В чем состоит суть гипотезы Ампера

Природа магнетизма и гравитации. Гипотеза Ампера о природе магнетизма

В чем состоит суть гипотезы Ампера

За последние 50 лет все отрасли наук шагнули стремительно вперед. Но прочитав множество журналов о природе магнетизма и гравитации, можно прийти к выводу, что у человека появляется еще больше вопросов, чем было.

Природа магнетизма и гравитации

Всем очевидно и понятно, что предметы, подброшенные вверх, стремительно падают на землю. Что же их притягивает? Можно смело предположить, что они притягиваются какими-то неведомыми силами. Те самые силы получили название — природная гравитация.

После каждый интересующийся сталкивается со множеством споров, догадок, предположений и вопросов.

Какова природа магнетизма? Чем являются гравитационные волны? В результате какого воздействия они образуются? В чем проявляется их сущность, а также частота? Как они воздействуют на окружающую среду и на каждого человека по отдельности? Как рационально можно использовать это явление во благо цивилизации?

Понятие магнитизма

В начале девятнадцатого века физик Эрстед Ханс Кристиан открыл магнитное поле электрического тока. Это дало возможность предполагать, что природа магнетизма тесно взаимосвязана с электрическим током, который образуется внутри каждого из существующих атомов. Возникает вопрос, какими явлениями можно объяснить природу земного магнетизма?

На сегодняшний день установлено, что магнитные поля в намагниченных объектах зарождаются в большей степени электронами, которые беспрерывно делают обороты вокруг своей оси и около ядра существующего атома.

Давно установлено, что хаотичное перемещение электронов являет собой самый настоящий электрический ток, а его прохождение провоцирует зарождение магнитного поля. Подводя итог этой части, можно смело утверждать, что электроны вследствие своего хаотичного перемещения внутри атомов порождают внутриатомные токи, которые, в свою очередь, способствуют зарождению магнитного поля.

Но чем же обусловлено то, что в разных материях магнитное поле имеет значительные отличия в собственной величине, а также различную силу намагничивания? Это связано с тем, что оси и орбиты перемещения самостоятельных электронов в атомах способны быть в разнообразных положениях относительно друг друга. Это приводит к тому, что в соответствующих положениях располагаются и произведенные перемещающимися электронами магнитные поля.

Таким образом, следует отметить, что среда, в которой зарождается магнитное поле, оказывает воздействие непосредственно на него, преумножая или ослабевая само поле.

Материалы, магнитное поле которых ослабляет результирующее поле, получили название диамагнитные, а материалы, весьма слабо усиливающие магнитное поле, именуются парамагнитными.

Магнитные особенности веществ

Следует отметить, то природа магнетизма зарождается не только благодаря электрическому току, но и постоянными магнитами.

Постоянные магниты могут быть изготовлены из небольшого количества веществ на Земле. Но стоит отметить, что все предметы, которые будут находиться в радиусе магнитного поля, намагнитятся и станут непосредственными источниками магнитного поля. Проведя анализ вышеизложенного, стоит добавить, что вектор магнитной индукции в случае наличия вещества отличается от вектора вакуумной магнитной индукции.

Гипотеза Ампера о природе магнетизма

Причинно-следственная связь, в результате которой была установлена связь обладания тел магнитными особенностями, была открыта выдающимся французским ученым Андре-Мари Ампером. Но в чем состоит гипотеза Ампера о природе магнетизма?

История положила свое начало благодаря сильному впечатлению от увиденного ученым. Он стал свидетелем исследований Эрстеда Лмиера, который смело предположил, что причиной магнетизма Земли являются токи, которые регулярно проходят внутри земного шара.

Был сделан основополагающий и самый весомый вклад: магнитные особенности тел можно было объяснить беспрерывной циркуляцией в них токов. После Ампер выдвинул следующее заключение: магнитные особенности любого из существующих тел определены замкнутой цепью электрических токов, протекающих внутри них.

Заявление физика было смелым и отважным поступком, поскольку он перечеркнул все предшествующие открытия, объяснив магнитные особенности тел.

Перемещение электронов и электрический ток

Гипотеза Ампера гласит, что внутри каждого атома и молекулы существует элементарный и циркулирующий заряд электрического тока. Стоит отметить, что на сегодняшний день нам уже известно, что те самые токи образуются в результате хаотичного и беспрерывного перемещения электронов в атомах.

Если оговариваемые плоскости находятся беспорядочно относительно друг к друга вследствие теплового перемещения молекул, то их процессы взаимокомпенсируются и совершенно никакими магнитными особенностями не владеют.

А в намагниченном предмете простейшие токи направлены на то, чтобы их действия слаживались.

Гипотеза Ампера в силах объяснить, почему магнитные стрелки и рамки с электрическим током в магнитном поле ведут себя идентично друг другу. Стрелку, в свою очередь, следует рассмотреть как комплекс небольших контуров с током, которые направлены идентично.

Особую группу парамагнитных материалов, в которых значительно усиливается магнитное поле, называют ферромагнитной. К этим материал относится железо, никель, кобальт и гадолиний (и их сплавы).

Но как объяснить природу магнетизма постоянных магнитов? Магнитные поля образуются ферромагнетиками не исключительно в результате перемещения электронов, но и в результате их собственного хаотичного движения.

Момент импульса (собственного вращательного момента) приобрел название — спин. Электроны в течение всего времени существования вращаются вокруг своей оси и, имея заряд, зарождают магнитное поле вместе с полем, образующимся вследствие их орбитального перемещения около ядер.

Температура Мария Кюри

Температура, выше которой вещество-ферромагнетик теряет намагниченность, получила свое определенное название — температура Кюри. Ведь именно французский ученый с данным именем сделал это открытие. Он пришел к выводу: если существенно нагреть намагниченный предмет, то он лишится возможности притягивать к себе предметы из железа.

Ферромагнетики и их использование

Невзирая на то, что ферромагнитных тел в мире существует не так много, их магнитные особенности имеют большое практическое применение и значение. Сердечник в катушке, изготовленный из железа или стали, многократно усиливает магнитное поле, при этом не превышает расхода силы тока в катушке. Это явление значительно помогает экономить электроэнергию. Сердечники изготавливаются исключительно из ферромагнетиков, и не имеет значения, для каких целей послужит эта деталь.

Магнитный способ записи информации

С помощью ферромагнетиков изготавливают первоклассные магнитные ленты и миниатюрные магнитные пленки. Магнитные ленты имеют широкое применение в сферах звуко-и видеозаписи.

Магнитная лента является пластичной основой, состоящей из полирхлорвинила или прочих составляющих. Поверх нее наносится слой, представляющий собой магнитный лак, которые состоит из множества очень маленьких игольчатых частичек железа или прочего ферромагнетика.

Процесс звукозаписи осуществляется на ленту благодаря электромагнитам, магнитное поле которых подвергается изменениям в такт вследствие колебаний звука. В результате движения ленты около магнитной головки, каждый участок пленки подвергается намагничиванию.

Стоит прежде всего отметить, что гравитация и ее силы заключены в пределах закона всемирного тяготения, который гласит о том, что: две материальные точки притягивают друг друга с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Современная наука немного иначе стала рассматривать понятия гравитационной силы и объясняет его как действие гравитационного поля самой Земли, происхождение которой до сих пор, к сожалению ученых, не установлено.

Подводя итоги всего вышеизложенного, хочется отметить, что все в нашем мире тесно взаимосвязано, и существенного отличия между гравитацией и магнетизмом нет. Ведь гравитация обладает тем самым магнетизмом, просто не в большой мере.

На Земле нельзя отрывать объект от природы — нарушается магнетизм и гравитация, что в будущем может значительно усложнить жизнь цивилизации.

Следует пожинать плоды научных открытий великих ученых и стремиться к новым свершениям, но использовать всю данность следует рационально, не причиняя вреда природе и человечеству.

Источник: https://FB.ru/article/307396/priroda-magnetizma-i-gravitatsii-gipoteza-ampera-o-prirode-magnetizma

Функция Вейерштрасса

В чем состоит суть гипотезы Ампера
График функции Вейерштрасса с параметрами a = 3, b = 1/2 на интервале [−2, 2]. Этот график имеет фрактальный характер, демонстрируя самоподобие: увеличиваемая область (в красном круге) подобна всему графику.

Функция Ве́йерштрасса — пример непрерывной функции, нигде не имеющей производной; контрпример для гипотезы Ампера.

Функция Вейерштрасса задается на всей вещественной прямой единым аналитическим выражением

w ( x ) = ∑ n = 0 ∞ b n cos ⁡ ( a n π x ) , {\displaystyle w(x)=\sum _{n=0}{\infty }b{n}\cos(a{n}\pi x),}

где a {\displaystyle a}  — произвольное нечётное число, не равное единице, а b {\displaystyle b}  — положительное число, меньшее единицы.Этот функциональный ряд мажорируется сходящимся числовым рядом

∑ n = 0 ∞ b n , {\displaystyle \sum _{n=0}{\infty }b{n},}

поэтому функция w {\displaystyle w} определена и непрерывна при всех вещественных x {\displaystyle x} . Тем не менее, эта функция не имеет производной по крайней мере при

a b > 3 2 π + 1. {\displaystyle ab>{\tfrac {3}{2}}\pi +1.}

Для доказательства отсутствия производной в произвольной точке x 0 {\displaystyle x_{0}} строят две последовательности { x m } {\displaystyle \{x_{m}\}} и { y m } {\displaystyle \{y_{m}\}} , сходящиеся к точке x 0 {\displaystyle x_{0}} , и доказывают, что отношения

w ( x m ) − w ( x 0 ) x m − x 0 {\displaystyle {\frac {w(x_{m})-w(x_{0})}{x_{m}-x_{0}}}} и w ( y m ) − w ( x 0 ) y m − x 0 {\displaystyle {\frac {w(y_{m})-w(x_{0})}{y_{m}-x_{0}}}}

имеют разные знаки по крайней мере при

a b > 3 2 π + 1 {\displaystyle ab>{\tfrac {3}{2}}\pi +1} и a > 1 {\displaystyle a>1} .

Указанные последовательности могут быть определены как

x m = γ m − 1 a m {\displaystyle x_{m}={\frac {\gamma _{m}-1}{a{m}}}} и y m = γ m + 1 a m , {\displaystyle y_{m}={\frac {\gamma _{m}+1}{a{m}}},}

где γ m {\displaystyle \gamma _{m}} — ближайшее целое число к a m x 0 {\displaystyle a{m}x_{0}} .

Отсутствие производной во всех точках при более общих условиях

a b ⩾ 1 {\displaystyle ab\geqslant 1} и a > 1 {\displaystyle a>1}

ЭТО ИНТЕРЕСНО:  В чем заключается принцип нормирования защитного заземления

было установлено Харди.[1]

Историческая справка[ | ]

Запрос «Гипотеза Ампера» перенаправляется сюда. На эту тему нужна отдельная статья.

В 1806 году Ампер[2] предпринял попытку доказать аналитически, что всякая «произвольная» функция дифференцируема всюду, за исключением «исключительных и изолированных» значений аргумента.

При этом принималась за очевидное возможность разбиения интервала изменения аргумента на части, в которых функция была бы монотонна. С этими оговорками гипотезу Ампера можно рассматривать как нестрогую формулировку [en][3].

В первой половине XIX века предпринимались попытки доказать гипотезу Ампера для более широкого класса, именно для всех непрерывных функций. В 1861 году Риман привёл своим слушателям в качестве контрпримера следующую функцию:

r ( x ) = ∑ n = 1 ∞ sin ⁡ n 2 x n 2 , {\displaystyle r(x)=\sum \limits _{n=1}{\infty }{\frac {\sin n{2}x}{n{2}}},}

однако исследование дифференцируемости этой функции чрезвычайно сложно. Джозеф Гервер (англ. Joseph Gerver) доказал, что эта функция всё же имеет производную в некоторых рациональных точках, лишь в 1970 году[4].

В 1872 году Вейерштрасс указал более простой контрпример — введённую выше функцию w {\displaystyle w} и представил строгое доказательство её недифференцируемости[5]. В печати этот пример впервые появился в 1875 году в работе П. Дюбуа-Реймона[6].

Ещё более простой пример принадлежит ван дер Вардену (1930):

v ( x ) = ∑ n = 0 ∞ { 10 n x } 10 n , {\displaystyle v(x)=\sum \limits _{n=0}{\infty }{\frac {\{10{n}x\}}{10{n}}},}

где фигурные скобки означают взятие дробной части.[7]

Примечания[ | ]

  1. Hardy G. H. Weierstrass’s nondifferentiable function // Trans — Amer. Math. Soc, 17 (1916), р. 301—325. Впрочем и Вейерштрасс упоминал это утверждение в письме к Дюбуа-Реймону в 1873 году, см.: Полубаринова-Кочина П. Я. Карл Вейерштрасс. Москва : Наука, 1985. с. 229.
  2. Ampère, A. M. // Ecole Politechnique, 6 (1806), fasc. 13.
  3. Рисс. Ф., С.-Надь Б. Лекции по функциональному анализу. М.: Мир, 1979. С. 13.
  4. Gerver J. // American Journal of Mathematics, Vol. 92, No. 1 (Jan., 1970), p. 33—55.
  5. Доклад Вейерштрасса, прочитанный в Прусской академии наук 18 июля 1872 года, опубликован в собрании сочинений (Weierstrass K. Werke. Bd. 2. Berlin, 1895. Abh. 6.

    ).

  6. Du Bois-Reymond R. // J. für Math., 79 (1875), p. 21—37; Вейерштрасс был редактором этого журнала и сообщил о своём контрпримере в письме к Дюбуа-Реймону 23 ноября 1873 года, см.: Полубаринова-Кочина П. Я. Карл Вейерштрасс. Москва : Наука, 1985. с. 229.
  7. Van der Waerden B. L. // Math. Zeitschr., 32 (1930), p. 474—475.

Литература[ | ]

  • Weierstrass K. Math. Werke. Bd. 2. Berlin, 1895. Abh. 6.
  • Рисс. Ф., С.-Надь Б. Лекции по функциональному анализу. М.: Мир, 1979.
  • Полубаринова-Кочина П. Я. Карл Вейерштрасс. Москва: Наука, 1985.

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%93%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7%D0%B0_%D0%90%D0%BC%D0%BF%D0%B5%D1%80%D0%B0

30. Гипотеза Ампера. Магнитные свойства вещества. Ферромагнетики

В чем состоит суть гипотезы Ампера

Ферромагнетики— вещества (как правило, в твёрдомкристаллическом или аморфном состоянии),в которых ниже определённой критическойтемпературы (точки Кюри) устанавливаетсядальний ферромагнитный порядок магнитныхмоментов атомов или ионов (в неметаллическихкристаллах) или моментов коллективизированныхэлектронов (в металлических кристаллах).

ГипотезаАмпера – о происхождении магнитныхсвойств: каждый атом имеет свое собственноемагнитное поле, т.е. движение электроновпо орбитам направленное и его и егоможно применить за круговой ток.

31. Электромагнитная индукция. Выводы эдс индукции в движущихся проводниках

Электромагнитнаяиндукция— явление возникновенияэлектрического тока в замкнутом контурепри изменении магнитного потока,проходящего через него.

Поддействием Fл внутри проводника происходитраспределение положительных иотрицательных зарядов вдоль всей длиныпроводника l.СилаЛоренца является в данном случаесторонней силой, и в проводнике возникаетЭДС индукции, а на концах проводника АВвозникает разность потенциалов.

32. Опыты Фарадея. Закон электромагнитной индукции. Правило ленца

Законэлектромагнитной индукции— Индукционныйток, возникающий в замкнутом проводящемконтуре, имеет такое направление, чтосоздаваемое им магнитное полепротиводействует тому изменениюмагнитного потока, которым был вызванданный ток.

ПравилоЛенца – индукционный ток в замкнутойкатушки, имеет такое направление, чтосозданный им магнитный поток, припятствуетизменению магнитного поля, вызвалоданный ток.

ОпытФарадея.Индукционный ток появляетсяпри относительном движении катушки имагнита

33. Основные положения теории Максвелла. Вихревое электрическое поле. Токи Фуко

Вихревыетоки или токи Фуко́ (в честь Ж. Б. Л. Фуко)— вихревые индукционные токи, возникающиев проводниках при изменении пронизывающегоих магнитного потока

Токи Фуко(в честь Фуко, Жан Бернар Леон) — этовихревые замкнутые электрические токив массивном проводнике, которые возникаютпри изменении пронизывающего егомагнитного потока.

Вихревые токи являютсяиндукционными токами и образуются впроводящем теле либо вследствие измененияво времени магнитного поля, в которомнаходится тело, либо вследствие движениятела в магнитном поле, приводящего кизменению магнитного потока через телоили какую-либо его часть. Величина токовФуко тем больше, чем быстрее меняетсямагнитный поток.

ИдеиМаксвелла:

1.Переменноемагнитное поле порождает в пространствевихревое переменное магнитное поле

2. Переменноемагнитное поле порождает в пространствепеременное вихревое электрическое поле

Вехривоеэлектрическое поле – 1. Создаетсяпеременным магнитным полем; 2. Силовыелинии замкнуты, нет ни начала ни конца.;3. Работа на замкнутом пути равна ЭДС ине равна 0

34. Явление самоиндукции. Закон индукции. Индуктивность. Энергия магнитного поля соленоида

Самоиндукция– порождение индукционного тока втом же самом проводнике, по которомутечет переменный ток

Индукти́вность(или коэффициент самоиндукции) —коэффициент пропорциональности междуэлектрическим током, текущим в каком-либозамкнутом контуре, и магнитным потоком,создаваемым этим током через поверхность[1],краем которой является этот контур.

Солено́ид— разновидность электромагнитов.Соленоид — это односложная катушкацилиндрической формы, витки которойнамотаны вплотную, а длина значительнобольше диаметра. Характеризуетсязначительным соотношением длины намоткик диаметру оправки, что позволяет создатьвнутри катушки относительно равномерноемагнитное поле.

Источник: https://studfile.net/preview/4396895/page:6/

Магнитное поле. Линии

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.

• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока.

Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма.

Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.

Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Источник: https://ege-study.ru/ru/ege/materialy/fizika/magnitnoe-pole-linii/

Конспект

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике.

Силовой характеристикой магнитного поля является вектор магнитной индукции B. В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис.

6, аналогична таковой для плоского магнита (рис. 3). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками.

Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8)

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6, северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение  не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Дополнительные материалы по теме: Электромагнитные явления

Конспект по теме «Магнитное поле. Теория, формулы, схемы».

Следующая тема «Электромагнитная индукция»

Источник: https://uchitel.pro/%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B5-%D0%BF%D0%BE%D0%BB%D0%B5/

Андре-Мари Ампер — основоположник электродинамики

Андре-Мари Ампер (фр. Andre-Marie Ampere, 1775-1836) – известнейший французский ученый, прославившийся своими открытиями в области физики, математики и естествознания. Был избран членом многих Академий наук, в том числе Парижской и Петербургской.

Ампер – автор теории, объясняющей связь электрических и магнитных явлений, выдвинул гипотезу о происхождении магнетизма и ввел в научный оборот термины «электрический ток» и «электродинамика».

Ученому принадлежит открытие воздействия магнитного поля Земли на проводники с током, находящиеся в движении.

Андре-Мари Ампер

Детские годы

Андре Мари Ампер был рожден в Лионе 22 января 1775 года. Его родители были потомственными ремесленниками и несмотря на свое рабочее происхождение имели довольно высокий культурный уровень. Отец будущего ученого Жан Жак Ампер имел хорошее образование, говорил на нескольких древних языках, имел богатую библиотеку и увлекался трудами популярных в то время просветителей. Даже воспитание своих детей он выстраивал в духе педагогической теории Жан Жака Руссо.

Накануне Великой французской революции Жан Жак Ампер был назначен на высокую должность королевского прокурора и несмотря на последовавшее вскоре падение Бастилии и начавшееся гонение на роялистов поддержал революцию. Но ему сильно не повезло.

Через несколько лет к власти пришли ультрарадикальные якобинцы, которые начали истреблять многих неугодных, в том числе приверженцев умеренных взглядов, коих придерживался и  отец Андре Мари. В итоге арест и неутешительный приговор – казнь на гильотине.

«Бритва революции» лишила жизни достойного гражданина Франции в ноябре 1793 года, что стало страшным потрясением для юноши и всех членов семьи. Молодой человек впал в уныние и почти 1,5 года не прикасался к книгам.

С раннего детства талантливый мальчик питал огромную тягу к знаниям. Он не посещал школу, однако смог самостоятельно освоить арифметику и чтение. Уже в 12 лет Ампера многие считали математическим гением, а его личный педагог больше ничему не мог его научить.

К 14 годам он освоил всю французскую «Энциклопедию», но особый интерес вызывали физические явления. Андре стал завсегдатаем библиотеки лондонского колледжа, где активно осваивал имеющуюся там литературу.

Чтобы читать книги Эйлера и Бернулли он специально выучил латынь.

Первые самостоятельные шаги

Из-за полного безденежья, вызванного конфискацией семейного имущества, Ампер приступает к преподаванию математики в частном пансионе Дюпра и Оливье, параллельно устроившись в школу небольшого городка Бурга, расположенного близ Лиона. В 1802 году он успешно прошел собеседование в комиссии, признавшей его годным к проведению занятий.

Убогая жизнь небогатого учителя только обострила тягу Ампера к науке. Именно в этот период молодой ученый высказал гипотезу, объясняющую магнитные и электрические явления схожими принципами. Причем однажды он озвучил свою догадку в присутствии самого Алессандро Вольта на заседании Лионской академии.

Не остается без внимания и любимая математика, где Ампера привлекает теория вероятности. Вскоре он пишет эссе «Размышление на тему математической теории игр». В нём автор доказывает, что игрок всегда уступит сопернику, имеющему больше денег.

Андре Мари сразу заметили в Академии наук и пригласили преподавать в Лионском лицее. Карьера шла в гору и в 1804 году Ампер переезжает в Париж в качестве репетитора местной Политехнической школы.

До переезда в столицу случилось очередное горькое событие в его жизни – смерть любимой жены и начавшееся одиночество, которое подстегнуло к переезду.

После трех лет занятия репетиторством наступил период самостоятельных занятий, а вскоре Андре Мари становится профессором математического анализа и экзаменатором по механике. Вместе с этим он трудился в Консультативном бюро ремесел и искусств, а в 1808 году приступил к обязанностям главного инспектора университета, что вынуждало ездить в постоянные командировки.

В 1814 году Ампера избирают в члены Парижской Академии в секции геометрия, что вроде бы свидетельствовало о его сформировавшихся научных интересах. Но жизнь внесла в этот расклад свои коррективы.

Открытие электромагнетизма

В 1820 году Андре Мари посетил заседание Французской Академии наук, на котором была озвучена информация об открытии Хансом Эрстедом влияния электричества на магнитную стрелку. Большинство академиков восприняло это как рядовое событие, но только не Ампер.

Он незамедлительно приступил к экспериментам, превратив свою маленькую комнату в мини-лабораторию, и даже сам смастерил столик, ставший настоящей реликвией. В течение двух недель он сформулировал свои выводы, которые оказали влияние на многие отрасли науки.

Фрагмент стола, который Ампер смастерил для проведения экспериментов

Еще со времен Ньютона утвердилось убеждение о параллельности электричества и магнетизма. Многие были уверены, что каждое из этих явлений живет по своим законам.

Факты, полученные Эрстедом, трактовались следующим образом – намагничивание провода происходит в результате воздействия электричества, что и вызывало воздействие на стрелку.

Ампер не согласился с общепринятой трактовкой и сформулировал смелую и в чем-то вызывающую идею – магнитных зарядов нет вообще, существуют лишь электрические, а явление магнетизма происходит от перемещения электрических зарядов.

По мнению ученого, магнетизм возникает от огромного количества мельчайших электрических атомных контуров. Каждый из них выступает в качестве своеобразного «магнитного листка» – простейшего магнитного двухполюсника. Поэтому становится ясно, почему магнитные монополя в природе не существуют, в отличие от электрических.

Версию Ампера в столь смелой формулировке поддерживают не все ученые, но то что она стала важнейшей предпосылкой для утверждения мысли о единстве природы, сомнений не возникает. Это потребовало дать ответ на некоторые актуальные вопросы, в частности, представить законченную теорию взаимодействия токов.

С поставленной задачей на отлично справился сам Ампер.

В 1820 году было сформулировано правило Ампера для определения воздействия магнитного поля на магнитную стрелку. Согласно этому выводу северный полюс будет на конце стержня, находящемся слева от человека, который движется по направлению тока и находится лицом к нему.

Вскоре автор подтвердил наличие взаимодействия между электрическими токами, названное законом Ампера. Он показывает силу воздействия магнитного поля в отношении находящегося внутри его проводника.

Француз эмпирически доказал, что параллельно находящиеся проводники начинают взаимно притягиваться при движении тока в одном направлении и отталкиваются при его пропускании в обратном.

Направление силы Ампера можно узнать согласно правилу левой руки. Размещаем руку таким образом, чтобы перпендикулярный вектор магнитной индукции умещался в ладони, а четыре пальца находились в вытянутом положении по направлению движения заряженных частиц в проводнике. При этом отставленный под углом 90° большой палец обозначает направление силы Ампера.

Правило левой руки

В 1822 году Андре Мари описал магнитный эффект соленоида. Как утверждал сам Ампер, любой электрический проводник создает рядом с собой магнитное поле. Его силовые линии образуют концентричные по отношению к центральной линии проводника круги, которые находятся в плоскостях, нормальных к элементам проводника. Ещё больший магнитный эффект электричества можно наблюдать при условии скручивания проводящей проволоки в ряд параллельных, взаимно изолированных колец.

Подобную форму проводника ученый назвал соленоидом. Проводя опыты со многими материалами, автор убедился, что железо полностью утрачивает магнитные свойства при нулевом токе, а сталь сохраняет магнетизм на протяжении длительного времени. Но самый большой эффект демонстрировали специально сконструированные электромагниты, по сути железные стержни в проволочной обмотке, по которой пропускали электроток.

Все полученные выводы Андре Мари изложил в собственном научном труде, увидевшем свет в 1826 году и названном «Теория электродинамических явлений, выведенная исключительно из опыта».

Телеграф Ампера

Первые осмысленные попытки создать устройство, способное транслировать некие сигналы на расстояние стали предприниматься в конце XVIII века. Первопроходцами в этом деле стал Ален-Рене Лесаж, создавший простейшую конструкцию из двух приемников и 24 изолированных проволок. Внес свой вклад в развитие этого направления и Ампер.

В 1829 году он предложил идею телеграфа, которая основывалась на открытии Эрстеда. Ученый разработал передающее устройство, состоящее из полусотни проводов и 25 магнитных стрелок, прикрепленных к осям. Однако этот проект не нашёл широкого применения, так как был довольно непрактичен.

Предполагалось, что для каждого знака будет предназначена отдельная проволока и стрелка.

Можно сказать, что Андре Мари смог опередить ход времени. Тогда еще не существовало устройств, которые бы могли распознавать электрический сигнал. Протягивать для каждой буквы, цифры или знака свой провод очень времязатратно и неэкономично. Однако польза от этого изобретения все же была – сегодня по этому принципу функционируют электромагнитные коммутаторы.

Кибернетика и кое-что ещё

В своей фундаментальной работе «Опыт о философии наук» Ампер дал понятие новой науке кибернетике. Он понимал ее как учение об управлении государством для обеспечения всеобщих благ. Её первая часть увидела свет в 1834 году, а вторая была издана уже после кончины автора в 1843 году.

Важным элементом кибернетики Андре Мари называл теорию законов. По его мнению, она должна изучать происхождение законов, предвосхищая последствия, порождаемые ими.

Автор подчеркивал принципиальное значение личности управленца, поэтому выступал за отбор лучших кандидатов, которым по силам справляться со своими обязанностями.

Также Ампер вывел необходимость существования ещё одного научного направления, как ответвления от кибернетики – ценольбологии, то есть науки об общественном счастье. Он ставил перед ней задачу определить лучшие условия жизни народов, чтобы создать оптимальную для этого экономическую систему. Фактически Андре Мари поднял вопрос о рациональности ведения хозяйства людьми, что должно способствовать всеобщему счастью.

Среди изобретений ученого были и вещи иного характера. Так, Ампер пытался создать новый язык международного общения, оптимизировал конструкции воздушных змеев и планировал написать эпическую поэму.

Француз одним из первых стал рассматривать дифференциальные уравнения с частными производными, которые стали называть именем Монжа-Ампера. В химии независимо от Амедео Авогадро Ампер смог вывести закон молярных объемов газов.

Кроме того, он предпринимал попытки систематизировать химические элементы по их свойствам.

Андре Мари Ампер скончался от осложнений, связанных с пневмонией 10 июня 1836 года, когда находился в очередной командировке в качестве главного инспектора.

Интересные факты

  • Как и многие выдающиеся ученые, Ампер ввел в научный оборот ряд новых терминов, среди которых электродинамика, кибернетика и кинематика.
  • Помимо математики и физики, Андре Мари преуспел и в других научных областях. В частности, его заслуги отмечены в химии, ботанике, лингвистике и даже философии.
  • Во время чтения доклада Ампером о взаимодействии проводников с токами кто-то из ученых воскликнул, что ничего нового не услышал. Ведь если токи влияют на магнитную стрелку, то они способны воздействовать друг на друга. От такого наступления докладчик совсем растерялся, но положение спас его коллега Араго.

    Он достал из кармана два ключа и сказал, что каждый из них воздействует на стрелку, но не влияет друг на друга.

  • Ампер не учился в школе ни одного дня, но благодаря невероятной тяге к знаниям сумел стать одним из образованнейших людей своего времени.
  • Имя Андре Мари внесено в перечень самых великих ученых Франции, который находится на первом этаже Эйфелевой башни.

  • В 1881 году на первом Международном конгрессе электриков, который состоялся в Париже, в честь Ампера была названа единица силы тока.

Андре Мари Ампер и электромагнетизм.

Источник: https://elektroznatok.ru/info/people/andre-marie-ampere

Понравилась статья? Поделиться с друзьями:
Электрогенератор
На каком расстоянии от проводов можно строить гараж

Закрыть