одну сторону со стрелкой. Это значит, что теперь трехфазное напряжение на испытательном стенде имеет прямую последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: АВС, ВСА или САВ.

Все вышеописанные действия Вы сможете посмотреть на видео:

Зачем необходимо проверять чередование фаз?

Чередование фаз необходимо проверять для правильного подключения трехфазных двигателей. При прямом подключении фаз они будут вращаться в одном направлении, а при обратном — в другом.

Также чередование фаз необходимо учитывать при подключении счетчиков электрической энергии. Особенно, это относится к счетчикам индукционного типа.

Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

Забыл упомянуть про реле контроля фаз типа ЕЛ-11, которое контролирует и срабатывает при нарушении чередования фаз.

Так в чем же была ошибка электромонтажников?

Внимание. С помощью фазоуказателя нельзя определить, где именно находится фаза А, В или С. Им определяется ТОЛЬКО последовательность фаз, т.е. направление вращающегося поля. Вот в этом и была ошибка электромонтажников, у которых на 1 и 2 секциях 400 (В) совпала последовательность фаз, а сами фазы по одноименности не совпали, поэтому при включении на параллельную работу трансформаторов случилось короткое замыкание, т.к. межсекционный автоматический выключатель замкнул разноименные фазы.

Во избежание подобных ошибок фазировку 1 и 2 секций 0,4 (кВ) необходимо было проводить с помощью поверенных указателей напряжения (УНН) или мультиметра, а не с помощью фазоуказателя, который показывает только последовательность фаз питающего напряжения:

  • прямое следование фаз — АВС, ВСА или САВ
  • обратное следование фаз — СВА, АСВ или ВАС

Дополнение: в прошлом году немного обновили «парк» приборов нашей ЭТЛ и теперь вместо ФУ-2 пользуемся указателем TKF-12.

Условия параллельной работы трансформаторов

Параллельная работа трансформатора характеризуется особенной работой обмоток. К первичным контурам подводится питающая сеть. Подключение обмотки вторичного типа производится к общей сети. Исходящее электричество питает различных потребителей.

Требования сети

Включение трансформаторов на параллельную работу вызвано определенными особенностями эксплуатации электроустановок. Представленный подход позволяет решить проблемы электроснабжения.

При параллельном подключении силовых трансформаторов удается избежать увеличения токов основного устройства. Система менее подвержена перегрузкам. В процессе параллельного подключения обмоток трансформатора уменьшается показатель сбоев в работе электросети. Вероятность, что не будут работать сразу два трансформаторных устройства, крайне мала.

При эксплуатации силового оборудования высокой мощности необходимо обеспечить достаточное пространство (в высоту) для установки агрегата. В небольшом помещении допускается параллельная работа трансформаторов, согласно ПУЭ.

На территории одной электроустановки со стандартными размерами пространства возможно использовать необходимое количество силовой аппаратуры.

Для увеличения продуктивности, безопасности работающих от разных источников агрегатов, потребуется правильно создать параллельное соединение обмоток.

Особенности

Параллельное соединение трансформаторов тока должно выполнять установленные правила и условия включения. Силовые агрегаты при включении должны характеризоваться определенным показателем полной мощности. Эта величина соответствует сумме мощностей соединенных приборов. При этом выполняется условие. Величины сопротивлений, коэффициент трансформации в процессе включения трансформаторов на параллельную работу, равны.

ЭТО ИНТЕРЕСНО:  Каким током заряжать аккумулятор 60ah

Если величины мощности неодинаковы, нагрузка делится в соответствии с номиналами. Это происходит при условии равенства коэффициента трансформации подключаемых объектов.

Существует правило. Разрешается допускать соединения параллельным включением установок с мощностью выше в 2 раза. В этом случае нужно следить за работой агрегатов. Трансформаторы не функционируют постоянно.

Условия

Существуют определенные условия параллельной работы трансформаторов. Всего установлено 5 пунктов. Включенные приборы работают правильно при следующих условиях:

  1. Фазировка. Выполнение этого условия трансформаторами является обязательным. Иначе будет наблюдаться короткое замыкание. Токи вторичных цепей позволяют выполнить фазировку. Фазы соединений согласовываются со стороны низкого, высокого напряжения.
  2. Напряжение на обмотках вторичных и первичных катушек при соединении должно быть разным. Это условие выполняется с соблюдением особенностей изоляции. Коэффициент трансформации всех элементов системы должен быть идентичным. Соединить устройство допускается, если отклонение показателя не превышает 0,5 %.
  3. Напряжение короткого замыкания равно для всех агрегатов. Это способствует выполнению обмотками установленных функций. Сопротивление контура возрастает при высоком напряжении короткого замыкания. Увеличивая его уровень для маломощного агрегата, можно получить перегрузку. Для нормальных условий функционирования системы при выполнении стандартов отклонение между показателями короткого замыкания устройств не превышает 10%.
  4. Включить параллельным соединением допускается одинаковые обмотки, соответствующие друг другу. При несоблюдении этого условия работающими приборами вырабатываются уравнительные токи. Наблюдается сдвиг фазы.
  5. Мощность аппаратуры не должна отличаться в 3 раза. Это является важным условием правильной работы системы. В противном случае мощный прибор увеличивает нагрузку на следующие приборы. Маломощные агрегаты будут перегружены. Соединять подобные устройства запрещается правилами безопасности.

Следуя перечисленным условиям, обеспечивается стабильная, эффективная работа силового оборудования. Безопасность и надежность функционирования системы повышается.

Невыполнение условий

Если не соблюдается хотя бы одно из условий, следует ожидать сбоев в работе оборудования. Нужно знать, в каком случае эксплуатация коммутированной установки будет небезопасной.

При использовании разных типов соединения появляется сдвиг фаз. При этом по контурам будет бежать ток, превышающий установленные производителем параметры. Максимальное увеличение значения появляется при возникновении короткого замыкания. Сдвиг фазы при этом составляет 180º для трансформаторов с группами обмоток 12 и 6.

Следующая небезопасная ситуация возможна при неравенстве коэффициентов трансформации. Во вторичной обмотке появится результирующее напряжение. Электричество будет протекать по цепи на холостом ходу.

При несовпадении показателей короткого замыкания будут неравны внутренние сопротивления. На холостом ходу электричество не появится, но нагрузка распределится в обратной зависимости от их сопротивления. Маломощный агрегат в такой ситуации будет перегружен.

Выполнение фазировки

Чтобы избежать появления короткого замыкания, на низшем выводе напряжения проводится фазировка. Если этот показатель в указанной точке не превышает 1000 В, применяется вольтметр. Его настраивают на соответствующий уровень напряжения.

Фазируемые обмотки соединяют. Это позволит получить замкнутый контур. Обмотки могут иметь заземленную нейтраль или выпускаться без нее. В первом случае контур замыкается через землю. Сопротивление между выводами замеряется. Результат сопоставляется с указанными производителем значениями.

Если нейтраль в конструкции не предусмотрена, потребуется ставить последовательно перемычку между соответствующими выводами двух трансформаторов. Между ними замеряют напряжение. Чтобы обеспечить безопасную работу агрегатов, соединяют те выводы, между которыми при замере не было напряжения.

Рассмотрев особенности параллельного соединения трансформаторных устройств, а также условия и рекомендации по проведению этого процесса, можно обеспечить стабильную и безопасную работу системы. Это предоставляет массу преимуществ в процессе энергоснабжения потребителей электричеством.

Источник: https://ProTransformatory.ru/vidy/parallelnaya-rabota-transformatorov

Прямая фазировка электрической линии: что это и 2 варианта подключения

Чтобы сделать фазировку электрической линии, нужно иметь соответствующий опыт и знания Сфазировать генератор или электродвигатель поможет фазометр или по-другому фазоуказатель. Однако, его непросто найти в магазинах или же просто нет смысла покупать его для одного раза использования.

Для кабельных проводов обязательно нужно знать фазы ввода, иначе может произойти короткое замыкание. При правильности определения считать напряжение будет гораздо удобнее.

Что такое фазирование, и как определить фазы, как пользоваться мультиметром и сделать такой прибор дома – обо всех нюансах ниже.

:

Фазирование или фазировка – это уточнение аналогичности фаз под током каждой из 3 линий. Сфазированные обмотки согласуются, что обеспечивает правильную работу разных электрических приборов.

В настоящее время сделать это можно самостоятельно.

Проверка чередования фаз обязательно проводится при применении трехфазных электродвигателей с использованием переменного тока.

Нюансы:

  1. Фазировка влияет на направление вращения двигателя, что является очень важным условием, особенно, если сразу несколько механизмов используют двигатели одного порядка.
  2. Другим случаем, когда обязательно нужно обратить внимание на чередование фаз, является работа с помощью электросчетчика индукционного типа. При обратном порядке, нередко случается самопроизвольное вращение диска, расположенного на счётчике. Эти счетчики в настоящее время менее требовательны к фазировке, однако на индикаторе также появляются соответствующие данные.
  3. В некоторых случаях контроль расположения фаз можно выполнить без использования специальных приборов. Например, если подключение трехфазной сети питания происходит при соединении силовых кабелей. Если жилы внутри этого кабеля различны по своему цвету, то прозвонка происходит в разы быстрее. В некоторых случаях нужно просто очистить наружную изоляцию кабеля, чтобы узнать, где находится какая фаза. Жилы одинакового цвета обозначают, что фазы одинаковые.

Проверка чередования фаз выполняется с помощью специального прибора

Однако, цветовая маркировка не всегда гарантия правильного расположения фаз, ведь далеко не все производители придерживаются таких норм. Иногда на разных концах кабеля можно встретить различные цвета, поэтому идеальным и самым надежным способом определить, где какая фаза, является использование прозвонки жил.

Чередование фаз в трехфахной сети: что это и как выполнить проверку?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую.  В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана  разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит  U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A  к U­B, а за ним к  U­C. Это означает, что фазы чередуются в порядке A, B, C.  Такой порядок чередования считается прямым.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

по принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — фу-2 .

рисунок 3: принципиальная схема работы фу-2

как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. между обмотками находится вращающийся ротор р, который приводит в движение диск фазоуказателя д.

на практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку к, которая замыкает цепь обмоток. в зависимости от порядка чередования фаз, диск д начнет вращаться по часовой или против часовой стрелки.

на самом приборе имеется стрелка, показывающая прямое чередование. если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

с помощью мегаомметра

как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

рис. 4: прозвонка кабеля мегаомметром

посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. при этом, с одного конца кабеля фазы поочередно соединяются с землей з, как и металлическая оболочка у бронированных кабелей. с другой стороны присоединяется мегаомметр м, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. на той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

на концах одноименного провода устанавливается соответствующая маркировка. недостатком такого способа прозвонки является большой объем трудозатрат. так как каждая жила заземляется поочередно, после чего выполняется проверка. при этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

по расцветке изоляции жил

если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает  один и тот же цвет для каждой жилы на всей протяженности провода. поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

при помощи мультиметра

для этого метода используется обычный мультиметр. он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

рис. 5: фазировка мультиметром

необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз а и а1. коммутационная аппаратура при этом должна быть разомкнута.  перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

если при подключении щупов к выводам a — a1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Тематическое видео

Источник: https://www.asutpp.ru/cheredovanie-faz.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Что значит с изолированной нейтралью

Закрыть