Каков физический смысл падения напряжения на участке электрической цепи

Падение напряжения: при нагрузке, порядок расчета и способы определения

Каков физический смысл падения напряжения на участке электрической цепи

Работа электроприборов невозможна без определенных параметров сети. Они состоят из многих факторов. Один из них – сопротивление проводников электрическому току. Учитывая сечение при выборе проводов или кабелей, необходимо брать в расчет и падение напряжения.

Основные понятия

Падение напряжения – это величина, отраженная в изменении потенциала в разных частях проводника. Протекающий от источника по направлению к нагрузке ток меняет свои параметры в силу сопротивления проводов, но его направление остается неизменным. Измерить напряжение можно с помощью вольтметра:

  • двумя приборами в начале и конце линии;
  • поочередное измерение в нескольких местах;
  • вольтметром, подключенным параллельно кабелю.

Простейшая цепь – источник питания, проводник, нагрузка. Примером может быть лампа накаливания, включенная в розетку 220 В. Если замерить прибором напряжение на лампе, оно будет немного ниже. Падение возникло на сопротивлении лампы.

Напряжение или падение напряжения на участке цепи можно вычислять, применяя закон Ома, по формуле U = IR, где:

  • U – электрическое напряжение (вольт);
  • I – сила тока в проводнике (ампер);
  • R – сопротивление цепи или ее элементов (ом).

Зная две любые величины, можно вычислить третью. При этом нужно учитывать род тока – переменный или постоянный. Если в цепи несколько параллельно подключенных сопротивлений, расчет несколько усложняется.

Результат понижения напряжения

Распространено явление, когда входное напряжение определяется ниже установленной нормы. Проседание по длине кабеля возникает по причине прохождения высокого тока, который вызывает увеличение сопротивления. Также потери возрастают на линиях большой протяженности, что характерно для сельской местности.

Согласно нормативам, потери от трансформатора до самого удаленного участка должны составлять не более 9%. Результат отклонения параметров от нормы может быть следующим:

  • сбой работы энергозависимых установок и оборудования, осветительных приборов;
  • выход электроприборов из строя при низких показателях напряжения на входе;
  • снижение вращающего момента при пуске электродвигателя или компрессорной установки;
  • пусковой ток приводит к перегреву и отключению двигателя;
  • неравномерная токовая нагрузка в начале линии и на удаленном конце;
  • осветительные приборы работают вполнакала;
  • потери электроэнергии, недоиспользование мощности тока.

Изменяются характеристики и параметры эксплуатации электрических приборов. Например, из-за слабой мощности увеличивается время нагрева воды бойлером. Снижение напряжения приводит к сбоям в электронике.

В рабочем режиме потери напряжения в кабеле могут быть до 5%. Это значение допустимо для сетей энергетической отрасли, так как токи большой мощности доставляются на дальние расстояния. К таким линиям предъявляются повышенные требования. Поэтому при потерях в быту следует уделить внимание вторичным сетям распределения энергии.

Причины падения напряжения

Перекос фаз в трехфазной цепи

Прежде всего нужно разобраться: это вина поставщика электроэнергии или потребителя. Проблемы с сетью возникают по таким причинам:

  • износ линий электропередач;
  • недостаточная мощность трансформаторов;
  • дисбаланс мощности или перекос фаз.

Эти проблемы связаны с поставщиком, самостоятельно их решить невозможно. Чтобы понять, правильно или нет работают высоковольтные линии, придется вызывать представителей энергосбыта. Они сделают замеры и составят заключение.

Удостовериться, что вина падения не связана с поставщиком, можно самостоятельно. Прежде всего, стоит выяснить у соседей, есть ли у них подобные проблемы. Для измерения напряжения в быту подойдет мультиметр. Его стоимость до 1000 рублей. Если прибор на входе в квартиру показывает нормальное напряжение, причину нужно искать в домашней сети.

Падать напряжение может из-за большой протяженности проводки. Когда длина сети превышает 100 метров, а сечение проводников 16 мм, колебания станут регулярными. Чтобы исправить ситуацию, придется менять проводку.

Слабые контакты – это дополнительное сопротивление току. К приборам он доходит в недостаточном количестве. К тому же неисправные контакты могут вызвать замыкание и привести к пожару. Чтобы нормализовать показатели, нужно заменить аварийный участок цепи и подгоревшие контакты.

Виновником может быть неправильное соединение проводов, идущих от ЛЭП к дому. Иногда вопреки требованиям безопасности соединяют медные провода с алюминиевыми или медные проводники соединены вместо клемм скруткой. Клеммы и зажимы изготовлены из некачественных материалов, либо срок их годности вышел.

Возможно, неисправность заключается в самом вводном аппарате. В этом случае его следует заменить.

Как рассчитать потери

Линейная зависимость между напряжением и током

При расчете электрической линии отклонения напряжений не должны превышать регламентированных норм. Допустимые колебания для бытовых однофазных сетей – 209–231В, для трехфазной сети напряжение может варьироваться от 361 до 399 В.

Колебания силы тока и потребляемой мощности приводит к изменению напряжения в токопроводящих жилах возле потребителя. Поэтому при составлении схемы электропроводки необходимо учитывать допустимые потери.

В однофазной сети идет два провода, поэтому падение напряжения можно найти по следующей формуле: U=I*R, в свою очередь, R=(r*2i)/S.

  • где r – удельное сопротивление, которое равно сопротивлению провода, сечением 1 мм2 и длиной 1м;
  • i – обозначается как длина проводника;
  • S – сечение кабеля.

Программа AutoCad для расчета падения напряжения

В трехфазной сети мощности на фазных проводах компенсируют друг друга, а длина нулевого проводника не учитывается, так как по нему не идет ток. Если нагрузка по фазам неравномерная, расчет выполняют как для однофазной сети. Для линий большой протяженности дополнительно учитывают емкостное и индуктивное сопротивление.

Расчет падения можно выполнять с помощью онлайн-калькулятора, также существуют специальные таблицы. В них показаны допустимые токовые нагрузки для кабелей разных типов. При расчетах сечения кабеля должны учитываться следующие данные:

  • материал изготовления проводников;
  • скрытая или открытая прокладка линии;
  • токовая нагрузка;
  • условия окружающей среды.

При протекании тока по кабелю, проводу или шине, происходит их нагревание. Этот процесс изменяет физические свойства проводников. Происходит оплавление изоляции, перегрев контактов, перегорание провода. От правильного подбора кабеля зависит надежность и бесперебойная работа электросети.

Как уменьшить падение напряжения и снизить потери в кабеле

Можно снизить количество потерь, уменьшив сопротивление на всем участке электросети. Экономию дает способ повторного заземления нуля на каждой опоре линии электропередач.

Стоимость электроснабжения линией большой протяженности, выбранной по допустимому падению напряжения, больше выбора, выполненного по нагреву кабеля. Все же есть возможность снизить эти расходы.

  • Усилить начальный потенциал питающего кабеля, подключив его к отдельному трансформатору.
  • Добиться постоянных величин напряжения в сети можно с помощью установки стабилизатора возле нагрузки.
  • Подключение потребителей с низкими нагрузками 12–36 В выполняют через трансформатор или блок питания.

Чем длиннее кабель линии электропередач, тем большее сопротивление возникает при прохождении по нему тока. Очевидно, что потери напряжения также выше. Снизить их можно, комбинируя способы между собой.

  • Снизить расходы увеличением сечения питающего кабеля. Но этот метод потребует больших финансовых вложений.
  • При разработке линий энергоснабжения следует выбирать максимально короткий путь, так как прямая линия всегда короче ломаной.
  • При снижении температуры сопротивление металлов уменьшается. Вентилируемые кабельные лотки и другие конструкции снижают потери в линии.
  • Уменьшение нагрузки возможно, если есть много источников питания и потребителей.

Экономию дает должное содержание и профилактика электросетей – проверка плотности и прочности контактов, использование надежных клеммников.

Подходить к вопросу сохранения энергии нужно с полной ответственностью. Проблема потери напряжения может вывести из строя дорогостоящие приборы, инструменты. Не стоит пренебрегать мерами безопасности, они будут нивелировать скачки напряжения и защищать бытовую технику и оборудование на предприятии.

Источник: https://StrojDvor.ru/elektrosnabzhenie/chto-nazyvaetsya-padeniem-napryazheniya-na-uchastke-cepi/

Расчет электрических цепей

Каков физический смысл падения напряжения на участке электрической цепи

Для вычисления рабочих параметров радиотехнических устройств и отдельных схем применяют специальные методики. После изучения соответствующих технологий результат можно узнать быстро, без сложных практических экспериментов. Корректный расчет электрических цепей пригодится на стадии проектирования и для выполнения ремонтных работ.

Задачи на расчет электрических цепей решают с применением типовых алгоритмов

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Дифференциальный автомат надежная защита электрических цепей и человека

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении.

Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (< 1 мм), высокая плотность тока в соответствующем поперечном сечении быстро увеличит температуру вплоть до теплового разрушения материала с разрывом цепи.

Этот пример демонстрирует функциональность обычного плавкого предохранителя.

Подключив нагрузку, можно мультиметром проверить напряжение. Значение этого параметра остается неизменным. Если известно сопротивление (пример – R = 50 Ом), применение закона Ома (I = U/ R) поможет рассчитать ток:

I = 12/ 50 = 0,24 А.

По вычисленному значению с использованием формулы быстро определяется мощность:

P = I2 *R = U2/ R = 0,0576 * 50 = 2,88 Вт.

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом.

Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи.

При последовательном соединении Rэкв = R1 + R2 ++ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

I = U/ (Rэкв + Rвн).

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Метод преобразования электрической цепи

Подключение светодиода через резистор и его расчет

Как определить силу тока в отдельных контурах сложных схем? Для решения практических задач не всегда нужно уточнение электрических параметров на каждом элементе. Чтобы упростить вычисления, используют специальные методики преобразования.

Расчет цепи с одним источником питания

Для последовательного соединения пользуются рассмотренным в примере суммированием электрических сопротивлений:

Rэкв = R1 + R2 + + Rn.

Контурный ток – одинаковый в любой точке цепи. Проверять его можно в разрыве контрольного участка мультиметром. Однако на каждом отдельном элементе (при отличающихся номиналах) прибор покажет разное напряжение. По второму закону Кирхгофа можно уточнить результат вычислений:

E = Ur1 + Ur2 + Urn.

Параллельное соединение резисторов, схемотехника и формулы для расчетов

В этом варианте в полном соответствии с первым постулатом Кирхгофа токи разделяются и соединяются во входных и выходных узлах. Показанное на схеме направление выбрано с учетом полярности подключенного аккумулятора. По рассмотренным выше принципам сохраняется базовое определение равенства напряжений на отдельных компонентах схемы.

Как найти ток в отдельных ветвях, демонстрирует следующий пример. Для расчета приняты следующие исходные значения:

  • R1 = 10 Ом;
  • R2 = 20 Ом;
  • R3= 15 Ом;
  • U = 12 V.

По следующему алгоритму будут определяться характеристики цепи:

  • базовая формула для трех элементов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3.

  • подставив данные, вычисляют Rобщ = 10 * 20 * 15 / (10*20 + 20*15 +10*15) = 3000 /(200+300+150) = 4,615 Ом;
  • I = 12/ 4,615 ≈ 2,6 А;
  • I1 = 12/ 10 = 1,2 А;
  • I2 = 12/20 = 0,6 А;
  • I3 = 12/15 = 0,8 А.

Как и в предыдущем примере, рекомендуется проверить результат вычислений. При параллельном соединении компонентов должно соблюдаться равенство токов на входе и суммарного значения:

I = 1,2 + 0,6 + 0,8 = 2,6 А.

Если применяется синусоидальный сигнал источника, вычисления усложняются. При включении в однофазную розетку 220V трансформатора придется учитывать потери (утечку) в режиме холостого хода. В этом случае существенное значение имеют индуктивные характеристики обмоток и коэффициент связи (трансформации). Электрическое сопротивление (ХL) зависит от следующих параметров:

  • частоты сигнала (f);
  • индуктивности (L).

Вычисляют ХLпо формуле:

ХL = 2π * f * L.

Чтобы находить сопротивление емкостной нагрузки, подойдет выражение:

Хc = 1/ 2π * f * C.

Следует не забывать о том, что в цепях с реактивными компонентами сдвигаются фазы тока и напряжения.

ЭТО ИНТЕРЕСНО:  Как перевести квт в амперы

Расчет разветвленной электрической цепи с несколькими источниками питания

Пользуясь рассмотренными принципами, вычисляют характеристики сложных схем. Ниже показано, как найти ток в цепи при наличии двух источников:

  • обозначают компоненты и базовые параметры во всех контурах;
  • составляют уравнения для отдельных узлов: a) I1-I2-I3=0, b) I2-I4+I5=0, c) I4-I5+I6=0;
  • в соответствии со вторым постулатом Кирхгофа, можно записать следующие выражения для контуров: I) E1=R1 (R01+R1)+I3*R3, II) 0=I2*R2+I4*R4+I6*R7+I3*R3, III) -E2=-I5*(R02+R5+R6)-I4*R4;
  • проверка: d) I3+I6-I1=0, внешний контур E1-E2=I1*(r01+R1)+I2*R2-I5*(R02+R5+R6)+I6*R7.

Пояснительная схема к расчету с двумя источниками

Дополнительные методы расчета цепей

Расчёт электрической и акустической проводок

В зависимости от сложности устройства (электрической схемы), выбирают оптимальную технологию вычислений.

Метод узлового напряжения

Основные принципы этого способа базируются на законе Ома и постулатах Кирхгофа. На первом этапе определяют потенциалы в каждом узле. Далее вычисляют токи в отдельных ветвях с учетом соответствующих электрических сопротивлений (отдельных компонентов или эквивалентных значений). Проверку делают по рассмотренным правилам.

Метод эквивалентного генератора

Эта технология подходит для быстрого расчета тока в одной или нескольких контрольных ветвях.

В данной методике общую цепь представляют в виде источника тока с определенным напряжением и внутренним сопротивлением. Далее выполняют вычисления по контрольной ветви с применением стандартного алгоритма.

Источник: https://amperof.ru/teoriya/raschet-elektricheskix-cepej.html

Физический смысл электродвижущей силы

Каков физический смысл падения напряжения на участке электрической цепи

Поместим проводник в электростатическое поле. Рассмотрим процессы, которые будут там происходить:

  1. В начальный момент времени при воздействии электрического поля положительные заряды проводника станут двигаться из мест с большим потенциалом в места с меньшим потенциалом. Отрицательные заряды при этом двигаются в противоположном направлении.
  2. Противоположные концы проводника будут накапливать положительные и отрицательные заряды.
  3. В конце концов, поле индуцированных зарядов будет полностью компенсировать в объеме проводника внешнее поле, и ток остановится, система придет в электростатическое равновесие.

Выключим внешнее поле:

  1. Сохранится только поле индуцированных зарядов, появится ток, который связан с их нейтрализацией.
  2. По прошествии некоторого времени и данный ток прекратится.

Вывод: электростатическое поле не способно поддерживать в проводнике неизменный электрический ток. Для создания постоянного тока следует препятствовать установлению в проводнике электростатического равновесия. Что требует выполнения работы против сил электрического поля, которые стремятся уровнять все потенциалы поля всех точек в проводнике.

  • Курсовая работа 440 руб.
  • Реферат 240 руб.
  • Контрольная работа 250 руб.

Данная работа может быть выполнена исключительно за счет сил, не относящихся к электростатическим. В этой связи, силы, поддерживающие электрический ток постоянным, называют сторонними электродвижущими силами (ЭДС).

Сторонние ЭДС могут обладать любой природой, например: механической; электромагнитной;* химической и т. д.

Определение 1

Приспособления для создания сторонних сил называют источниками ЭДС.

Мерой возможностей источников ЭДС порождать электрический ток является электродвижущая сила ($Ɛ$).

Определение 2

Электродвижущая сила соответствует работе, которую выполняют сторонние силы источника, двигая единичный положительный заряд внутри источника от полюса со знаком минус к положительному полюсу.

$Ɛ=\frac{A_{st}}{q}$.

Направлением ЭДС считают направление перемещения положительных зарядов внутри источника (от отрицательного полюса к положительному).

Если в исследуемом контуре источник ЭДС один, то направлением ЭДС можно считать направление течения тока в данном контуре.

ЭДС и циркуляция вектора напряженности электрического поля

Рассмотрим случай, когда электрический ток течет по тонкому проводу. Направление тока совпадает с направлением оси провода (рис.1). Что обеспечивается соответствующим распределением зарядов на поверхностях проводников или там, где действуют сторонние силы.

Рисунок 1. Электрический ток в тонком проводе. Автор24 — интернет-биржа студенческих работ

Площадь поперечного сечения провода будем считать равным $S$, в разных местах провода она может отличаться. Поскольку наш провод мы считаем тонким, то плотность тока ($\vec j$) считаем одинаковой для всех точек поперечного сечения проводника. Сквозь поперечное сечение провода за единицу времени будет проходить заряд:

$\frac{\Delta q}{\Delta t}=I=jS\, \left( 1 \right)$.

где $I$ — сила тока. При постоянной силе тока, в результате сохранения заряда, величина $I$ будет одной и той же по всей длине провода. Положим, что в проводе (рис.1) работают сторонние силы, например, имеется гальванический элемент ($G$). Запишем дифференциальную форму закона Ома в виде:

$\vec{E}+\vec{E}_{st}=\frac{\vec{j}}{\lambda }=\frac{I}{\lambda S}\vec{i}\left( 2 \right)$,

где $\vec{i}$– единичный вектор, указывающий направление течения тока; λ – коэффициент проводимости.

Умножим полученное выражение (2) на элемент длины провода ($dl$) и возьмем интеграл по участку проводника от точки 1 до точки 2 (рис.1), считая силу тока неизменной:

$\int\limits_12 \vec{E} d\vec{l}+\int\limits_12 {\vec{E}_{st}d\vec{l}}=I\int\limits_12 \frac{d\vec{l}}{\lambda S} \left( 3 \right)$.

Поскольку электрическое поле является потенциальным, то имеем:

$\int\limits_12 \vec{E} d\vec{l}=\varphi_{1}-\varphi_{2}\left( 4 \right)$.

$\varphi_{1}-\varphi_{2}$ – разность потенциалов.

Второй интеграл отличен от нуля внутри источника тока, где E ⃗_st≠0. Данный интеграл не зависит от положения начальной и конечной точки 1 и 2. Необходимо только, чтобы данные точки были вне источника тока. Так как поле сторонних сил потенциально там, где действуют эти силы, интеграл не зависит от пути интегрирования в элементе. Это означает, что данный интеграл – это параметр, который характеризует свойства источника тока. Такую величину называют электродвижущей силой элемента:

$Ɛ=\int\limits_12 {\vec{E}_{st}d\vec{l}} =\int\limits_34{\vec{E}_{st}d\vec{l}} \left( 5 \right)$.

Электродвижущая сила (ЭДС) больше нуля, если направление пересечения пути 1-2 дает от катода к аноду и является отрицательной в ином случае.

Интеграл в правой части выражения (3) – это характеристика проводника, сопротивление:

$R=\int\limits_12 \frac{d\vec{l}}{\lambda S} \left( 6 \right)$.

Используя сказанное выше, запишем закон Ома в интегральной форме:

$\varphi_{1}-\varphi_{2}+Ɛ=IR\, \left( 7 \right)$,

где $R$ – сопротивление всего участка цепи, включая источник тока.

Если цепь является замкнутой, то закон Ома предстанет в виде:

$Ɛ=IR\, \left( 8 \right)$.

$R$ — полное сопротивление всей цепи.

Допустим, что $\varphi_{a}$ – потенциал анода источника;$\varphi_{k}$ – потенциал катода; $R_e$ — сопротивление всего внешнего участка цепи, тогда:

$\varphi_{a}-\varphi_{k}=IR_{e}\left( 9 \right)$.

Сравнив выражение (8) и (9) запишем:

$\frac{\varphi_{a}-\varphi_{k}}{Ɛ}=\frac{R_{e}}{R}=\frac{R_{e}}{R_{e}+r}\left( 10 \right)$.

где $r$ — внутреннее сопротивление источника.

Выражение (10) означает, что $\varphi_{a}-\varphi_{k}$ меньше, чем ЭДС. В предельном случае, когда $R_{e}\to \infty $. получим:

$\varphi_{a}-\varphi_{k}=Ɛ\left( 11 \right)$.

Электродвижущую силу можно определить как разность потенциалов полюсов разомкнутого источника.

ЭДС и работа

Рассмотрим замкнутый контур ($L$) с одни источником ЭДС. Найдем циркуляцию вектора напряженности по этому замкнутому контуру Электрическое поле будем считать составлено из двух компонент:

$\vec{E}=\vec{E}_{1}+\vec{E}_{st}\left( 12 \right)$.

где $\vec{E}_{1}$ – напряженность электростатического поля, действующего на заряды; $\vec{E}_{st}$ – поле сторонних сил.

$\oint\limits_L \vec{E} d\vec{l}=\oint\limits_L \vec{E}_{1}d\vec{l}+\oint\limits_L \vec{E}_{st} d\vec{l}=\oint\limits_L \vec{E}_{st}d\vec{l}=\int {\vec{E}_{st}d\vec{l}} =A\left( 13 \right)$.

где циркуляция $\vec{E}_{1}$ о замкнутому контуру равно нулю. A – работа по перемещению единичного положительного заряда сторонними силами внутри источника.

В результате мы получаем:

$Ɛ=\oint\limits_L \vec{E} d\vec{l}\left( 14 \right)$.

Выражение (14) совпадает с определением ЭДС. В соответствии с (14) ЭДС определена работой по перемещению единичного положительного заряда вдоль замкнутого контура $L$ под воздействием электрического поля в этом контуре.

Источник: https://spravochnick.ru/fizika/elektrodvizhuschaya_sila_eds/fizicheskiy_smysl_elektrodvizhuschey_sily/

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок.

Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %.

Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Вам это будет интересно  Особенности поперечного сечения

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Вам это будет интересно  Расчет эквивалентного сопротивления

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Источник: https://rusenergetics.ru/polezno-znat/padenie-napryazheniya

elektrotekhnika_pervaya_laba_zaschita

  1. Какие электрические цепи называются линейными?

Линейнойэлектрической цепью называют такуюцепь, все компоненты которой линейны.К линейным компонентам относятсязависимые и независимые идеализированныеисточники токов и напряжений, резисторы (подчиняющиесязакону Ома), и любые другие компоненты,описываемые линейными дифференциальнымиуравнениями, наиболее известныэлектрические конденсаторы и индуктивности.

  1. Сформулируйте законы Кирхгофа. Что отражают они физически?

Первоеправило Кирхгофа(правило токов Кирхгофа) гласит,что алгебраическаясумма токов вкаждом узле любой цепи равна нулю. Приэтом втекающий в узел ток принято считатьположительным, а вытекающий —отрицательным:

Второеправило Кирхгофа(правило напряжений Кирхгофа) гласит,что алгебраическаясумма падений напряжений навсех ветвях, принадлежащих любомузамкнутому контуру цепи, равнаалгебраической сумме ЭДС ветвейэтого контура. Если в контуре нетисточников ЭДС (идеализированныхгенераторов напряжения), то суммарноепадение напряжений равно нулю:

Физическийсмысл второго закона Кирхгофа

Второйзакон устанавливает связь между падениемнапряжения на замкнутом участкеэлектрической цепи и действием источниковЭДС на этом же замкнутом участке. Онсвязан с понятием работы по переносуэлектрического заряда. Если перемещениезаряда выполняется по замкнутомуконтуру, возвращаясь в ту же точку, тосовершенная работа равна нулю. Иначебы не выполнялся закон сохраненияэнергии. Это важное свойствопотенциального электрического поляописывает 2 закон Кирхгофа для электрическойцепи.

Физическийсмысл первого закона Кирхгофа

Первыйзакон устанавливает связь между токамидля узлов электрическойцепи. Он вытекает из принципа непрерывности,согласно которому суммарный потокзарядов, образующих электрический ток,проходящих через любую поверхностьравен нулю. Т.е. количество прошедшихзарядов в одну сторону равно количествузарядов, прошедших в другую сторону.Т.е. количество зарядов никуда не можетдеться. Они не могу прост исчезнуть.

  1. сколько уравнений составляется по первому закону Кирхгофа и сколько по второму?

ЭТО ИНТЕРЕСНО:  Что такое тупиковая подстанция

Кол-воуравнений, первый закон Кирхгофа =Кол-во узлов –1

Кол-воуравнений, второй закон Кирхгофа =Кол-во ветвей –Кол-во узлов +1

  1. Понятие независимого контура. Чему равно число независимых контуров в любой цепи?

Независимыйконтур- это замкнутый участок электрическойцепи, проложенный через ветви цепи,содержащий хотя бы одну новую ветвь,неиспользованную при поиске другихнезависимых контуров.

  1. понятия узел, ветвь, электрическая цепь.

Электрическаяцепьхарактеризуется совокупностью элементов,из которых она состоит, и способом ихсоединения. Соединение элементовэлектрической цепи наглядно отображаетсяее схемой. Рассмотрим для примера двеэлектрические схемы (рис. 1, 2), введяпонятие ветви и узла.

Ветвью называетсяучасток цепи, обтекаемый одним и тем жетоком.

Узел –место соединения трех и более ветвей.

  1. Что такое потенциальная диаграмма как она строится?

 Подпотенциальной диаграммойпонимают график распределения потенциалавдоль какого-либо участка цепи илизамкнутого контура. По оси абсцисс нанем откладывают сопротивления вдольконтура, начиная с какой-либо произвольнойточки, по оси ординат — потенциалы. Каждойточке участка цепи или замкнутогоконтура соответствует своя точка напотенциальной диаграмме.

  1. Каковы особенности режимов работы аккумуляторной батареи?

  1. Метод наложения его достоинства и недостатки

  1. Сущность метода эквивалентного генератора и способы определения параметров активного двухполюсника

Этотметод применяется в тех случаях, когдатребуется рассчитать ток в какой-либоодной ветви при нескольких значенияхее параметров (сопротивления и ЭДС) инеизменных параметрах всей остальнойцепи. Сущность метода заключается вследующем.

Вся цепь относительно зажимовинтересующей нас ветви представляетсякак активный двухполюсник, которыйзаменяется эквивалентным генератором,к зажимам которого подключаетсяинтересующая нас ветвь. В итоге получаетсяпростая неразветвленная цепь, ток вкоторой определяется по закону Ома.

ЭДСЕЭ эквивалентногогенератора и его внутреннее сопротивлениеRЭ находятсяиз режимов холостого хода и короткогозамыкания двухполюсника.

  1. Сущность метода контурных токов и напряжения двух узлов.

Методконтурных токов можно применить длярасчета сложных электриче­ских цепей,имеющих больше двух узловых точек.Сущность метода контурных токовзаключается в предположении, что вка­ждом контуре проходит свой ток(контурный ток). Тогда на общих участках,расположенных на границе двух соседнихконтуров, будет протекать ток, равныйалгебраической сумме токов этих контуров.

  1. Режимы работы источников питания.

  1. Покажите, что условием максимальной передачи мощности от источника к приемнику электрической энергии является равенство Rвн=Rн

Источник: https://studfile.net/preview/1978398/

5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов. Напряжение физический смысл

НапряжениеНапряжение физический смысл

Для участка цепи, изображенного на рис.1 очевидно, что при перемещении заряда между точками 1-3 работа совершается не только кулоновскими силами, но и сторонними силами, поэтому полная работа равна:

Апол= Акул+Астор.

Разделим обе части равенства на величину перемещаемого положительного заряда q, получим:

По определению разность потенциалов равна отношению работы, которую совершают кулоновские силы при перемещении заряда, к величине этого заряда:

12=12=

Электродвижущей силой ЭДС () на данном участке называется физическая величина, равная отношению работы, совершаемой сторонними силами при перемещении положительного заряда q, к величине этого заряда:

.

Напряжением на участке цепи 1-3 называют физическую величину, равную отношению суммарной работы, совершаемой при перемещении положительного заряда q, к величине этого заряда:

U13= .

Таким образом,

U13= 13+.

Описание установки, измерения и обработка результатов измерений

Описание установки.

Вид передней панели показан на рис.2. На ней расположены: вольтметр, амперметр, сопротивления R1, R2 (R2 R1), реостат RР, источник тока с ЭДС Е и кнопка К.

Величины внутренних сопротивлений амперметра и вольтметра указаны на передней панели.

Измерения и обработка результатов

Работу выполняют в следующем порядке:

Задание 1. Измерение электрических сопротивлений методом вольтметра-амперметра.

Измерение сопротивления можно выполнить двумя способами, используя схемы, показанные на рис.3 и рис.4

Введем расчетные формулы для неизвестного сопротивления Rх в каждом из указанных способов. Для схемы 1 на рис. 3 можно записать:

IRх+IRA=UV, откуда(2)

В схеме 2 на рис.4 для постоянных токов справедливы следующие три уравнения с тремя неизвестными: Rx; Ix; Iv:

IVRV=UV, IxRx=UV , IX+IV=I, ( 3 )

из решения которых, получим: ( 4 )

При выполнении задания 1 используйте обе схемы, приведенные на рис.3 и рис.4

Сначала с помощью проводов собирают на лабораторном стенде схему на рис.3. Найдите сопротивление каждого из двух предложенных резисторов R1, R2 методом вольтметра-амперметра двумя способами. Измерения R на каждой из схем проведите не менее 3 раз для разных значений силы тока. Силу тока в цепи изменяйте реостатом.

Результаты измерений токов и напряжений и вычислений текущих и средних значений R1, R2 для каждой схемы запишите в соответствующие таблицы для схем1 и 2 (рис.3 и рис.4). Для удобства различения величин R1 и R2 в таблицах для схемы 1 и схемы 2 их целесообразно обозначить так: R1-1 , R1-2 и R2-1 , R2-2 (первый индекс- сопротивление, второй –схема).

!!!Таблицы составить самостоятельно ДОМА при подготовке к лабораторной работе ДО её выполнения. Должно бытьдве таблицыдля схемы 1; одна со столбцами:IA,UV,R1-1и, другая – со столбцамиIA,UV,R2-1и. Ещё 2 аналогичные таблицы должны быть для схемы 2. Отдельно должны быть выписаны данные поRAиRV.

Оценка погрешности определения Rс помощью схем 1 и 2:

Схема 1 и схема 2 отличаются различной систематической относительной погрешностью определения величины сопротивленияR. Для схемы 11= (RAR)100% . Для схемы 22= (RRV)100%. Найдите величины1 и2 для сопротивленийR1иR2. Заключение о точности измеренияR1иR2сделать письменно.

Задание 2. Определение ЭДС источника тока и его внутреннего сопротивленияr.

Используя данные приборы и резисторы, сопротивление которых вы нашли, найдите ЭДС источника тока и его внутреннeе сопротивление r .

Для этого соберите схему, приведенную на рис. 5. В качестве R возьмите сначала один резистор R1, затем другой резистор R2. Последовательно с реостатом Rp включите резистор R1 и измерьте ток I1 , а затем включите резистор R2и измерьте ток I2. Запишите полученные данные.

ВНИМАНИЕ. В обоих случаях сопротивление реостата (Rp=1 кОм) должно быть максимальным (для этого поверните его ручку до упора против часовой стрелки и не вращайте её больше).

Для определения двух неизвестных иr необходимо составить два уравнения (=IR+Ir) для значений R1 , I1 и R2 , I2. Численные значения R1 и R2 взять как полученные средние арифметические значения в задании 1.

Источник: https://xn----7sbeb3bupph.xn--p1ai/napryazhenie/napryazhenie-fizicheskij-smysl.html

Закон Ома для полной цепи

Если закон Ома для участка цепи знают почти все, то  закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!

Идеальный источник ЭДС

Имеем источник ЭДС

Давайте вспомним, что такое ЭДС. ЭДС – это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.

Или проще:

Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.

Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?

Внутреннее сопротивление источника ЭДС

Дело все в том, что в аккумуляторе “спрятано” сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой “r “.

Выглядит все это в аккумуляторе примерно вот так:

Цепляем лампочку

Итак, что у нас получается в чистом виде?

Лампочка – это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:

Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью  делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.

На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .

Теперь вспоминаем статью делитель тока. Сила тока, протекающая  через последовательно соединенные сопротивления везде одинакова.

Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что

Далее

Итак, последнее выражение носит название “закон Ома для полной цепи”

где

Е – ЭДС источника питания, В

R – сопротивление всех внешних элементов в цепи, Ом

I – сила ток в цепи, А

r – внутреннее сопротивление источника питания, Ом

Просадка напряжения

Итак, знакомьтесь, автомобильный аккумулятор!

Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус

Наш подопечный готов к бою.

Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на “ближний” свет.

Первым делом давайте замеряем напряжение на клеммах аккумулятора

12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.

Подключаем  галогенную лампу к аккумулятору и снова замеряем напряжение:

Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!

А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:

Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр – силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.

Смотрим на показания приборов:

Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.

Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла

Смотрим показания:

Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.

Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.

Как найти внутреннее сопротивление источника ЭДС

Давайте снова вернемся к этой фотографии

Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.

Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:

Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r

Вывод

Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.

Источник: https://www.RusElectronic.com/eds-istochnika-napryazheniya-i-ego-vnutrennee-soprotivlenie/

Единица измерения и формула электрического напряжения

При проектировании различных устройств необходимо рассчитывать характеристики электричества. Для этих целей применяется законы Ома (для участка и полной цепи), позволяющие вычислять ток, сопротивление и электрическое напряжение. Формулы связывают последние параметры, а также могут быть полезны при решении задач по физике, электротехнике и микросхемотехнике.

Подготовка к обучению

Ключевым моментом перед изучением характеристик электричества являются правила безопасности, четкое выполнение которых позволит не только избежать несчастных случаев, но и спасет жизнь. Однако для понимания процесса следует подробно выяснить пагубное влияние тока на организм человека. Если начинающий физик будет владеть этой информацией, то он усвоит правила очень быстро.

Правила безопасности

Безопасность выполнения работ с монтажом и демонтажем приборов, которые работают от электричества, играет очень важную роль при сохранении жизни и здоровья. К ним относятся следующие:

  1. Работа осуществляется только с обесточенными элементами цепи.
  2. Запрещается работать в сырых помещениях.
  3. Рекомендуется использовать заземление. Его сопротивление не должно превышать 4 Ом.
  4. Соблюдать порядок на рабочем месте.
  5. При измерении величины напряжения и тока не касаться токоведущих частей.
  6. Под ногами должен быть прорезиненый коврик, а на руках — диэлектрические перчатки.
  7. Работу нужно выполнять с инструментом, ручки которого изолированы.
  8. При выполнении работ с высокими значениями напряжения запрещено работать одному.

Это только часть самых важных правил. Главное — быть внимательным и обдумывать каждое действие. Опытные электрики рекомендуют также ознакомиться с пагубным воздействием электричества на организм человека.

Влияние электричества на организм

Люди, работающие с электричеством, знают, что его опасность заключается в невидимости. Однако некоторые пробуют наличие напряжения посредством прикосновения. Это плохая идея, которая может войти в привычку. Например, электрический прибор работает от напряжения, величина которого составляет 12 В. Однако произошел пробой изоляции и величина возросла до 220 В. Человек прикасается и становится жертвой электрического удара или травмы.

Однако величина тока и напряжения для каждого индивида являются разными. Одного может ударить 36 В, а для другого оно не опасно. Причина заключается в электрическом сопротивлении тела, которое зависит от нескольких факторов:

  1. Внешняя среда.
  2. Психологическое состояние.
  3. Толщина кожи на пальцах.
  4. Текущее состояние здоровья.
  5. Путь прохождения.

Существуют другие факторы, играющие важную роль при увеличении вероятности поражения человека электричеством. К ним относятся следующие:

  1. Напряжение.
  2. Ток.
  3. Частота.

В первом случае среднестатистический показатель равен 36 В. Ток бывает постоянным и переменным. Первый является наиболее опасным.

Это обусловлено постоянным воздействием на организм человека. Если он является переменным, то существует вероятность освободиться, поскольку у него существует амплитуда, изменяющаяся с течением времени.

Ученые провели исследования и выяснили, что сила тока, равная 100 мА, поражает сердечную мышцу. Если показатель находится в диапазоне от 50 до 90 мА, то происходит мышечный спазм и потеря сознания. Максимальное допустимое значение тока определяется экспериментальным путем. Оно индивидуально для каждого.

К телу человека подключается электрическая установка с плавным регулированием показателя при постоянном напряжении 10 В. Увеличение длится до появления первых признаков поражения. После этого величина фиксируется, а затем из нее вычитается 5 мА. Далее измеряется сопротивление человека. Расчет выглядит таким образом:

  1. Максимальное допустимое значение тока (Imax): 80 мА.
  2. Расчетная величина (во всех источниках может обозначаться «Iр»): Iр=Imax-5мА=80−5=75 мА.
  3. Сопротивление человека (Rч): Rч=2,2 кОм.
  4. Напряжение (U), которое является опасным для жизни: U=IpRч=0,075*2200=165 В.
ЭТО ИНТЕРЕСНО:  Что называют магнитным пускателем

Следовательно, опасным для человека с сопротивлением тела, которое равно 2,2 кОм, и током в 75 мА составляет 165 В.

Виды травм

При воздействии электричества на организм человека возникают травмы. Они классифицируются на такие виды:

  1. Электрические ожоги — травмы, возникающие при тепловом воздействии тока на отдельный участок кожи.
  2. Электрические знаки — изменение цвета (серый или бледно-серый) пораженной кожи при прямом контакте с токоведущей поверхностью.
  3. Металлизация эпителия — травма, возникающая при коротком замыкании. В этом случае частицы расплавленного металла попадают вглубь кожи.
  4. Механические — вид повреждения при сокращении мышц, после которого происходит падение.
  5. Электроофтальмия — раздражающий эффект слизистой оболочки глаз, вызванный ярким светом (например, при сварке или образовании электрической дуги).
  6. Электрический удар — серьезное поражение электричеством, приводящее к потере сознания, остановке сердечной мышцы, электрическому шоку, клинической и биологической смерти.

После выяснения пагубного влияния электричества на человека рекомендуется приступить к изучению определений, формул и законов, связывающих характеристики напряжения, тока и сопротивления.

Информация о напряжении

Напряжение — работа электрического тока, при которой происходит перемещение заряда из одной точки в другую. Оно имеет векторное направление. Электрическим током является движение заряженных элементарных частиц под воздействие электромагнитного поля.

Некоторые начинающие физики не знают, в чем измеряется напряжение. Знать это очень важно, поскольку элементы электрической цепи можно рассчитать неверно. Единицей измерения тока является ампер (А), а напряжения — вольт (В).

В последнем случае применяется вольтметр — прибор, измеряющий величину напряжения или разности потенциалов. Он подключается параллельно в систему. Например, нужно измерить его значение на лампочке накаливания.

Для этого необходимо подключиться параллельно к ней, а не последовательно.

Физический смысл

Под физическим смыслом напряжения или разности потенциалов понимают работу, необходимую для перемещения точечного заряда в 1 Кл из одного места в другое. В этом случае переносится только положительный потенциал. При этом возникает электродвижущая сила (ЭДС), которая называется напряжением или разностью потенциалов.

Для понимания физического смысла следует рассмотреть более простой пример. Пусть существует некоторая система, состоящая из насоса, труб и крана. Насос — напряженность электрического поля, трубы — провода, а кран — сопротивление системы. При включении первого происходит закачивание воды. Если немного приоткрыть кран, то она польется маленькой струйкой. При открытии его полностью жидкость будет уходить более интенсивно.

Формулы для вычислений

Все формулы для расчетов построены на законах Ома. Их всего два: для участка и для всей цепи. Формулировка первого: ток, протекающий на искомом участке, прямо пропорционален U и обратно пропорционален R. Его математическая запись имеет такой вид: I=U/R. Из последнего получаются такие соотношения:

  1. U=IR.
  2. R=U/I.
  3. P=IU=(I2 )R=(U2 )/R, где Р — мощность.

Для полной цепи закон формулируется иначе: ток I прямо пропорционален ЭДС (E) и обратно пропорционален алгебраической сумме внешнего R и внутреннего r сопротивлений. Следует отметить, что r — проводимость источника питания. Записывается он в таком виде: I=E/(R+r). Физики вывели следующие соотношения, помогающие при расчетах:

  1. Е=I (R+r).
  2. R=(E/I)-r.
  3. r=(E/I)-R.
  4. Р=ЕI=(E2 )/(R+r)=(R+r)I2.

Однако ток бывает не только постоянный, но и переменный. Для него существуют другие правила и соотношения.

Тождества для переменного тока

Напряжение при переменном токе классифицируется на определенные виды. К ним относятся следующие:

  1. Мгновенное или действующее — параметр, который измеряют приборы (Um).
  2. Амплитудное — величина, характеризующее максимальную величину в определенный момент времени. Расчитывается по формуле с учетом угловой частоты (w), времени (t) и угла между фазами (f), который измеряется осциллографом: u (t)=Uмsin (wt+f).
  3. Среднеквадратичное (Uq) — величина, вычисляемая по формуле: Uq=0,7073Uм).

Для расчета следует иметь знания об индуктивной Xl, емкостной Xc и резистивной R нагрузках. Первая — проводимость всех элементов, содержащих индуктивность (катушки, трансформаторы, электродвигатели). Во втором случае учитываются все емкостные радиодетали (варисторы и конденсаторы). Резистивная нагрузка включает все значения резисторов.

https://www.youtube.com/watch?v=nr8XJeew6X4\u0026list=PLkEQgZ8KWL4kUEVOv6xlr9-XKaD1NX01U

Полный импеданс цепи (Z) равен сумме всех элементов, содержащий активную, индуктивную и емкостную. Специалисты рекомендуют использовать такие формулы, необходимые для расчетов:

  1. Xl=wL.
  2. Хс=1/wC.
  3. Z=R+Xc+Xl.
  4. I=Uм/Z.
  5. Uм=IZ.
  6. Z=Uм/I.

Четвертая формула является законом Ома для участка цепи, которую следует применять при переменных токах.

Таким образом, при помощи формулы напряжения можно рассчитывать не только основные параметры электричества для постоянного и переменного токов, но и его допустимые величины для человека.

Источник: https://1001student.ru/fizika/edinitsa-izmereniya-i-formula-elektricheskogo-napryazheniya.html

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд :

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной.

Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е.

против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

(1)

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

(2)

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

(3)

Итак, , и мы приравниваем правые части формул (2) и (3):

После сокращения на получаем:

Вот мы и нашли ток в цепи:

(4)

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

https://www.youtube.com/watch?v=r-Ry0bEEHrI\u0026list=PLkEQgZ8KWL4kUEVOv6xlr9-XKaD1NX01U

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

(5)

Это напряжение является разностью потенциалов между точками и (рис. 2). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

Кпд электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

Кпд электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

(6)

или, что то же самое:

(7)

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

(8)

или:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Источник: https://ege-study.ru/ru/ege/materialy/fizika/eds-zakon-oma-dlya-polnoj-cepi/

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как проверить светодиодный фонарик

Закрыть