В чем измеряется закон сохранения энергии

Вспоминаем физику: закон сохранения энергии

В чем измеряется закон сохранения энергии

этого закона в наиболее краткой формулировке формулируется так : “Энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной. Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение/уменьшение ее энергии равно убыли/возрастанию энергии взаимодействующих с ней тел и физических полей.”

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени.

Некоторые авторы не согласны с тем, что энергия является скалярной величиной. Ведь энергия — это физическая величина, характеризующая движение материи, а понятие движение очевидно связано с понятием направления. Закон сохранения энергии в современной трактовке ничего не говорит о сохранении направления движения, так как энергия трактуется как скалярная величина.

Поскольку энергия является характеристикой движения, то закон сохранения энергии является частным случаем более общего закона сохранения движения, учитывающего не только сохранение количества энергии, но и сохранение направления движения. Именно закон сохранения движения отражает не только вечное существование материи, но и вечное ее движение.

Впрочем, наш сайт — не место для научных споров и мы ограничимся наиболее распространенным понятием энергии как скалярной величины.

Закон сохранения энергии говорит, что энергия не создается из ничего и не теряется бесследно. При всех происходящих в природе процессах один вид энергии превращается в другой. Химическая энергия батареек фонарика превращается в электрическую, в лампочке электрическая энергия превращается в тепловую и световую — это простой пример «энергетической цепочки», показывающий как один вид энергии превращается в другой.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Коэффициент полезного действия

На первый взгляд закон сохранения энергии как бы утверждает, что энергия при любых преобразованиях не должна теряться. Но все мы знакомы с понятием коэффициента полезного действия, то есть знаем, что превращение энергии одного вида в другой связано с потерями энергии.

Противоречия тут нет, поскольку речь идет о «полезном действии». Когда мы говорим о коэффициенте полезного действия мы всегда, явно или неявно, имеем в виду некоторый процесс преобразования энергии в работу, причем сравниваем при этом количество затраченной энергии с полученной работой.

Но коэффициент полезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу (этот принцип известен как второй закон термодинамики).

Причина в том, что в ходе любого такого процесса имеют место неизбежные потери энергии, в основном на трение и нагревание участвующих в процессе тел. Трение — это в результате тоже нагревание, то есть часть затраченной энергии всегда переходит в теплоту.

Коэффициент полезного действия (КПД) выражают в процентах.

КПД механизма тем больше, чем большая часть потребляемой энергии превращается в необходимую энергию. Например, а среднем автомобиль преобразует лишь 15% химической энергии бензина в кинетическую энергию. Вся остальная энергия превращается в тепло. КПД флуоресцентных ламп выше КПД обычных электрических лампочек, поскольку во флуоресцентных лампах больше электричества превращается в свет и меньше уходит на производство тепла.

Но при описании таких устройств как тепловые насосы мы встречаемся с утверждениями, что их КПД превышает 100%. На первый взгляд может показаться, что тут есть какое-то противоречие с законом сохранения энергии. В действительности же тут просто некорректно используется понятие КПД. Действительно, достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу.

Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса. Но для характеристики эффективности теплового насоса нужно применять не КПД, а коэффициент преобразования или отопительный коэффициент СОР (coefficient of performance), равный отношению энергии, отдаваемой потребителю теплоты к мощности, потребляемой компрессором.

Поскольку энергия, отдаваемая потребителю перекачивается от источника этой теплоты, значение коэффициэнта преобразования может быть и больше 100%.

Энтропия

Итак, мы видим, что при любом преобразовании энергии в работу количество «полезной» энергии уменьшается, то есть количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной. Но первый закон термодинамики гласит, что энергию невозможно создать или уничтожить.

Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Другими словами, количество энергии во вселенной остается постоянным, но возможность использования ее для того, чтобы проделать полезную работу, уменьшается при каждой теплопередаче и выполнении работы. Это явление в науке принято характеризовать величиной, которая называется энтропией.

Энтропия — это сокращение доступной энергии вещества в результате передачи энергии. Энтропия используется для измерения уменьшения пригодности энергии в результате процесса.

Термин «энтропия» используется для описания количества хаотичности в любой системе. В термодинамике энтропия указывает расположение молекул вещества или организацию энергии системы. Системы или вещества с высоким значением энтропии более дезорганизованы, чем с низким.

Например, у молекул в твердых телах определенная кристаллическая структура, благодаря чему они лучше организованы, и у них ниже значение энтропии.

При сообщении телу теплоты и изменении его состояния на жидкое увеличивается уровень его энтропии, так как кинетическая энергия увеличивает колебания молекул, в результате чего их положение становится случайным.

Энтропия увеличивается, когда жидкость изменяет состояние на газообразное при потреблении большего количества тепловой энергии. Такая же аналогия существует при описании порядка источников энергии.

Если энергия заключена в ограниченном источнике, у нее низкое значение энтропии. Если она распределена среди большого количества молекул, ее интенсивность уменьшается, увеличивая энтропию.

Например, если 1,05 кДж энергии у 1000 молекул передать 1 миллиону молекул, интенсивность энергии уменьшится, а энтропия возрастет.

Энтропию трудно понять, так как это абстрактное понятие беспорядка энергии во вселенной. Этот беспорядок связан с уменьшением пригодности энергии для преобразования в работу. Энергия всегда становится недоступной, если процессы уменьшают ее интенсивность, распространяя ее по вселенной.

Если энергия распределена среди бесчисленных молекул вселенной, разница температур самых холодных и самых теплых участков уменьшается. Если разница температур уменьшается, тепловая энергия, которую можно преобразовать в полезную работу, также уменьшается. Следовательно, любой процесс, который производит увеличение энтропии, уменьшает энергию для будущих процессов.

В конечном счете наступит момент, когда энтропия вселенной приблизится к максимальному значению, и преобразование теплоты в работу станет невозможным.

Абсолютная энтропия (S) вещества или процесса — это изменение доступной энергии при теплопередаче при данной температуре (Btu/R, Дж/К). Математически энтропия равняется теплопередаче, деленной на абсолютную температуру, при которой происходит процесс.

Следовательно, процессы передачи большого количества теплоты больше увеличивают энтропию. Также изменения энтропии увеличатся при передаче теплоты при низкой температуре.

Так как абсолютная энтропия касается пригодности всей энергии вселенной, температуру обычно измеряют в абсолютных единицах (R, К).

Удельную энтропию (S) измеряют относительно единицы массы вещества. Температурные единицы, которые используются при вычислении разниц энтропии состояний, часто приводятся с температурными единицами в градусах по Фаренгейту или Цельсию. Так как различия в градусах между шкалами Фаренгейта и Ренкина или Цельсия и Кельвина равные, решение в таких уравнениях будет правильным независимо от того, выражена энтропия в абсолютных или обычных единицах.

Все процессы преобразования энергии в конечном счете увеличивают энтропию вселенной. Вывод отсюда — полезная работа может производиться только до тех пор, пока не иссякли запасы доступной нам энергии.

Вечный двигатель

Люди веками мечтали (некоторые все еще мечтают) создать устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Но согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. К выводу о невозможности создания вечного двигателя ученые пришли после того, как многочисленные попытки создать такой двигатель оказались безуспешными.

Проекты вечных двигателей разделяют на два типа по характеру совершаемой работы:

Вечный двигатель первого рода (физический \ механический, гидравлический, магнитный) — непрерывно действующая машина, которая, будучи запущенной один раз, совершает работу без получения энергии извне.

Это устройства механического характера, принцип действия которых основывается на использовании некоторых физических явлений, например, на действии силы тяжести, законе Архимеда, капиллярных явлениях в жидкостях.

Возможность работы такой машины неограниченное время означала бы получение энергии из ничего.

Вечный двигатель второго рода (естественный) — тепловая машина, которая в результате совершения цикла полностью преобразует в работу тепло, получаемое от какого- либо одного «неисчерпаемого» источника (океана, атмосферы и т. п.).

Классический вечный двигатель второго рода предусматривает возможность накопления тепла за счет работы, затраты которой меньше полученного тепла, и использования части этого тепла для повторного совершения работы в новом цикле. Таким образом, должен образоваться избыток работы.

Другой вариант этого двигателя подразумевает упорядочение хаотического теплового движения молекул, в результате чего возникает направленное движение вещества, сопровождаемое понижением его термодинамической температуры.

В результате бесконечных попыток создать вечный двигатель были сформулированы так называемые первое и второе начала термодинамики, которые являются следствиями закона сохранения энергии:

Первое начало термодинамики гласит: изменение внутренней энергии термодинамической системы при переходе ее из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход, т. е. Q = ΔU + A. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Второе начало термодинамики утверждает: невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему.

Что также означает, что в замкнутой системе энтропия при любом реальном процессе либо возрастает, либо остается неизменной (т. е. ΔS ≥ 0). Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики.

Оно создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Несмотря на то, что наука давно и окончательно пришла к выводу о невозможности создания вечного двигателя, существует множество энтузиастов, которые продолжают разрабатывать различные проекты такого рода. Чтобы убедиться в этом, достаточно создать запрос на .com на тему «вечный двигатель».

Источник: https://altenergiya.ru/osnovy/zakon-sohraneniya-energii.html

Закон сохранения энергии

В чем измеряется закон сохранения энергии
Подробности Категория: Механика 20.08.2014 21:02 46158

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил

 

Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными. Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости.

Все остальные силы называются неконсервативными. К ним относятся сила трения и сила сопротивления. Их называют также диссипативными силами.

Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту.

Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

ЭТО ИНТЕРЕСНО:  Что такое Геотермальные ресурсы

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Еп = h,

где m – масса тела

ɡ — ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с2

При падении тела c высоты h1 до высоты h2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = — (Eп2 – Eп1) = — ∆ Eп ,

где Eп1 – потенциальная энергия тела на высоте h1 ,

Eп2 — потенциальная энергия тела на высоте h2.

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Еп = k·(∆x)2/2,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν, называется кинетической энергией тела массой m.

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν1, а в конечный момент она равнялась ν2, то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

Ek = Ek2 — Ek1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Еk1+ Еп1 = Еk2+ Еп2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю.

Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной.

Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной. Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
Ek1 + Eп1 = Ek2 + Eп2,
где Ek1, Eп1 — кинетическая и потенциальная энергии системы до какого-либо взаимодействия, Ek2 , Eп2 — соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз.

Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево.

Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона.

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю.

Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению.

Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Источник: http://ency.info/materiya-i-dvigenie/mekhanika/329-zakon-sokhraneniya-energ

Закон сохранения энергии: описание и примеры :

В чем измеряется закон сохранения энергии

Потенциальная энергия — это, скорее, абстрактная величина, ведь любой предмет, который имеет некоторую высоту над поверхностью Земли, уже будет обладать определенным количеством потенциальной энергии. Она рассчитывается путем умножения скорости свободного падения на высоту над Землей, а также на массу. Если же тело двигается, можно говорить о наличии кинетической энергии.

Формула и описание закона

Результат сложения кинетической и потенциальной энергии в закрытой от внешнего воздействия системе, части которой взаимодействуют благодаря силам упругости и тяготения, не изменяется – так звучит закон сохранения энергии в классической механике. Формула данного закона выглядит так: Ек1+Еп1=Ек2+Еп2. Здесь Ек1 является кинетической энергией определенного физического тела в конкретный момент времени, а Еп1 – потенциальной.

То же самое верно и для Ек2 и Еп2, но уже в следующий временной промежуток. Но этот закон верен только в том случае, если система, в которой он действует, является замкнутой (или консервативной). Это говорит о том, что значение полной механической энергии не изменяется, когда на систему действуют лишь консервативные силы. Когда в действие вступают неконсервативные силы, часть энергии изменяется, принимая другие формы. Такие системы получили название диссипативных.

Закон сохранения энергии работает, когда силы извне никак не действуют на тело.

Пример проявления закона

Одним из типичных примеров, иллюстрирующих описанный закон, служит проведение опыта с шариком из стали, который падает на плиту из этого же вещества или на стеклянную, отскакивая от нее примерно на ту же высоту, где он находился до момента падения.

Данный эффект достигается за счет того, что когда предмет движется, энергия преобразуется несколько раз.

Первоначально значение потенциальной энергии начинает стремиться к нулю, в то время как кинетическая увеличивается, но после столкновения она становится потенциальной энергией упругой деформации шара.

Это продолжается до момента полной остановки предмета, в который он начинает свое движение вверх за счет сил упругой деформации как плиты, так и упавшего предмета. Но при этом в дело вступает потенциальная энергия тяготения.

Так как шарик при этом понимается примерно на ту же высоту, с которой он и упал, кинетическая энергия в нем одна и та же.

Кроме этого, сумма всех энергий, действующих на движущийся предмет, остается одинаковой во время всего описанного процесса, подтверждая закон сохранения полной механической энергии.

Упругая деформация – что это?

Для того чтобы полностью понять приведенный пример, стоит более подробно разобраться с тем, что такое потенциальная энергия упругого тела – это понятие означает обладание упругостью, позволяющей при деформации всех частей данной системы вернуться в состояние покоя, совершая некоторую работу над телами, с которыми соприкасается физический объект. На работу сил упругости не влияет форма траектории движения, так как работа, совершаемая за счет них, зависит лишь от положения тела в начале и в конце движения.

Когда действуют внешние силы

Но закон сохранения не распространяется на реальные процессы, в которых участвует сила трения. В пример можно привести падающий на землю предмет. Во время столкновения кинетическая энергия и сила сопротивления возрастают. Этот процесс не вписывается в рамки механики, так как из-за возрастающего сопротивления повышается температура тела. Из вышесказанного следует вывод о том, что закон сохранения энергии в механике имеет серьезные ограничения.

Термодинамика

Первый закон термодинамики гласит: разность между количеством теплоты, накапливаемой благодаря работе, совершаемой над внешними объектами, равна изменению внутренней энергии данной неконсервативной термодинамической системы.

Но это утверждение чаще всего формулируется в другом виде: количество теплоты, полученное термодинамической системой, тратится на работу, совершаемую над объектами, находящимися вне системы, а также на изменение количества энергии внутри системы.

Согласно данному закону, она не может исчезнуть, превращаясь из одной формы в другую. Из этого следует вывод о том, что создание машины, не потребляющей энергии (так называемого вечного двигателя), невозможно, так как система будет нуждаться в энергии извне.

Но многие все же настойчиво пытались создать ее, не учитывая закон сохранения энергии.

Пример проявления закона сохранения в термодинамике

Опыты показывают, что термодинамические процессы невозможно обратить вспять. Примером тому может служить соприкосновение тел, имеющих различную температуру, при котором более нагретое будет отдавать тепло, а второе — принимать его. Обратный же процесс невозможен в принципе.

Другим примером является переход газа из одной части сосуда в другую после открытия между ними перегородки, при условии что вторая часть пуста. Вещество в данном случае никогда не начнет движение в обратном направлении самопроизвольно.

Из вышесказанного следует, что любая термодинамическая система стремится к состоянию покоя, при котором ее отдельные части находятся в равновесии и имеют одинаковую температуру и давление.

Гидродинамика

Применение закона сохранения в гидродинамических процессах выражается в принципе, описанном Бернулли. Он звучит так: сумма давления как кинестетической, так и потенциальной энергии на единицу объема одна и та же в любой отдельно взятой точке потока жидкости или газа.

Это значит, что для измерения скорости потока достаточно измерить давление в двух точках. Делается это, как правило, манометром. Но закон Бернулли справедлив только в том случае, если рассматриваемая жидкость имеет вязкость, которая равна нулю.

Для того чтобы описать течение реальных жидкостей, используется интеграл Бернулли, предполагающий добавление слагаемых, которые учитывают сопротивление.

Электродинамика

Во время электризации двух тел количество электронов в них остается неизменным, из-за чего положительный заряд одного тела равен по модулю отрицательному заряду другого.

ЭТО ИНТЕРЕСНО:  Что такое резистивная нагрузка

Таким образом, закон сохранения электрического заряда говорит о том, что в электрически изолированной системе сумма зарядов ее тел не изменяется. Это утверждение верно и тогда, когда заряженные частицы испытывают превращения.

Таким образом, когда сталкиваются 2 нейтрально заряженные частицы, сумма их зарядов все равно остается равной нулю, так как вместе с отрицательно заряженной частицей появляется и положительно заряженная.

Заключение

Закон сохранения механической энергии, импульса и момента – фундаментальные физические законы, связанные с однородностью времени и его изотропностью.

Они не ограничены рамками механики и применимы как к процессам, происходящим в космическом пространстве, так и к квантовым явлениям. Законы сохранения позволяют получать данные о различных механических процессах без их изучения при помощи уравнений движения.

Если какой-то процесс в теории игнорирует данные принципы, то проводить опыты в таком случае бессмысленно, так как они будут нерезультативными.

Источник: https://www.syl.ru/article/159842/mod_zakon-sohraneniya-energii-opisanie-i-primeryi

Закон сохранения механической энергии

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Суммарная механическая энергия системы () — это энергия механического энергия и взаимодействия:

где — кинетическая энергия тела; — потенциальная энергия тела.

Закон сохранения энергии создан в результате обобщения эмпирических данных. Идея такого закона принадлежала М.В. Ломоносову, который представил закон сохранения материи и движения. Количественно закон сформулировали немецкий врач Ю. Майер и ученый — естествоиспытатель. Гельмгольц.

Формулировка закона сохранения механической энергии

Если в системе тел действуют исключительно силы, которые являются консервативными, то суммарная механическая энергия остается неизменной во времени. (Консервативными (потенциальными) называют силы, работа которых не зависит: от вида траектории, точки к которой приложены данные силы, закона, который описывает движение этого тела, и определено исключительно начальной и конечной точками траектории движения тела (материальной точки)).

Механические системы, в которых действуют исключительно консервативные силы, называют консервативными системами.

Еще одной формулировкой закона сохранения механической энергии считают следующую:

Для консервативных систем суммарная механическая энергия системы величина неизменная.

Математическая формулировка закона сохранения механической энергии имеет вид:

Значение закона сохранения механической энергии

Данный закон связан со свойством однородности времени. Что означает инвариантность законов физики относительно выбора начала временного отсчета.

В диссипативных системах механическая энергия уменьшается, так как происходит преобразование механической энергии в немеханические ее виды. Такой процесс называют рассеянием (диссипацией) энергии.

В консервативных системах полная механическая энергия постоянна. Происходят переходы кинетической энергии в потенциальную и наоборот. Следовательно, закон сохранения механической энергии отражает не только сохранение энергии количественно, но указывает на качественную сторону взаимного превращения разных форм движения друг в друга.

Закон сохранения и превращения энергии является фундаментальным законом природы. Он выполняется и в макро и микро мире.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/zakony-fiziki/zakon-soxraneniya-mexanicheskoj-energii/

Мифы современной физики. Законы сохранения

Продолжение. Начало тут и тут: В этот раз мы замахнемся на святое: на законы сохранения, в том числе на закон сохранения энергии. Правда, вечного двигателя я вам не обещаю.

Закон сохранения энергии имеет такой ореол святости, что практически любой человек напрягается, услышав, что с ним не все хорошо. Между тем, энергия сохраняется в механике, в квантовой механике и даже в СТО – Специальной Теории Относительности.

Но не в ОТО – Общей Теории Относительности. Однако сказать, что энергия не сохраняется, тоже нельзя. Вначале разберемся,

Что же такое – сохраняться?

Вот мы положили в мешок два шара, синий и красный. Через какое-то время достали их. Ага, было два шара, и стало два шара, шары сохраняются в мешке! Так выглядит пространственно — временная картина этого эксперимента: Однако с количеством шаров все просто – все наблюдатели, как бы они ни двигались, согласятся с тем, что шаров – два. А как быть с энергией? Вот, например, я стою около дома весом 1000 тонн. Кинетическая энергия его в моей системе отсчета равна нулю.

Теперь я пойду от дома со скоростью 1 метр в секунду. В моей системе отсчета дом приобрел огромную энергию! Как я, слабый человек, мог дать дому такую энергию всего одним шагом?

Если вы внимательно следили за руками, то, несомненно, заметили, что я совершил грязный хак. Считал энергию вначале в одной системе отсчёта, а потом нагло перескочил в другую. Так делать нельзя.

Для энергии состояние до и состояние после должно быть привязано к одной и той же системе отсчета.

Для нашей картинки с шарами это означает, что дно и крышка цилиндра (в общем случае любой фигуры) должны быть параллельны друг другу. А вот с этим в искривленном пространстве плохо: как вы помните, в искривленном пространстве могут быть много параллельных или не быть ни одной! Хуже того, пространство может быть таким кривым, что туда вообще не вписать такую фигуру!

Или время закольцовано – и понятия до и после не вполне определены. Таким образом, в ОТО не то, чтобы энергия не сохраняется, а само понятие “сохраняться” плохо определено.

Канонический пример несохранения энергии

Мы все знаем, что Вселенная расширяется.

Когда ее линейный размер увеличивается в 10 раз, то ее объем увеличивается в 1000 раз, и плотность обычного вещества (ведь атомы – это шарики, и все наблюдатели согласны с тем, сколько их) падает тоже в 1000 раз А вот плотность излучения, в частности реликтового излучения, падает в 10000 раз – помимо того, что фотоны рассеялись в большем объеме, каждый из них еще и покраснел. То есть плотность вещества падает как третья степень, а излучения – как четвертая. У этого есть интересное следствие – если мы будем двигаться в прошлое, то плотность излучения будет расти быстрее, чем плотность материи, и мы можем дойти до периода, когда плотностью и давлением обычной материи можно будет вообще пренебречь. Гравитация в основном создавалась давлением фотонного газа.

Следует заметить, что космологическая точка зрения – “вся вселенная в такое-то время”, несмотря на ее интуитивную понятность и полезность, для каждого времени после Большого Взрыва образует в пространстве-времени кривую поверхность, то есть не является валидной системой отсчета.

Можно ли поднять себя за волосы?

Спойлер: ДА. Импульс, как вы догадались, тоже не сохраняется. Вы можете погуглить по словам Swimming in space. Вот видео, как это выглядит. Конечно, практической ценности в этом почти нет, но все равно интересно.

Источник: https://habr.com/post/443308/

Законы сохранения в механике – FIZI4KA

ЕГЭ 2018 по физике ›

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​\( p \)​, единицы измерения – (кг·м)/с.

Импульс тела – это количественная мера движения тела. Направление импульса тела всегда совпадает с направлением скорости его движения.

Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​\( p_0 \)​ – начальный импульс тела,
​\( p \)​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​\( F\!\Delta t \)​, единицы измерения — Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

• силы и ускорения: ​\( \vec{F}\uparrow\uparrow\vec{a} \)​;
• импульса тела и скорости: \( \vec{p}\uparrow\uparrow\vec{v} \)​;
• изменения импульса тела и силы: \( \Delta\vec{p}\uparrow\uparrow\vec{F} \);
• изменения импульса тела и ускорения: \( \Delta\vec{p}\uparrow\uparrow\vec{a} \).

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой.

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.

​\( F_1,F_2,F_3 \)​ – внешние силы, действующие на тела;
​\( F_{12}, F_{23}, F_{31}, F_{13}, F_{21}, F_{32} \)​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются.

Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​\( \Delta t \)​.
Обозначим: ​\( v_0 \)​ – начальные скорости тел, а ​\( v{\prime} \)​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части. Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.

Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.

Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.
Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.
Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.
ЭТО ИНТЕРЕСНО:  Чему равно напряжение между двумя фазами

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​\( A \)​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​\( \alpha \)​

  • ​\( \alpha=0{\circ},\, \cos\alpha=1,\, A=FS,\,A>0; \)​
  • ​\( 0{\circ}

Источник: https://fizi4ka.ru/egje-2018-po-fizike/zakony-sohranenija-v-mehanike.html

Закон сохранения энергии для электромагнитного поля

В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойтинга.

Изменение электромагнитной энергии, заключенной в неком объеме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объем, и количеству тепловой энергии, выделившейся в данном объеме, взятой с обратным знаком.

$ \frac{d}{dt}\int_{V}\omega_{em}dV=-\oint_{\partial V}\vec{S}d\vec{\sigma}-\int_V \vec{j}\cdot \vec{E}dV $

Электромагнитное поле обладает энергией, которая распределяется в пространстве, занятом полем. При изменении характеристик поля меняется и распределение энергии. Она перетекает из одной области пространства в другую, переходя, возможно, в другие формы. Закон сохранения энергии для электромагнитного поля является следствием полевых уравнений.

Внутри некоторой замкнутой поверхности S, ограничивающей объем пространства V, занятого полем, содержится энергия W — энергия электромагнитного поля:

W = Σ(εε0Ei2 / 2 + μμ0Hi2 / 2)ΔVi.

Если в этом объеме имеются токи, то электрическое поле производит над движущимися зарядами работу, за единицу времени равную

N = Σij̅i ×E̅i • ΔVi.

Это величина энергии поля, которая переходит в другие формы. Из уравнений Максвелла следует, что

ΔW + NΔt = -Δt∮SS̅ × n̅ • dA, [1]

где ΔW — изменение энергии электромагнитного поля в рассматриваемом объеме за время Δt, а вектор S̅ = E̅ × H̅ называется вектором Пойнтинга.

Это закон сохранения энергии в электродинамике.

Через малую площадку величиной ΔA с единичным вектором нормали n̅ за единицу времени в направлении вектора n̅ протекает энергия S̅ × n̅ • ΔA, где S̅ — значение вектора Пойнтинга в пределах площадки.

Сумма этих величин по всем элементам замкнутой поверхности (обозначена знаком интеграла), стоящая в правой части равенства [1], представляет собой энергию, вытекающую из объема, ограниченного поверхностью, за единицу времени (если эта величина отрицательна, то энергия втекает в объем).

Вектор Пойнтинга определяет поток энергии электромагнитного поля через площадку, он отличен от нуля всюду, где векторное произведение векторов напряженности электрического и магнитного полей отлично от нуля.

Можно выделить три главных направления практического применения электричества: передача и преобразование информации (радио, телевидение, компьютеры), передача импульса и момента импульса (электродвигатели), преобразование и передача энергии (электрогенераторы и линии электропередачи). И импульс, и энергия переносятся полем через пустое пространство, наличие среды приводит лишь к потерям.

Энергия не передается по проводам! Провода с током нужны для формирования электрического и магнитного полей такой конфигурации, чтобы поток энергии, определяемый векторами Пойнтинга во всех точках пространства, был направлен от источника энергии к потребителю. Энергия может передаваться и без проводов, тогда ее переносят электромагнитные волны. (Внутренняя энергия Солнца убывает, уносится электромагнитными волнами, в основном светом.

Благодаря части этой энергии поддерживается жизнь на Земле.)

Математическая формулировка

Эволюция механической системы материальных точек с массами \( m_i\) по второму закону Ньютона удовлетворяет системе уравнений

\[ m_i\dot{\mathbf{v}_i} = \mathbf{F}_i \]

где
\( \mathbf{v}_i \) — скорости материальных точек, а \( \mathbf{F}_i \) — силы, действующие на эти точки.

Если подать силы, как сумму потенциальных сил \( \mathbf{F}_ip \) и непотенциальных сил \( \mathbf{F}_id \), а потенциальные силы записать в виде

\[ \mathbf{F}_ip = — abla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

то, домножив все уравнения на \( \mathbf{v}_i \) можно получить

\[ \frac{d}{dt} \sum_i \frac{mv_i2}{2} = — \sum_i \frac{d\mathbf{r}_i}{dt}\cdot abla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_id \]

Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

\[ E = \sum_i \frac{mv_i2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

и назвать эту величину механической энергией, то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

\[ E(t) — E(0) = \int_L \mathbf{F}_id \cdot d\mathbf{r}_i \]

где интегрирование проводится вдоль траекторий движения материальных точек.

Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные.

Законы сохраненияФормулы Физика Теория 9 класс Закон Динамика Механика

На некоторой высоте покоящееся тело имеет потенциальную энергию, равную 56 Дж. К моменту падения на Землю тело имеет кинетическую энергию, равную 44 Дж. Определить работу сил сопротивления воздуха.

На рисунке показаны два положения тела: на некоторой высоте (первое) и к моменту падения на Землю (второе). Нулевой уровень потенциальной энергии выбран на поверхности Земли.

Полная механическая энергия тела относительно поверхности Земли определяется суммой потенциальной и кинетической энергии:

E1 = Wp1 + Wk1;

  • к моменту падения на Землю

E2 = Wp2 + Wk2,

где Wp1 = 56 Дж — потенциальная энергия тела на некоторой высоте; Wk1 = 0 — кинетическая энергия покоящегося на некоторой высоте тела; Wp2 = 0 Дж — потенциальная энергия тела к моменту падения на Землю; Wk2 = 44 Дж — кинетическая энергия тела к моменту падения на Землю.

Работу сил сопротивления воздуха найдем из закона изменения полной механической энергии тела:

E2 − E1 = Aвнеш + Aсопр,

где E1 = Wp1 — полная механическая энергия тела на некоторой высоте; E2 = Wk2 — полная механическая энергия тела к моменту падения на Землю; Aвнеш = 0 — работа внешних сил (внешние силы отсутствуют); Aсопр — работа сил сопротивления воздуха.

Искомая работа сил сопротивления воздуха, таким образом, определяется выражением

Aсопр = Wk2 − Wp1.

Произведем вычисление:

Aсопр = 44 − 56 = −12 Дж.

Работа сил сопротивления воздуха является отрицательной величиной.

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Источник: https://calcsbox.com/post/zakon-sohranenia-energii.html

Соударения

Удар (соударение)– столкновениедух или более тел, при котором взаимодействиедлится очень короткое время.

Центральныйудар – ударпри котором тела до удара движутся попрямой, проходящей через их центры масс.

Абсолютноупругий удар – столкновениедвух тел, в результате которого в обоихвзаимодействующих телах не остаетсяникаких деформаций и вся кинетическаяэнергия, которой обладали тела до удара,после удара снова превращается вкинетическую энергию. При абсолютноупругом ударе сохраняются импульс имеханическая энергия.

Рассмотрим прямойцентральный абсолютно упругий удардвух шаров массами m1и m2.Обозначим скорости шаров до удара и,после удара -и.

Рисунок 3 – Абсолютноупругое соударение шаров, двигающихсяна встречу друг другу

Закон сохраненияимпульса в векторном виде:

. (1.20)

Закон сохраненияэнергии:

(1.21)

.

Отсюда

(1.22)

Абсолютнонеупругий удар– столкновение двух тел, в результатекоторого тела объединяются, двигаясьдальше как единое тело.

Рисунок 4 – Абсолютнонеупругое соударение шаров.

При абсолютнонеупругом ударе выполняется толькозакон сохранения импульса:

. (1.23)

Или в проекцияхна ось х:

(124)

Скорость послеудара равна:

(1.25)

Механическаяэнергия при неупругом ударе несохраняется:вследствие деформации часть кинетическойэнергии переходит во внутреннюю энергиютел. Это уменьшение равно:

2 Вывод рабочей формулы

Используябаллистический метод, получим формулудля определения скорости шаров в моментпрохождения положения равновесия.

В этом методе меройскорости служит величина угла отброса,рассчитываемая по круглой шкале.

Вточке А (рисунок5) шарик обладает потенциальной энергиейравной

(2.1)

Систему маятник-Землярассматриваем как замкнутую, пренебрегаятрением в подвесе маятника и сопротивлениемвоздуха.

При перемещениишарика из положения А в положение С егопотенциальная энергия перейдет вкинетическую.

(2.2)

Рисунок5 – Отклонение шарика от положенияравновесия.

Откуда

(2.3)

Используя соотношенияв прямоугольном треугольнике итригонометрическую формулу ,выразим высоту hчерез длину нити lи угол

(2.4)

и подставим ввыражение для скорости ( )

Получим

(2.5)

Источник: https://studfile.net/preview/2891455/page:3/

Кинетическая и потенциальная энергии

Определение 1

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Данное утверждение выражает закон сохранения энергии в замкнутой системе и в механических процессах, являющийся следствием законов Ньютона.

Определение 2

Сумма E=Ek+Ep— это полная механическая энергия.

Закон сохранения энергии выполняется при взаимодействии сил с потенциальными энергиями в замкнутой системе.

Пример N

Примером применения такого закона служит нахождение минимальной прочности легкой нерастяжимой нити, которая удерживает тесло с массой m, вращая его вертикально относительно плоскости (задачи Гюйгенса). Подробное решение изображено на рисунке 1.20.1.

Рисунок 1.20.1. К задаче Гюйгенса, где F→ принимается за силу натяжения нити в нижней точке траектории.

Запись закона сохранения полной энергии в верхней и нижней точках принимает вид

mv122=mv222+mg2l.

F→ располагается перпендикулярно скорости тела, отсюда следует вывод, что она не совершает работу.

Если скорость вращения минимальная, то натяжение нити верхней точке равняется нулю, значит, центростремительное ускорение может быть сообщено только при помощи силы тяжести. Тогда

mv22l=mg.

Исходя из соотношений, получаем

v1 min2=5gl.

Создание центростремительного ускорения производится силами F→ и mg→ с противоположными направлениями относительно друг друга. Тогда формула запишется:

mv122=F-mg.

Можно сделать вывод, что при минимальной скорости тела в верхней точке натяжение нити будет равняться по модулю значению F=6mg.

Очевидно, что прочность нити обязана превышать значение.

С помощью закона сохранения энергии посредством формулы можно получить связь между координатами и скоростями тела в двух разных точках траектории, не используя анализ закона движения тела во всех промежуточных точках. Данный закон позволяет заметно упрощать решение задач.

Реальные условия для движущихся тел предполагают действия сил тяготения, упругости, трения и сопротивления данной среды. Работа силы трения зависит от длины пути, поэтому она не является консервативной.

Закон сохранения превращения энергии

Определение 3

Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.

Рисунок 1.20.2. Проект вечного двигателя. Почему данная машина не будет работать?

Существует большое количество таких проектов. Они не имеют право на существование, так как при расчетах отчетливо видны одни ошибки конструкций всего прибора, другие замаскированы. Попытки реализовать такую машину тщетны, так как они противоречат закону сохранения и превращения энергии, поэтому нахождение формулы не даст результатов.

Опиши задание Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не получается написать работу самому?

Доверь это кандидату наук!

Источник: https://Zaochnik.com/spravochnik/fizika/zakony-sohranenija-v-mehanike/zakon-sohranenija-mehanicheskoj-energii/

I. Механика

Полная механическая энергия замкнутой системы тел остается неизменной

Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1. Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения*

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

В механике процессы теплопередачи не принимают во внимание, то есть . Если рассматривается физическая система замкнутая, то , получим . А если в замкнутой системе действуют только консервативные силы, то и приходим к формулировке: полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, сохраняется.

Источник: http://fizmat.by/kursy/zakony_sohranenija/sohranenie_jenergii

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как поменять патрон в бра

Закрыть