Почему потенциальную энергию называют энергией

Закон сохранения энергии

Почему потенциальную энергию называют энергией
Подробности Категория: Механика 20.08.2014 21:02 46159

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил

 

Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными. Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости.

Все остальные силы называются неконсервативными. К ним относятся сила трения и сила сопротивления. Их называют также диссипативными силами.

Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту.

Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Еп = h,

где m – масса тела

ɡ — ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с2

При падении тела c высоты h1 до высоты h2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = — (Eп2 – Eп1) = — ∆ Eп ,

где Eп1 – потенциальная энергия тела на высоте h1 ,

Eп2 — потенциальная энергия тела на высоте h2.

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Еп = k·(∆x)2/2,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν, называется кинетической энергией тела массой m.

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν1, а в конечный момент она равнялась ν2, то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

Ek = Ek2 — Ek1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Еk1+ Еп1 = Еk2+ Еп2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

ЭТО ИНТЕРЕСНО:  Как обозначают постоянный ток

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю.

Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной.

Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной. Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
Ek1 + Eп1 = Ek2 + Eп2,
где Ek1, Eп1 — кинетическая и потенциальная энергии системы до какого-либо взаимодействия, Ek2 , Eп2 — соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз.

Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево.

Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона.

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю.

Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению.

Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Источник: http://ency.info/materiya-i-dvigenie/mekhanika/329-zakon-sokhraneniya-energ

Потенциальная энергия пружины и кинетическая – что это, какая формула?

Почему потенциальную энергию называют энергией

Во многих механизмах используется потенциальная и кинетическая энергия пружины. Их используют для выполнения различных действий.

В отдельных узлах они фиксируют детали в определенном положении, не позволяя смещать в какую-либо сторону (барабан револьвера относительно корпуса).

Другие пружинные системы возвращают исполнительный механизм в исходное положение (курок ручного огнестрельного оружия). Есть устройства, где узлы с гибкими свойствами совершают перемещения в устойчивое положение (механические стабилизаторы).

Работа связана с изменением геометрических параметров упругого тела. Прилагая нагрузку, заставляют эластичную деталь сжиматься (растягиваться или изгибаться). При этом наблюдается запасание энергии. Возвратное действие сопровождается набором скорости. Попутно возрастает кинетическая энергия.

Потенциальная энергия пружины

Рассматривая в качестве накопителя энергии пружину, следует отметить ее отличительные свойства от иных физических тел, которые могут накапливать энергетический потенциал. Традиционно понимается следующее: для накопления потенциала для последующего движения необходимо совершение движения в силовом поле:

Еп = F ⋅ l, Дж (Н·м),

где Еп– потенциальная энергия положения, Дж;
F – сила, действующая на тело, Н;
l – величина перемещения в силовом поле, м.

Энергия (работа) измеряются в Джоулях. Величина представляет произведение силы (Н) на величину перемещения (м).

Если рассматривать условие в поле тяготения, то величина силы находится произведением ускорения свободного падения на массу. Здесь сила веса находится с учетом g:

Еп = G ⋅ h = m ⋅ g ⋅ h, Дж

здесь G – вес тела, Н;
m – масса тела, кг;
g – ускорение свободного падения. На Земле эта величина составляет g = 9,81 м/с².

Если расстраивается пружина, то силу F нужно определять, как величину, пропорциональную перемещению:

F = K ⋅ x, Н,

где k – модуль упругости, Н/м;
х – перемещение при сжатии, м.

Величина сжатия может изменяться по величине, поэтому математики предложили анализировать подобные явления с помощью бесконечно малых величин (dx) .

При наличии непостоянной силы, зависящей от перемещения, дифференциальное уравнение запишется в виде:

dEп = k ⋅ x ⋅ dx

здесь dEп – элементарная работа, Дж;
dx – элементарное приращение сжатия, Н.

Интегральное уравнение на конечном перемещении запишется в виде. Ниже вывод формулы:

Пределами интегрирования является интервал от до х. Деформированная пружина приобретает запас по энергетическим показателям

Окончательно формула для расчета величины потенциальной энергии сжатия (растягивания или изгиба) пружины запишется формулой:

ЭТО ИНТЕРЕСНО:  В чем измеряется электроэнергия

Использование энергии пружины на практике

Явление преобразования потенциальной энергии пружины в кинетическую используется при стрельбе из лука.

Натягивая тетиву, стреле сообщается потенциал для последующего движения. Чем жестче лук, а также ход при натягивании тетивы, тем выше будет запасенная энергия. Распрямляясь дуги этого оружия, придадут метательному снаряду значительную скорость.

В результате стрела полетит в цель. Ее поражающие свойства определятся величиной кинетической энергии (mv²/2).

Для гашения колебаний, возникающих при движении автомобиля, используют амортизаторы. Основным элементом, воспринимающим вертикальную нагрузку, являются пружины. Они сжимаются, а потом возвращают энергию кузову. В результате заметно снижается ударное воздействие. Дополнительно устанавливается гидроцилиндр, он снижает скорость обратного движения.

Рассмотренные явления используют при проектировании механизмов и устройств для автоматизации процессов в разных отраслях промышленности.

закон Гука и энергия упругой деформации.

Источник: https://metmastanki.ru/energiya-pruzhiny

Энергия: потенциальная и кинетическая энергия

Почему потенциальную энергию называют энергией

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Нужна помощь в учебе?

Предыдущая тема: Коэффициент полезного действия механизмов: расчет, формула + примеры
Следующая тема:   Превращение энергии: закон сохранения энергии

Источник: http://www.nado5.ru/e-book/ehnergiya-potencialnaya-i-kineticheskaya-ehnergiya

Энергия

Только благодаря энергии на нашей планете существует жизнь. Энергия бывает разная. Тепло, свет, звук, микроволны, электричество — все это разные виды энергии. Для всех происходящих в природе процессов требуется энергия.

При любом процессе один вид энергии преобразуется в другой. Продукты питания – картофель, хлеб и т.д. – это хранилища энергии. Почти всю используемую на Земле энергию мы получаем от Солнца.

Солнце передает Земле столько энергии, сколько произвели бы 100 миллионов мощных электростанций.

Виды энергии

Энергия существует в самых разных видах. Кроме тепловой, световой и энергии звука есть еще химическая энергия, кинетическая и потенциальная. Электрическая лампочка излучает тепловую и световую энергию. Энергия звука передается при помощи волн.

Волны вызывают вибрацию барабанных перепонок, и поэтому мы слышим звуки. Химическая энергия высвобождается в ходе химических реакций. Продукты питания, топливо (уголь, нефть, бензин), а также батарей­ки — это хранилища  химической энергии.

Пищевые продукты — это склады химической энергии, высвобождающейся внутри организма.

Движущиеся тела обладают кинетической энергией, т.е. энергией движения. Чем быстрее движется тело, тем боль­ше его кинетическая энергия. Теряя скорость, тело теряет кинетическую энергию. Ударяясь о неподвижный объект, движущееся тело передает ему часть своей кинетической энергии и при­водит его в движение. Часть энергии, получаемой с пищей, животные обращают в кинетическую.

Потенциальной энергией обладают тела, находящиеся в силовом поле, например в гравитационном или  магнитном. Эластичные или упругие тела (обладающие способностью вытягиваться) имеют потенциальную энергию натяжения или упругости.

Маятник обладает максимальной потенциальной энергией, когда находится в верхней точке. Разворачиваясь, пружина освобождает свою потенциальную энергию и заставляет колёсики в часах вращаться.

Растения получают энергию от Солнца и производят питательные вещества — создают запасы химической энергии.

Превращение энергии

Закон сохранения энергии говорит, что энергия не создается из ничего и не теряется бесследно. При всех происходящих в природе процессах один вид энергии превращается в другой. Химическая энергия батареек фонарика превращается в электрическую. В лампочке электрическая энергия превращается в тепловую и световую. Мы привели пример этой «энергетической цепочки» чтобы показать вам, как один вид энергии превращается в другой.

Уголь — это спрессованные останки растении, живших много лет назад. Когда-то они получили энергию от Солнца. Уголь представляет собой запас химической энергии. Когда уголь сгорает, его химическая энергия прекращается в тепловую.

Тепловая энергия нагревает воду, и она испаряется. Пар вращает турбину. производя тем самым кинетическую энергию — энергию движения. Генератор преобразует кинетическую энергию в электрическую.

Разнообразные устройства — лампы, телевизоры, обогреватели, магнитофоны — потребляют электроэнергию и переводят в звук, свет и тепло.

Конечными результатами во многих процессах превращения энергии являются свет и тепло. Хотя энергия не пропадает, она уходит в пространство, и её трудно уловить и использовать.

Солнечная энергия

Энергия Солнца доходит до Земли в виде электромагнитных волн. Только так энергия может передаваться через открытый космос. Она может использоваться для создания электроэнергии при помощи фотоэлементов или для нагревания воды в солнечных коллекторах. Панель коллектора поглощает тепловую энергию Солнца.

На рисунке показана панель коллектора в разрезе. Черная панель поглощает поступающую от Солнца тепловую энергию, и вода в трубах нагревается. Так устроена крыша дома, обогреваемого Солнцем. Солнечная энергия передаётся воде, используемой для бытовых нужд и отопления. В энергохранилище попадают излишки тепла.

Энергия сохраняется при помощи химических реакций.

Энергетические ресурсы 

Энергия нужна нам для освещения и обогрева жилищ, для приготовления пищи, для того, чтобы могли работать заводы и двигать­ся автомобили. Эта энергия образуется при сгорании топлива. Есть и другие способы получения энергии — к примеру, ее производят гидроэлектростанции. Для приготовления пищи и обогрева жилья почти половина населения Земли сжигает дрова, навоз или уголь.

ЭТО ИНТЕРЕСНО:  Что выделяется на катоде и аноде

Древесина, уголь, нефть и природный газ называются невозобновимыми ресурса­ми, так как их используют только один раз. Солнце, ветер, вода — это возобновимые энергоресурсы, так как сами они не исчезают при производстве энергии. В своей деятельности человек использует для добычи энергии ископаемые ресурсы – 77%, древесину – 11%, возобновляемые энергоресурсы – 5% и ядерную энергию – 3%.

Уголь, нефть и природный газ мы называем ископаемым топливом, так как мы добываем их из недр Земли. Образовались они из останков растений и животных. Почти 20% используемой нами энергии производится из угля. При сгорании топлива в атмосферу попадают углекислый газ и другие газы. В этом отчас­ти заключается причина таких явлений, как кислотные дожди и парниковый эффект.

Только около 5 процентов энергии добывается из возобновимых источников. Это энергия Солнца, воды и ветра. Еще один возобновимый источник энергии — газ, образующийся при гниении. Когда органические вещества гниют, выделяются газы, в частности метан. Из него в основном и состоит природный газ, который используется для обогрева домов и нагревания воды.

На протяжении нескольких тысячелетий люди используют энергию ветра для пере­движения парусных судов и вращения ветряных мельниц. Ветер также может произ­водить электричество и перекачивать воду.

Единицы измерения энергии и мощности

Для измерения количества энергии употребляется специальная единица — джоуль (Дж). Тысяча джоулей составля­ют один килоджоуль (кДж). Обыкновенное яблоко (около 100 г) содержит 150 кДж химической энергии. В 100 г шоколада содержится 2335 кДж.

Мощность —  это  количество энергии, используемой за единицу времени. Мощность измеряется в ваттах (Вт). Один ватт равен одному джоулю за секунду. Чем больше энергии за определенное время произ­водит тот или иной механизм, тем боль­ше его мощность.

Лампочка мощностью в 60 Вт использует 60 Дж в секунду, а лампочка в 100 Вт использует за секунду 100 Дж.  

Коэффициент полезного действия

Любой механизм потребляет энергию од­ного вида (например, электрическую) и превращает ее в энергию другого вида. Коэффициент полезного действия (КПД) механизма тем больше, чем большая часть потребляемой энергии превращается в необходимую энергию. КПД почти всех автомобилей невысок.

В среднем автомобиль преобразует лишь 15% химической энергии бензина в кинетическую энергию. Вся остальная энергия превращается в тепло.

КПД флуоресцентных ламп выше КПД обычных электрических лампочек, поскольку во флуоресцентных лампах больше электричества превращается в свет и меньше уходит на производство тепла.

Источник: https://www.polnaja-jenciklopedija.ru/nauka-i-tehnika/jenergija.html

Конспект

Существуют два вида механической энергии: кинетическая и потенциальная.

Сумма кинетической и потенциальной энергии тела называется его полной механической энергией, которая зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует.

  Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии. (подробнее о Механической энергии в конспекте «Механическая энергия. Закон сохранения энергии»)

Внутренняя энергия

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия — внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп), поскольку они взаимодействуют.  Внутреннюю энергию обозначают буквой U. Единицей внутренней энергии является 1 джоуль (1 Дж).  U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела. Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела.

Внутреннюю энергию можно изменить при совершении работы. Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды — повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи, о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Конспект урока по физике в 8 классе «Внутренняя энергия».

Следующая тема: «Виды теплопередачи: теплопроводность, конвекция, излучение».

Источник: https://uchitel.pro/%D0%B2%D0%BD%D1%83%D1%82%D1%80%D0%B5%D0%BD%D0%BD%D1%8F%D1%8F-%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F/

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как прозвонить длинный кабель

Закрыть