Почему сила тока прямо пропорциональна напряжению

Сила тока в проводнике прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению

Почему сила тока прямо пропорциональна напряжению

Если I— сила тока, U— напряжение, a R— сопротивление, то

I=

Этот закон носитназваниезакона Ома,по имени ученого, его открывшего.

Часто бываетнужно регулировать силу тока в цепи.Для этого используются специальныеприборы, называемые реостатами. Вреостате проволока, сделанная изматериала с большим удельным сопротивлением,намотана на керамический цилиндр.

Надобмоткой расположен металлическийстержень, по которому может перемещатьсяконтакт. Контакт прижимается к обмотке;при его перемещении меняется длинаобмотки, по которой проходит ток, исоответственно сопротивление реостата.

Реостат и его условное обозначение насхемах показаны на рисунке 17.

Закон ома для полной цепи

Пусть за времяt черезпоперечное сечение проводника пройдетэлектрический заряд q.Тогда работу сторонних сил при перемещениизаряда можно записать так:

Аст = q.

Согласноопределению силы тока

q = It.

Поэтому

Аст = It.

При совершенииэтой работы на внутреннем и внешнемучастках цепи, сопротивления которыхRи r,выделяется некоторое количество теплотыQ.По закону Джоуля—Ленца оно равно:

Q = I Rt + I r.

Согласно законусохранения энергии

A = Q.

Следовательно,

= IR+ Ir.

Произведениесилы тока на сопротивление участка цепичасто называют падением напряжения наэтом участке. Таким образом, ЭДС равнасумме падений напряжений на внутреннеми внешнем участках замкнутой цепи.Обычно это выражение записывают так:

I= /( R+ r).

Эту зависимостьопытным путем получил Г. Ом, и называетсяона законом Ома для полной цепи и читаетсятак:

Сила тока в полной цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению цепи

При разомкнутойцепи ЭДС равна напряжению на зажимахисточника и, следовательно, может бытьизмерена вольтметром.

f214. Ядерные силы

Источник: https://studfile.net/preview/2893362/page:30/

Закон Ома

Почему сила тока прямо пропорциональна напряжению

28 марта 2013.
Категория: Электротехника.

Закон Ома для участка цепи

Соберем электрическую цепь (рисунок 1, а), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2, двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5. Установим в цепи при помощи реостата сопротивление, равное 2 Ом.

Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А.

Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Таблица 1

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2 46 2 22 1 23

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Таблица 2

Зависимость тока в цепи от сопротивления при неизменном напряжении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2 22 1 23 2 12/3

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

U = I × r ,

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

U = I × r = 20 × 6 = 120 В .

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

1 В = 1 А × 1 Ом .

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

Потеря напряжения

Рисунок 3. Потеря напряжения вдоль электрической цепи

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

U = I × r .

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

U = I × r = 50 × 0,1 = 5 В.

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух медных проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r.

Так как сопротивление r проводов неизвестно, определяем его по формуле:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»);  длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

U = I × r = 15 × 1,22 = 18,3 В

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

127 – 120 = 7 В .

Сопротивление проводов линии должно быть равно:

Из формулы

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье «Электрическое сопротивление и проводимость»).

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»).

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

120 – 40 = 80 В .

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

Закон Ома для полной цепи

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Следовательно, электродвижущая сила (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r0 – сопротивление внутренней цепи в омах, U0 – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

E = U0 + U = I × r0 + I × r = I × (r0 + r),

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r0 = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E, замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r0 = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

U = I × r = 0,6 × 2 = 1,2 В.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

ЭТО ИНТЕРЕСНО:  Что собой представляет электрический ток

U0 = I × r0 = 0,6 × 0,5 = 0,3 В.

Так как E = U0 + U, то

E = 0,3 + 1,2 =1,5 В

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

откуда

E = I × (r0 + r) = 0,6 × (0,5 +2) = 1,5 В.

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает: а) при замкнутой электрической цепи – напряжение сети;

б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Источник: https://www.electromechanics.ru/electrical-engineering/484-ohms-law.html

Параллельное и последовательное соединение проводников в электрической цепи

Почему сила тока прямо пропорциональна напряжению

При монтаже электрических цепей в электротехнике применяют последовательное и параллельное соединение проводников. От выбранного способа соединения источников и потребителей в значительной мере зависят рабочие параметры подключенного оборудования. Поэтому особенности обоих методов построения схемы обязательно должны учитываться при проектировании электроцепей.

Что такое параллельное соединение проводников

При данном способе в составе схемы в крайних точках соединяются начала и концы всех нагрузок, подключенных к источнику электротока. Сами же нагрузки размещаются параллельно по отношению друг к другу. Количество подключенных по такой схеме компонентов не ограничивается. Схема используется во многих сферах, позволяя решать разные задачи компоновки сетей. Например, часто задействуют параллельное соединение аккумуляторов.

При контрольном измерении значения вольтажа электроприборов вольтметр будет показывать одинаковые величины. Это означает, что электронапряжение на каждой нагрузке будет равняться общей величине вольтажа, действующего в электрической цепи.

Особенностью схемы параллельного соединения можно назвать разветвление цепи. В месте разветвления происходит деление заряда с направлением его частей по отдельной линии к соответствующему проводнику. Поэтому общая величина тока будет равна суммарному значению токов на каждой из включенных нагрузок.

Совокупное электрическое сопротивление всей электроцепи имеет меньшее абсолютное значение, по сравнению с каждым из приборов.

Что такое последовательное соединение проводников

Суть этого способа заключается в том, что компоненты цепи подключаются друг к другу поочередно. Первый проводник одним проводом подключается к источнику питания. Второй его провод соединяется со вторым проводником, от которого идет конец на третий проводник и т.д., пока цепь не будет замкнута. Классическим примером последовательной электроцепи можно назвать подключение лампочек в гирлянде.

Ток проходит по цепи приборов, состоящей из резисторов, ламп или других нагрузок, протекая через каждый включенный в электроцепь прибор. В собранной таким способом цепи отсутствует эффект деления и накопления заряда на разных ее участках. Соответственно, физическая величина ампеража будет на всех участках одинаковой.

Совокупное электросопротивление всех последовательно соединенных нагрузок, приборов и устройств любого типа равняется сумме их индивидуальных сопротивлений. Таким образом, его значение прямо зависит от количества подключенных приборов и их параметров.

Аналогично рассчитывается и совокупный вольтаж. Он равняется сумме напряжений, действующих на каждом отдельном электроприборе.

Разница между последовательным и параллельным соединением, преимущества и недостатки

Принципиальные отличия между последовательным и параллельным соединение проводников по ключевым электротехническим параметрам приведены в таблице:

Параметр/тип соединения Последовательное Параллельное
Электросопротивление Равняется сумме электросопротивлений всех электропотребителей. Меньше значения электросопротивления каждого отдельного из подключенных электроприборов.
Напряжение Равняется совокупному вольтажу всех электропотребителей. Одинаковая величина на всех участках электроцепи.
Сила тока Одинаковая величина на всех участках электроцепи. Равняется совокупному значению токов на каждом из приборов.

Плюсы и минусы последовательного соединения

Основными преимуществам электроцепей из последовательно соединенных приборов являются их следующие особенности:

  • простота проектирования и построения схемы;
  • низкая стоимость комплектации;
  • возможность подключения приборов, рассчитанных на меньшее рабочее напряжение, по сравнению с номинальным напряжением сети;
  • выполнение функции регулирования тока – обеспечивает равномерные нагрузки на все приборы.

Однако у этого способа компоновки электросхемы есть и серьезные недостатки. Главным из них является ненадежность цепи из последовательно соединенных проводников. При выходе из строя любого из подключенных приборов, происходит отключение всей цепи.

Кроме того, минусом является снижение напряжения при увеличении количества подключенных потребителей. Примером может служить последовательное соединение нескольких ламп. Чем больше осветительных приборов подключено таким способом к источнику электропитания, тем менее яркий свет они будут давать.

Плюсы и минусы параллельного соединения

При использовании параллельного соединения проводников обеспечиваются такой набор преимуществ:

  • стабильность напряжения на электроприборах, вне зависимости от их числа;
  • возможность включения или отключения отдельных участков в нужный момент без нарушения работы всей электроцепи;
  • надежность – при выходе одного или нескольких компонентов из строя сама электроцепь продолжает сохранять работоспособность.

Недостатком является более сложный расчет и сложная схема, использование которой повышает стоимость комплектации электросети.

Не допускается подключение приборов, с номинальным рабочим вольтажом меньше сетевого. Параллельное соединение аккумуляторов с разным значением вольтажа связано с перетеканием тока в АКБ с меньшей его величиной, что может вызывать ускоренный износ батареи.

Смешанное соединение проводников в электрической цепи

На практике сборку электроцепей, как правило, проводят таким метод, который предусматривает смешанное соединение проводников. Это комбинированное решение, которое сочетает оба способа. Обычно для монтажа основной сети используют параллель, а отдельные потребители при необходимости объединяют в последовательную сеть.

При расчете и сборке смешанных соединений сопротивлений обязательно должны учитываться особенности, преимущества и недостатки обоих методов подключения. В ходе проектирования, схему целесообразно разбить на отдельные части и выполнить расчет в по физическим законам, которые справедливы для последовательного и параллельного соединения. После этого, составные части объединяют в единую схему.

Как соединить вольтметр и амперметр в цепь

К числу основных электротехнических параметров относятся сила тока и вольтаж. Для контроля этих величин используют приборы – амперметры и вольтметры. Требования по подключению этих приборов в цепь определяются, исходя из законов, которые действуют для последовательного и параллельного соединения.

Для измерения величины тока производится включение амперметра в цепь строго последовательно с рабочей нагрузкой. Важно, чтобы сопротивление самого прибора было минимальным, чтобы не допустить его влияние на работу электрооборудования. Если амперметр подключить параллельно, это приведет к выходу амперметра из строя.

Для измерения напряжения вольтметр в цепь подключается строго параллельно источнику или приемнику тока. Сам измерительный прибор должен иметь довольно высокое собственное сопротивление. Это требуется, чтобы при измерении можно было пренебречь величиной тока, который отбирается через вольтметр.

Применение параллельного и последовательного соединения в электротехнике

Параллельное соединение активно применяется для монтажа проводки и цепей в различных видах электрического оборудования и приборов. Оно дает возможность подключить электрические устройства к электросети независимо друг от друга.

Последовательное соединение используют, когда нужно обеспечить включение и отключение определенных приборов. Именно по этой схеме подсоединяются выключатели и тумблеры. Также схема хорошо подходит в тех случаях, когда необходимо сформировать электроцепь из потребителей с малым значением номинального напряжения.

При параллельном соединении конденсаторов совокупная емкость равняется сумме емкостей каждого полупроводника. В случае применения последовательного соединения конденсаторов, результирующая емкость уменьшается вдвое. Это свойство также используется при формировании электроцепей.

Способы соединения резисторов, решение задачи смешанного соединения проводников: видео

Источник: https://knigaelektrika.ru/teoriya/parallelnoe-i-posledovatelnoe-soedinenie-provodnikov-v-elektricheskoj-tsepi.html

Закон Джоуля-Ленца: определение, формула, применение

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I2*R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U2/R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax)2и в начале пробега (mu2)/2 , то есть

Здесь u – скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент,  E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I2R;
  • P = U2/R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

ЭТО ИНТЕРЕСНО:  Что такое рабочее заземление

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон  Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

Присильном нагревании можно наблюдать излучение видимого спектра света, чтопроисходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучаюттепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим,но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U2/R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственноепревращение электричества в тепловую энергию нельзя назвать экономическивыгодным. Однако, с точки зрения удобства и доступности современногочеловечества к источникам электроэнергии различные нагревательные приборыпродолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочныеаппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Источник: https://www.asutpp.ru/zakon-dzhoulya-lentsa.html

Закона Ома и применение его на практике

В природе существует два основных вида материалов, проводящие ток и непроводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

Формула Закона Ома

В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

где I – сила тока, измеряется в амперах и обозначается буквой А; U – напряжение, измеряется в вольтах и обозначается буквой В; R – сопротивление, измеряется в омах и обозначается .

Если известны напряжение питания U и сопротивление электроприбора R, то с помощью вышеприведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I.

С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

На практике часто приходится определять не силу тока I, а величину сопротивления R. Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R, зная протекающий ток I и величину напряжения U.

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению.

Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения.

Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца.

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где P – мощность, измеряется в ваттах и обозначается Вт; U – напряжение, измеряется в вольтах и обозначается буквой В; I – сила ток, измеряется в амперах и обозначается буквой А.

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала.

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля.

Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

Источник: https://YDoma.info/ehlektrotekhnika/electricity-zakon-oma.html

Закон Ома для участка цепи

Пожалуй, закон Ома для участка цепи является основой электротехники и электроники. Любое Пособие по физике для поступающих в вузыописывает Закон Ома и любой инженер должен его знать. Этот закон настолько прост, что его, по идее, должен знать и понимать каждый школьник.

Однако я встречал людей с высшим техническим образованием, которые не знали как рассчитать простейшую электрическую цепь из двух резисторов. И это не шутка. Именно поэтому я решил написать небольшую статью, посвящённую Закону Ома для участка цепи. Постараюсь сделать это понятными словами.

Закон Ома для участка цепи определяет зависимость между силой тока в проводнике и напряжением (разностью потенциалов) между двумя точками этого проводника. Эти точки ещё называют сечениями. Почему? Проводник, каким бы он ни был (круглым, квадратным или любой другой формы) можно мысленно рассечь (см. рис. 1). Это и будет сечение.

А ещё есть понятие площадь поперечного сечения (обычно, когда говорят «сечение» по отношению к проводнику, то как раз и подразумевают площадь поперечного сечения, но это уже другая тема).

Рис. 1. Сечение проводника.

В 1826 г. немецким учёным Георгом Омом (1787-1854) было замечено, что отношение разности потенциалов (напряжения) на концах металлического проводника к силе тока является величиной постоянной, то есть:

U/I = R = const Эта величина зависит от геометрических свойств проводника (то есть от его размеров, в частности, от площади поперечного сечения), а также от его электрических свойств и температуры. Эта величина называется омическим (активным) сопротивлением, или просто сопротивлением. Определение закона Ома для участка цепи следующее

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:I = U/RГде U – напряжение на данном участке цепи R – сопротивление данного участка цепи

Омическое сопротивление проводника

Сопротивление проводника – это основная электрическая характеристика проводника. Эта характеристика определяет упорядоченное перемещение носителей тока в этом проводнике (или на участке цепи).

Единица измерения омического сопротивления в СИ – ом (Ом). Проводник имеет сопротивление 1 Ом, если при силе тока в этом проводнике 1 А разность потенциалов (напряжение) на его концах равна 1 В, то есть

1 Ом = 1 В / 1 А Иными словами, если взять проводник, по которому течёт ток силой 1 А, отмерить отрезок этого проводника таким образом, чтобы напряжение на концах этого отрезка было равно 1 В, то сопротивление этого отрезка будет 1 Ом (рис. 2).

Рис. 2. Сопротивление проводника.

Немного практики

Как говаривал один известный товарищ – теория без практики мертва. Надеюсь, что всё прочитанное выше вы поняли. Но остался один вопрос – зачем это надо? Где можно применить полученные знания на практике? Приведу два простых примера, которые, однако, используются очень часто в электронике.

ЭТО ИНТЕРЕСНО:  Какой радиус действия зоны шагового напряжения

Довольно часто приходится сталкиваться с необходимостью понизить напряжение, например, с 12 до 3 вольт. Сделать это можно с помощью двух резисторов (см. рис. 3). Если вы не знаете, что такое резисторы, то советую ознакомиться со статьёй РЕЗИСТОРЫ. Ну а если знаете, то дальше можете прочитать о том, как это сделать.

Задача, в общем-то, не сложная.

Требуется подобрать два резистора таким образом, чтобы падение напряжения на одном из них составляло 3 вольта, а на втором – (12 – 3) = 9 вольт (для нашего примера). Кроме того, необходимо знать ток, который должен протекать в цепи. Допустим, что в нашем случае ток должен быть равен 50 мА (0,05 А).

Тогда, используя закон Ома для участка цепи, вычислим полное сопротивление цепи, то есть общее сопротивление резисторов R1 и R2:

R = U/I = 12 В / 0,05 А = 240 Ом Напомню, что все единицы измерения должны соответствовать принятым в СИ, то есть напряжение измеряется в ВОЛЬТАХ, ток – в АМПЕРАХ, а сопротивление – в ОМАХ.

Поскольку на любом участке цепи из последовательно включенных элементов ток одинаков, то вычислить сопротивление резисторов R2 и R1 не составит труда:

R1 = U1 / I = 9 / 0,05 = 180 ОмR2 = U2 / I = 3 / 0,05 = 60 Ом Ну вот и всё. Задача решена. Однако использовать такой делитель нужно с умом. Ведь любая нагрузка имеет своё сопротивление, которое называется входным сопротивлением. Это значит, что, подключив нагрузку к выходу делителя, мы тем самым уменьшим сопротивление цепи, а это, в свою очередь, увеличит ток в цепи и падение напряжения на резисторе R1 увеличится, а на нагрузке, соответственно, уменьшится. Что из этого следует? А следует из этого тот печальный факт, что сколь-нибудь мощную нагрузку подключать к выходу делителя нецелесообразно. Поэтому такие делители используются в основном, в электронных схемах, где протекают относительно небольшие токи. Если интересно, то вы можете немного поэкспериментировать с делителем напряжения при помощи представленного ниже флэш-ролика (рис. 3). Для изменения входного напряжения и сопротивлениярезисторов воспользуйтесь соответственными «ползунками» или непосредственно введитеданные в поля жёлтого цвета. Если флэш-ролик не отображается или не работает, то вампридётся настроить (или заменить) ваш браузер и/или установить (обновить) флэш-плеер.

Рис. 3. Делитель напряжения.

Светодиоды в наше время применяются очень широко – от простых устройств индикации до автомобильных фонарей и светофоров. Возможно, у вас возникала мысль поменять лампочки в автомобиле на светодиоды. Как бывалый автомобилист я вам этого делать не советую – возни много, а смысла мало. А вот как электронщик – помогу разобраться в премудростях включения светодиодов в электрическую цепь. Дело это несложное, но многие просто понятия не имеют, что и здесь нужно всё делать «по науке». А потом говорят, что светодиоды – вещь ненадёжная, хотя, как правило, выходят из строя светодиоды при правильной эксплуатации очень и очень редко. А вот при неправильной – ещё как. При желании сжечь светодиод можно моментально. Надо сказать, что сейчас в магазинах довольно много разных «мигающих» и прочих светодиодов, которые на самом деле являются электронными устройствами, встроенными в корпус светодиодов. Такие устройства можно подключать непосредственно к источнику питания, без гасящего резистора. Однако мы здесь будем говорить об обычных светодиодах. Схема включения светодиода показана на рис. 4. При включении светодиода в цепь постоянного тока необходимо соблюдать полярность (см. документацию на светодиод).

Итак, главное, что нам нужно знать:

  • Максимальное напряжение
  • Максимально допустимый ток светодиода

Максимально допустимый ток светодиода – это ток, при котором гарантируется долговременная работа светодиода без выхода его из строя. Не надо путать с кратковременным максимальным током. Эти данные берутся из справочных материалов. Но обычно ток светодиода составляет 1020 мА. Итак, допустим, что мы зачем-то хотим установить светодиод на автомобиль. Напряжение бортовой сети автомобиля при исправном оборудовании не может превышать 15 В. На это напряжение и будем рассчитывать. Допустим, что максимальный ток нашего светодиода составляет 20 мА (0,02 А). Далее нам необходимо учесть тот факт, что на любом полупроводнике (коим является и светодиод) падает какое-то напряжение. Для светодиодов это обычно 1,52 В. Примем его для нашего случая равным 2 В.

Поскольку резистор и светодиод будут подключены последовательно, то максимально возможное напряжение на резисторе для нашего примера будет

U1 = U – Ud = 15 – 2 = 13 Где U1 – напряжение на гасящем резисторе R1 U – входное напряжение Ud – напряжение, падающее на светодиоде Теперь остаётся рассчитать резистор таким образом, чтобы через него протекал ток 20 мА при напряжении 13 В. Делаем это с помощью известного нам закона Ома для участка цепи: R = U1 / I = 13 / 0,02 = 650 Ом Ну вот и всё. Задача решена – для включения светодиода с заданными характеристиками нам потребуется резистор сопротивлением 650 Ом. Однако сопротивление – это не единственный параметр резистора. Резистор ещё должен иметь подходящую мощность. Кроме того, промышленностью не выпускаются резисторы сопротивлением 650 Ом (точнее, выпускаются, но для особых случаев). Но это уже другая история. Хотите знать больше? Читайте статью РЕЗИСТОРЫ. Ну и кроме того предоставлю вам возможность закрепить полученный материал с помощью флэш-ролика (рис. 4).

Рис. 4. Подключение светодиода.

Источник: http://www.avprog.narod.ru/student/ph/ph_iii_203_01.htm

Сила тока при последовательном соединении

В электрических цепях используются различные типы соединений. Основными являются последовательные, параллельные и смешанные схемы подключений. В первом случае используется несколько сопротивлений, соединенных в единую цепочку друг за другом.

То есть, начало одного резистора соединяется с концом второго, а начало второго – с концом третьего и так далее, до любого количества сопротивлений. Сила тока при последовательном соединении будет одинаковой во всех точках и на всех участках.

Для определения и сравнения других параметров электрической цепи, следует рассматривать и остальные виды соединений, обладающие собственными свойствами и характеристиками.

Последовательное и параллельное соединение сопротивлений

Любая нагрузка обладает сопротивлением, препятствующим свободному течению электрического тока. Его путь проходит от источника тока, через проводники к нагрузке. Для нормального прохождения тока, проводник должен обладать хорошей проводимостью и легко отдавать электроны. Это положение пригодится далее при рассмотрении вопроса, что такое последовательное соединение.

В большинстве электрических цепей применяются медные проводники. Каждая цепь содержит приемники энергии – нагрузки, обладающие различными сопротивлениями. Параметры соединения лучше всего рассматривать на примере внешней цепи источника тока, состоящей из трех резисторов R1, R2, R3.

Последовательное соединение предполагает поочередное включение этих элементов в замкнутую цепь. То есть начало R1 соединяется с концом R2, а начало R2 – с концом R3 и так далее. В такой цепочке может быть любое количество резисторов. Эти символы используют в расчетах последовательные и параллельные соединения.

Сила тока на всех участках будет одинаковой: I = I1 = I2 = I3, а общее сопротивление цепи составит сумму сопротивлений всех нагрузок: R = R1 + R2 + R3. Остается лишь определить, каким будет напряжение при последовательном соединении. В соответствии с законом Ома, напряжение представляет собой силу тока и сопротивления: U = IR.

Отсюда следует, что напряжение на источнике тока будет равно сумме напряжений на каждой нагрузке, поскольку ток везде одинаковый: U = U1 + U2 + U3.

Конденсатор в цепи переменного тока

При постоянном значении напряжения, ток при последовательном соединении будет находиться в зависимости от сопротивления цепи. Поэтому при изменении сопротивления хотя-бы на одной из нагрузок, произойдет изменение сопротивления во всей цепи. Кроме того, изменятся ток и напряжение на каждой нагрузке. Основным недостатком последовательного соединения считается прекращение работы всех элементов цепи, при выходе из строя даже одного из них.

Совершенно другие характеристики тока, напряжения и сопротивления получаются при использовании параллельного соединения. В этом случае начала и концы нагрузок соединяются в двух общих точках. Происходит своеобразное разветвление тока, что приводит к снижению общего сопротивления и росту общей проводимости электрической цепи.

Для того чтобы отобразить эти свойства, вновь понадобится закон Ома. В данном случае сила тока при параллельном соединении и его формула будет выглядеть так: I = U/R. Таким образом, при параллельном соединении n-го количества одинаковых резисторов, общее сопротивление цепи будет в n раз меньше любого из них: Rобщ = R/n.

Это указывает на обратно пропорциональное распределение токов в нагрузках по отношению к сопротивлениям этих нагрузок. То есть, при увеличении параллельно включенных сопротивлений, сила тока в них будет пропорционально уменьшаться.

В виде формул все характеристики отображаются следующим образом: сила тока – I = I1 + I2 + I3, напряжение – U = U1 = U2 = U3, сопротивление – 1/R = 1/R1 + 1/R2 + 1/R3.

При неизменном значении напряжения между элементами, токи в этих резисторах не имеют зависимости друг от друга. Если один или несколько резисторов будут выключены из цепи, это никак не повлияет на работу других устройств, остающихся включенными. Данный фактор является основным преимуществом параллельного соединения электроприборов.

Обозначение постоянного и переменного тока

В схемах обычно не используется только последовательное соединение и параллельное соединение сопротивлений, они применяются в комбинированном виде, известном как смешанное соединение. Для вычисления характеристик таких цепей применяются формулы обоих вариантов. Все расчеты разбиваются на несколько этапов, когда вначале определяются параметры отдельных участков, после чего они складываются и получается общий результат.

Законы последовательного и параллельного соединения проводников

Основным законом, применяемым при расчетах различных видов соединений, является закон Ома. Его основным положением является наличие на участке цепи силы тока, прямо пропорциональной напряжению и обратно пропорциональной сопротивлению на данном участке.

В виде формулы этот закон выглядит так: I = U/R. Он служит основой для проведения расчетов электрических цепей, соединяемых последовательно или параллельно. Порядок вычислений и зависимость всех параметров от закона Ома наглядно показаны на рисунке.

Отсюда выводится и формула последовательного соединения.

Более сложные вычисления с участием других величин требуют применения правила Кирхгофа. Его основное положение заключается в том, что несколько последовательно соединенных источников тока, будут обладать электродвижущей силой (ЭДС), составляющей алгебраическую сумму ЭДС каждого из них.

Общее сопротивление этих батарей будет состоять из суммы сопротивлений каждой батареи. Если выполняется параллельное подключение n-го количества источников с равными ЭДС и внутренними сопротивлениями, то общая сумма ЭДС будет равно ЭДС на любом из источников. Значение внутреннего сопротивления составит rв = r/n.

Эти положения актуальны не только для источников тока, но и для проводников, в том числе и формулы параллельное соединение проводников.

В том случае, когда ЭДС источников будет иметь разное значение, для расчетов силы тока на различных участках цепи применяются дополнительные правила Кирхгофа.

Активное и реактивное сопротивление

Источник: https://electric-220.ru/news/sila_toka_pri_posledovatelnom_soedinenii/2017-04-11-1227

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Для чего стартер в лампе

Закрыть