Какое напряжение на каждой фазе

Перекос фаз в трехфазной сети: что это такое, причины, последствия, защита

Какое напряжение на каждой фазе

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения  ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь.

Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ.

Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ)  напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Источник: https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html

Как выбрать стабилизатор: три однофазных или один трехфазный?

Какое напряжение на каждой фазе

03.07.2018

Стабилизаторы напряжения, особенно высокой мощности, сегодня все больше пользуются спросом со стороны пользователей. Однако при покупке устройства необходимо хорошо понимать, какая именно модель подойдет под ваши нужды.

Ведь мощные стабилизаторы потребуют значительных трат, и если техника вдруг не подойдет, это будет, по меньшей мере, довольно неприятно.

Чтобы зря не потерять время (а порой и деньги), следует подойти к вопросу достаточно серьезно и заранее собрать всю информацию о том, какой вариант будет оптимальным для ваших условий.

Один из факторов, требующих серьезного внимания, — количество фаз и вытекающее из этого следующее обстоятельство: конструкция, а точнее, компоновка устройства. Многие производители готовы предложить потребителям стабилизаторы двух типов: однофазные и трехфазные.

Понятно, что если в помещении (доме, офисе или хозяйственных постройках) проложено три фазы, то потребуется трехфазный стабилизатор, а для помещений с одной фазой — однофазные стабилизаторы. Тут все достаточно понятно и просто.

Суть же настоящей статьи заключается в том, какой вариант стабилизатора предпочтителен, если мы имеем дело с трехфазной системой в помещении.

Вариант подбора стабилизатора для 3-фазной сети

Итак, речь у нас пойдет о помещении с трехфазной сетью. Нужно рассмотреть все возможные варианты конфигурации стабилизаторов и подобрать оптимальный. Выбор же может быть из трех конфигураций:

Первый вариант предусматривает покупку сразу трех стабилизаторов. Логично думать, что для защиты каждой из трех фаз работает один стабилизатор из комплекта. Однако любой специалист вам скажет, что рассматривать комплект из трех 1-фазных устройств в качестве адекватной замены трехфазному стабилизатору не стоит. Причина в том, что однофазный стабилизатор может эффективно защищать только те устройства, которые используют однофазное подключение.

То есть, если у вас в доме есть электроприборы только на 220 В, то комплект из трех стабилизаторов однофазного типа будет хорошим решением. Для этого можно, например, приобрести комплект стабилизаторов Энергия Voltron 10000 (HP), которые оптимально подходят для защиты однофазных приборов. А как быть, если у вас частный дом с водонагревателем или отопительным котлом с напряжением 380 В? В таком случае конфигурация из трех «однофазников» не подойдет.

Второй вариант конфигурации может предусматривать покупку все того же комплекта, включающего три «однофазника» и БКС (блок контроля сети). Подобная конфигурация предполагает, в сущности, создание, пусть и столь необычным образом, полноценного 3-фазного стабилизатора, который вполне способен защитить оборудование как однофазного, так и трехфазного типа.

По комплектации данный вариант отличается от первого только присутствием БКС, без контроля которого невозможна согласованная регулировка напряжения в трех фазах. Кроме этого, БКС защищает устройства с напряжением 380 В: он в состоянии обесточить такую аппаратуру в случае фиксации аварийной ситуации (обрыв фазы, перекос фаз или нарушение очередности фаз).

Примером такой конфигурации может служить использование в конфигурации трехфазного релейного стабилизатора Энергия Voltron 30000 (HP) вместе с модулем БКС.

Наконец, третий вариант конфигурации подразумевает покупку моноблочного 3-фазного стабилизатора. Само название говорит о том, что пользователь приобретает крупногабаритный модуль, в котором сразу смонтированы три стабилизатора и блок контроля. То есть, это более компактный вариант (если так можно сказать) второй конфигурации.

У такого решения есть свои преимущества. Во-первых, он способен одновременно обеспечить защиту для однофазного и трехфазного оборудования, а во-вторых, для некоторых пользователей моноблочный вариант удобнее в плане размещения из-за особенностей компоновки.

В качестве примера можно привести вариант с моноблочным стабилизатором Энергия Hybrid II 60000/3.

Что лучше: комплект или моноблок?

Потенциальный покупатель может законно спросить: так какой из трех вариантов конфигурации будет лучше, эффективнее? Давайте посмотрим. Для того чтобы разница была наглядной, возьмем за основу следующие параметры: условия выбора, условия и возможности транспортировки, параметры нагрузки, ликвидация неисправностей.

Итак, свобода выбора. Если судить с этой точки зрения, то комплекты стабилизаторов были бы более удачным решением. Причем пользователь здесь может не ограничивать себя покупкой только одинаковых по мощности трех устройств. Вполне допускается создание комплекта из стабилизаторов разной мощности, хотя важным было бы приобретение моделей одного семейства. Впрочем, если вам подобный шаг не по душе, можно ограничиться и готовым комплектом.

Преимущества комплектов в плане свободы выбора не ограничиваются только вышеописанными возможностями. В комплект можно подбирать модели с более удобными для вас принципами регулировки напряжения и параметрами точности стабилизации. И здесь возможности выбора почти неограничены. Моноблок таких возможностей не предоставляет, однако он проще с точки зрения скорости выбора.

Второй аспект касается условий транспортировки и монтажа. Здесь не все очевидно на первый взгляд. У комплекта есть свои преимущества. Как правило, каждый из составляющих его блоков имеет сравнительно небольшие габариты и небольшой вес.

Перевезти все это сразу вместе или даже по отдельности проще. Никаких подъемных и иных механизмов не потребуется. Для установки комплект может быть также более удобным вариантом, так как у блоков имеются специальные крепления на задней панели.

Можно также использовать монтаж на специальных стойках.

С моноблочным стабилизатором все несколько сложнее. С одной стороны, он кажется более компактным, но это немного обманчивое впечатление. Моноблок, конечно, будет более тяжелым и менее гибким при транспортировке, особенно, если вы перевозите его собственными силами и ограничены в ресурсах. Моноблоки, как правило, не требуют специального монтажа. Под них выделяется специальное пространство в помещении, что для кого-то очень удобно, а для кого-то нет.

Третий фактор касается параметров, а точнее, пределов нагрузки. Здесь следует особенности и требования помещения. Например, моноблоки могут иметь мощность до 100 кВА, что вполне подойдет даже для промышленных и коммерческих целей. Для дома или дачи такой вариант был бы излишним по мощности. С другой стороны, «однофазники» чаще всего обладают мощностью не более 20 кВА, что не всем подойдет. Зато трехфазные комплекты могут гораздо большей мощностью.

Но, пожалуй, самый интересный момент при выборе конфигурации — это степень легкости устранения неисправности. Тут все играет в пользу комплекта и это очевидно. Любой пользователь догадается, в каком случае решить проблему с одним из неисправных модулей легче: когда у вас комплект или когда у вас моноблок.

Если вы покупали комплект, то проще взять неисправный блок и отвезти его в сервисный центр. Остальные же блоки могут работать и защищать оборудование. Да и условия транспортировки намного проще, чем с моноблоком. А вот если у вас в распоряжении моноблок, то в случае поломки даже одного модуля вам придется везти весь аппарат, что крайне неудобно и даже накладно.

К тому же, электрооборудование останется без защиты.

Подытожим

Все, что мы рассказали выше, можно свести в удобную таблицу, которая поможет вам сделать эффективный выбор.

Комплект (3 блока по 220 В + БКС) Серии:
  • АСН
  • Hybrid (U)
  • Voltron HP
  • Classic
  • Ultra
  • Premium
  • Электромеханический (гибридный)
  • Релейный
  • Тиристорный/симисторный

Точность стабилизации: ±1,5±8%

  • Удобство транспортировки
  • Широта выбора устройств
  • Гибкость подбора устройств
  • Гибкость монтажа и размещения
  • Легче устранить дефект в одном модуле
Ограниченные параметры мощности (не более 60 кВА).
Моноблочный трехфазный стабилизатор Серии: Точность стабилизации: ±3%
  • Для монтажа не нужны специальные крепления.
  • Можно подобрать модель с мощностью до 100 кВА.
  • Конструкция позволяет перемещать устройство в помещении, особенно при наличии транспортировочных роликов.
  • Более прост в выборе.
  • Удобное управление и навигация за счет встроенных рядом дисплеев.
  • Неудобно перевозить из-за габаритов и веса.
  • Требуется много места в помещении.
  • Сложнее ликвидировать неисправности в отдельных блоках.

Источник: https://energy-ltd.ru/blog/odin-trehfaznyj-stabilizator-ili-tri-odnofaznyh.html

Мощность трехфазной сети

Какое напряжение на каждой фазе

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или  А, В, С.

Схема соединения звезда:

Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Или:

Соответственно  для активной:

Для реактивной:

Схема соединения в треугольник

Схема соединения обмоток в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

И соответственно:

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметрАналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

Векторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L)  показания W1 меньше чем W2 (W1600 показания W1 вообще отрицательные (W1W2, а при φ

Источник: https://elenergi.ru/moshhnost-trexfaznoj-seti.html

Линейное и фазное напряжение — соотношение и формулы, схема соединения звездой и треугольником

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Проводить разводку проводки такого типа можно без использования профессионального оборудования и приборов, достаточно обычных отверток с индикаторами.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

Электрические агрегаты трехфазного питания работают только при подключении сразу к трем выводам разных фаз.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Имея источник трехфазного напряжения и двигатели, имеющие аналогичную схему подключения, можно получить в разы больше мощности просто за счет эффективного подключения всех агрегатов.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

Uл – линейное, Uф – фазовое. Формула справедлива, только если –  IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

Идентичная структура формулы активной мощности:

Примеры расчета:

Источник: https://househill.ru/kommunikacii/electrika/zazemlenie/v-chem-glavnye-otlichiya-linejnogo-i-faznogo-napryazheniya.html

Перекос Фаз (Фазных Напряжений) В Трехфазной Электрической Сети

Евгения

• Сущность явления• Причины возникновения• Последствия• Способы устранения перекоса фаз• Альтернативная технология.• Диапазон изменения фазных напряжений.

• Практическое применение.

Сущность явления

Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью напряжением до 1000 В.

Как правило, низковольтная трехфазная электрическая сеть напряжением 400 В (0,4 кВ)
содержит источники электроэнергии, обмотки которых соединены в «звезду» с выведенным нулем.

Если трехфазная сеть четырехпроводная, то нулевой проводник выполняет две функции. Первая функция: нулевой рабочий проводник служит для подключения однофазных электроприемников. Вторая функция: нулевой рабочий проводник служит для работы защиты. В пятипроводной сети, каждой из двух перечисленных функций соответствует свой провод.

В низковольтных сетях различают первичные и вторичные источники электроэнергии (источники питания) независимо от способа получения электрической энергии. К первичным источникам относятся те, которые непосредственно вырабатывают электроэнергию, например электрические генераторы (в качестве привода в них могут быть использованы гидроагрегаты, паровые турбины, дизели, газовые двигатели).

К вторичным источникам относятся те, которые преобразуют электрическую энергию первичных источников, как правило, это трансформаторы, установленные в трансформаторных подстанциях (ТП).

Идеальную модель, отображающую взаимосвязь и взаиморасположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и центром «0».Векторы АВ, ВС и CA (лежащие на сторонах треугольника) — это линейные напряжения (380В).

Векторы, проведенные из центра треугольника к его вершинам — 0A, 0B и 0С — это фазные напряжения.В идеале они равны между собой 0A=0B=0С и сдвинуты друг относительно друга на угол 120°, то есть└A0B=└B0C=└C0A=120°.

Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.

Так как к трансформаторам ТП подключают множество потребителей, в том числе однофазных, то в каждый случайный момент времени можно ожидать, что нагрузки в различных фазах будут различны.

Причем если даже однофазные нагрузки по величине одинаковы, то их включение под нагрузку или отключение не может происходить синхронно.

Возникает ситуация RA > RB > RC ≠ 0, где «R» – это сопротивление нагрузки, и, соответственно, «RA» — это спротивление нагрузки на фазе А, «RB» — это спротивление нагрузки на фазе B, «RC» — это спротивление нагрузки на фазе C.

Различие фазных нагрузок по величине и характеру создает условия для возниконовения перекоса фазных напряжений.

Если обратиться к описанному выше равностороннему треугольнику, то графически это будет выглядеть следущим образом: точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220В 0A, 0B и 0С, — смещается относительно центра треугольника.

Назовем ее 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений 0’A, 0’B и 0’С не равны между собой, 0’A ≠ 0’B ≠ 0’С.

Напряжение на каждой из фаз меняется с величины в 220 В например на 190В, 240В и 230В соответственно.

Такая ситуация называется перекосом фазных напряжений.

Если бы сопротивления нагрузки были равны, то токи, через них протекающие так же были равны между собой.
Учитывая то, что угол сдвига между ними равен 120°, то их геометрическая сумма равнялась бы нулю.

Однако при их неравенстве в результате суммирования возникает ток I00′, который называется уравнительным. А, следовательно, напряжение U00′, которое называется напряжением смещения.

Перекос фаз (фазных напряжений), как правило, характеризуется неизменностью или одинаковостью линейных напряжений источника и значительным различием по величине фазных напряжений.

То есть равносторонний треугольник, образуемый векторами линейных напряжений остается равносторонним треугольником, это означает, что значение трех линейных напряжений соответствует 380В, возможны незначительные отклонения значений, которые называются являются допустимыми.

Значительно смещаются векторы фазных напряжений внутри треугольника, которые соединяют точку внутри треугольника с его вершинами, меняется величина фазных напряжений и угол сдвига между ними.

Причины возникновения перекоса фаз

Условно причины возникновения перекоса фаз можно разделить на внешние и внутренние.

Внутренние причины связаны с потребителями электроэнергии, которые неравномерно загружают фазы сети без учета мощности однофазных электроприемников, коэффициента одновременности их включения,

подключают мощные двухфазные электроприемники к бытовым розеткам.

В реальной жизни причиной перекоса фаз является неравномерность загрузки не только по величине, но и по характеру нагрузки.
Нагрузка может быть активной (резистивной) — (R) или реактивной: индуктивной (L) или емкостной (С).

Внешние причины возникновения перекоса фаз могут быть связаны с неисправностями в распределительной сети (например, в высоковольтных линиях электропередач (ЛЭП)

при высокой влажности и дефектах в гирляндах изоляторов или разрядников отдельных фаз) или наличием мощных потребителей, включенных на две фазы, т.е. на линейное напряжение (например, потребители тяговых сетей или электродвигатели электропоездов).

Также причины могут быть комбинированными (внешними и внутренними).

Последствия перекоса фаз

Последствия перекоса фаз проявляются в увеличении электропотребление из сети; в неправильной работе электроприемников, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции.

Условно негативные последствия перекоса фаз можно разделить на три группы:

1. Последствия для электроприемников (приборов, оборудования), связанные с их повреждениями, отказами, увеличением износа, уменьшением периода эксплуатации.

а) последствия для однофазных электроприемников
Низкое напряжение вызывает неправильную работу однофазных потребителей: тусклый свет осветительных приборов, длительный нагрев нагревательных приборов, длительный запуск двигательных приборов, сбои в работе компьютеров и т.д. Высокое напряжение вызывает отказы электроприемников из-за износа изоляции, отключение их защитными устройствами, перегорание предохранителей.

б) последствия перекоса фаз для трехфазных электроприемниковОсновную часть трехфазных потребителей (потребителей, питающихся от линейного напряжения) составляют электродвигатели, которые приводят в действие погружные и фекальные насосы, приводы автоматических ворот, станочное оборудование и т.д.  Система управления и контроля запуска таких трехфазных потребителей, как правило, подключается к фазному напряжению.

При перекосах фаз система управления запуском (СУЗ) электродвигателя, которая контролирует длительность и факт запуска, работает неустойчиво, т.е. спонтанно выдает команды на его пуск или останов.  Диапазон изменения фазного напряжения жестко регламентируется эксплуатационной документацией (как правило, не допускается перекос более ± 7,5 ÷ 10 % от номинала). Если перекос превысил допустимый предел, то СУЗ дает сбой.

При восстановлении уровня фазного напряжения происходит очередной запуск и так далее.Известно, что режим «пуска в ход» асинхронного двигателя характеризуется кратковременной работой обмоток статора в режиме короткого замыкания (КЗ), т.е. в момент включения двигатель потребляет гораздо больше энергии, чем в процессе работы. Естественно, что частые повторные пуски будут вызывать значительный перегрев изоляции и существенно увеличивать электропотребление из сети.

Возможные негативные последствия такого режима работы — либо отказ в запуске, либо отказ оборудования вследствие перегорания обмоток двигателя.

2. Последствия для источников электроэнергии: увеличение энергопотребления, увеличение потерь электроэнергии при питании от госсети; при питании от  трехфазного автономного источника – механические повреждения (повреждения подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовывание форсунок), уменьшение периода эксплуатации источника, увеличение его износа, повышенный расход топлива, масла, охлаждающей жидкости.

3. Последствия для потребителей, связанные с безопасностью, так как ухудшение качества изоляции может привести к:— электротравматизму;— возгоранию электропроводки или электроприемников;а также последствия, связанные с увеличением расходов на:— электроэнергию;— расходные материалы для генератора;— ремонт электроприемников, поврежденных вследствие перекоса фаз;

— приобретение новых электроприемников, отказавших вследствие перекоса фаз.

Способы устранения перекоса фаз

Централизованное решение, позволяющее устранить перекос фаз, отсутствует, так как невозможно обязать всех потребителей подключать одновременно нагрузки, равные по величине и характеру.

Традиционно для обеспечения заданного напряжения на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиты отдельных электроприемников или небольшой их группы.

В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые  конструктивно состоят из трех однофазных стабилизаторов напряжения.

Принцип их действия таков, что они реагируют на отклонения на каждой отдельно взятой фазе и поднимают или опускают напряжение до необходимого уровня на своей фазе, провоцируя изменения напряжений на двух других фазах и являясь, таким образом, вторичной причиной возникновения перекоса фаз.

Из изложенного выше ясно, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют значительных сервисных расходов, так как обладают низкой надежностью – и электромеханические, и электронные стабилизаторы напряжения  имеют быстроизнашивающиеся и часто отказывающие детали.

Альтернативная технология

Для решения задачи по устранению перекоса фазных напряжений и обеспечения заданного фазного напряжения необходимо использовать технологию, которая позволит выравнивать напряжение не на каждой из фаз по отдельности, а симметрировать фазы между собой, то есть симметрировать всю трехфазную систему — симметрируюзщий трансформатор.
Такое устройство обладает значительно большей эффективностью, оно не только само потребляет меньше электроэнергии, но и снижает электропотребление из сети для электроприемников.

Диапазон изменения фазных напряжений

Симметрирующий трансформатор допускает 100%-ый перекос нагрузки и устраняет перекос фазных напряжений во всем диапазоне их изменений независимо от причины перекоса: (1) перекос в подводящей питающей сети, вызванный неисправностями в распределительной сети, (2) неравномерное распределение фазных нагрузок, (3) подключение мощного потребителя,

(4) комбинированные причины.

Практическое применение

Прикладные задачи, решаемые с помощью применения симметрирующего трансформатора:

• Устранение перекоса фазных напряжений, т.е. выравнивание фаз сети друг относительно друга.• Равномерное распределение нагрузок по фазам.• Обеспечение заданной величины фазных напряжений.• Преобразование трехфазной сети в одно-(двух)фазную: — с гальванической развязкой — без гальванической развязки питающей сети и потребителя;— с изменением (увеличением или уменьшением) выходного напряжения;• Преобразование трехфазной трехпроводной сети в трехфазную четырехпроводную (т.е.

формирование нулевого рабочего проводника для возможности подключения фазной нагрузки). • Возможность снимать до 50% трехфазной мощности с одной фазы.• Возможность использования менее мощных генераторов для той же группы потребителей.• Возможность подключать более мощные электропримники при питании от автономного источника либо при ограничениях на потребляемую мощность из госсети.

• Отогрев конструкций и коммуникаций (при обледенении проводов, промерзании трубопроводов и т.д.).

http://www.rusarticles.com/oborudovanie-statya/perekos-faz-faznyx-napryazhenij-v-trexfaznoj-elektricheskoj-seti-4503817.html

Об авторе

военный энергетик, кандидат технических наук Евдокимов Владимир Викторович

Источник: https://energocontakt.wordpress.com/2011/05/24/%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D0%BE%D1%81-%D1%84%D0%B0%D0%B7-%D1%84%D0%B0%D0%B7%D0%BD%D1%8B%D1%85-%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9-%D0%B2-%D1%82%D1%80%D0%B5%D1%85%D1%84/

Что такое фаза тока?

14.02.2019

Практически все новички и собственники домов часто сталкиваются с проблемой: что же такое фаза тока в обычной электрической проводке? Такие вопросы возникают чаще всего в процессе ремонта каких-то электроприборов.

При возникновении такой ситуации, в первую очередь, нужно думать и соблюдать технику безопасности. А знания и умения должны отойти на второй план. Глубокие познания об самых простых законах образования тока и различных процессов, которые происходят непосредственно в бытовых приборах. Эти знания не только могут помочь найти решение проблем множества неисправностей, которые возникают в электроприборах, но и решить их самым простым и надежным способом.

Практически все конструкторы и инженеры работают над тем, чтобы сократить количество несчастных случаев в процессе ремонтных работ с электросетью либо электроприборами. Основная цель потребителей – соблюдать четко прописанные нормы и стандарты.

Давайте детальнее поговорим о токе:

  • однофазном;
  • двухфазном;
  • трехфазном.

Однофазный ток

Под однофазным током подразумевают – переменный ток, образующийся в процессе вращательных действий в области магнитного поля проводника либо целой совокупности проводников, которые объединяются общий поток.

Как вы уже знаете, однофазный ток передается с помощью двух проводов. Эти провода называют:

1.Один провод это, непосредственно, фаза;
2.Второй – ноль.

В этих проводах напряжение 220 В.

Однофазное электропитание можно охарактеризовать множеством способов. Ни для кого не секрет, что однофазный ток поступает к потребителю с помощью:

1.Двух проводов;
2.Трех проводов.

Первый вариант подачи однофазного тока – двухпроводной использует два провода, как это понятно уже исходя из названия. Один провод передает фазу, а второй предназначается для нулевого напряжения. На использовании такой системы ориентировались практически всегда при строительстве домостроений в СССР.

Использование второго предусматривает добавление еще одного провода. Он применяется для заземления. Основное предназначение такого провода – исключение варианта поражения людей электрическим током. Так же он нужен для отвода тока при утечке и исключение неполадок электроприборов.

Двухфазный ток

Под понятием двухфазный электрический ток все понимают – слияние двух однофазных токов, которые имеют сдвиг по фазе друг к другу. Угол сдвига может быть Pi2 либо 90 °.

Рассмотреть образование двухфазного тока можно на примере. Необходимо взять две индуктивные катушки и разместить их в пространстветак, чтобы оси этих катушек были перпендикулярны друг у другу. Затем нужно подключить обе катушки к двухфазному току. В итоге мы будем иметь систему, в которой образовалось 2 обособленных магнитных поля.

В результирующем магнитном поле вектор будет вращатьсяс одной и той же скоростью и под одинаковым углом. В результате такого вращения и образуется магнитное поле. Ротор с обмотками, которые произведены в форме короткозамкнутого «беличьего колеса» либо металлического цилиндра на валу, будут вращаться и тем самымприводить в движение различные частицы.

Передача двухфазного тока осуществляется при помощью двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток

Под трехфазной системой электрических цепей – принято понимать систему, состоящую из трех цепей. В этих цепях имеются переменные, ЭДС с одинаковой частотой, которые одинаково сдвинуты по фазе и по отношению друг к другу на 1/3 периода(=2/3).

Каждый отдельный кусочек такой цепи можно смело назвать его фазой. А совокупную систему принято считать трехфазным током. Трехфазный ток без особого труда можно передавать на достаточно большие расстояния. Паре фазных проводов свойственно напряжение 380В.

Если в паре фаза и ноль – 220В.

Распределить трехфазный ток по домостроениям можно такими способами:

1.Четырехпроводным;
2.Пятипроводным.

Четырехпроводное подключение – происходит с использованием трех фаз и одного нулевого провода. Такая система до распределительного щитка, после используют два стандартных провода – фазу и ноль, чтобы иметь напряжение 220В.

При пятипроводном подключении трехфазного тока к уже привычной схеме нужно добавить еще провод, который обеспечивает защиту и заземление. В трехфазной сети все фазы имеют одинаковую нагрузку, чтобы избежать перекоса фаз.

От используемой в домостроении проводки зависит и возможность подключения к сети тех или иных электроприборов. Например, заземление просто необходимо если в сеть планируют включать достаточно мощные электроприборы, такие как холодильник, печь, обогреватель, компьютер, телевизор, джакузи, душевая кабинка.

Трехфазный ток применяют как источник электропитания двигателей, которые пользуются большой популярностью у потребителей.

Как устроена бытовая проводка

Изначально электроэнергию получают на электростанциях. Потом с помощью промышленной электросети ее передают на трансформаторную подстанцию, а там уже и происходит преобразование напряжения в 380В. Обмотки понижающего трансформатора соединены по принципу «звезда»: все три контакта необходимо подключить к точке «0», а оставшиеся контакты к клеммам «A», «B» и «C».

Все контакты «0», которые были объединены необходимо подключить к заземленному проводу на подстанции. Именно на территории подстанции и происходит расщепление ноля на:

1.Рабочий ноль;
2.PE-проводник, который выполняет защитную функцию.

После выхода из понижающего трансформатора все нули и фазы тока поступают в распределительный щиток домостроения. В результате получается трехфазная система, которая распределяется по всем щиткам многоэтажки. К конечному потребителю попадает напряжение 220В, проводник РЕ выполняет именно эту защитную функцию.

Теперь давайте более детально рассмотрим, что же представляет собой ноль и фаза тока? Нулем принято считать проводник тока, который подключают к контуру заземления в понижающем трансформаторе. Он предназначен для образования нагрузки фазы тока.

Присоединять проводник необходимо к обмотке трансформатора. Так же есть такое понятие «защитный ноль» — это именно РЕ-контакт, который мы описывали ранее.

Основное его предназначение – отвод тока в случае возникновения поломок либо неисправностей в цепи.

Такой метод пользуется огромной популярностью при подключении к электросети многоэтажных домов. Пользуются им уже много десятилетий. Случаются случаи, когда в системе возникают неисправности. В основном, причиной этому служит низкое качество соединения в цепи либо порыв на линии.

Что происходит в нуле и фазе при обрыве провода

Обрывы на линии достаточно часто возникают по вине мастеров – они забывают подключить фазу либо ноль. Такие поломки достаточно распространены. Так же довольно часто происходит процесс отгорания нуля на подъездном щитке например, из-за высокой нагрузки в системе.

Если происходит порыв на любом участке цепи, то прекращает функционировать вся цепь, т.к. она размыкается. В таких ситуациях совершенно не важно, какой провод поврежден – фаза или ноль.

То же самое случается и при порыве между распределительным щитом многоэтажки и щитком в подъезде. При таком порыве все потребители, которые были подключены к данному щитку, будут без электроэнергии.

Все ситуации, которые мы попытались описать выше, имеют место быть. Они могут показаться сложными, но не несут никакой опасности для человечества. Ведь обрыв произошел только одного провода, поэтому это совершенно не опасно.

Очень тревожная ситуация – когда пропадает контакт между контуром заземления на подстанции и средним пунктом, к которому поступает все напряжение внутридомового щитка.

Именно в таком варианте электрический ток движется по контурам AB, BC, CA. Совокупное напряжение этих контуров 380В. Именно по этой причине и возникает достаточно опасная ситуация – один щиток может вообще не иметь напряжения, потому что хозяин отключит все электроприборы, а на другом образуется очень высокий уровень напряжения, около 380В. Это может способствовать выходу из строя многих приборов, потому что для них необходимо напряжение в 220В.

Естественно, появление данной ситуации можно избежать. Имеется масса недорогого/дорогостоящего оборудования, которое защитит вашу технику от скачков напряжения.

К такому оборудованию относится и стабилизатор напряжения. Различают такие виды стабилизаторов:

1.Однофазный;
2.Трехфазный.

Как же определить фаза это или ноль?

Для определения ноль это либо фаза рекомендуют пользоваться специальным оборудованием – отверткой-тестером.

Функционирует этот прибор по принципу проведения тока с низким напряжением через тело человека, который его использует. Отвертка имеет такие составляющие:

1.Наконечник, с помощью которого есть возможность подключаться к фазе в розетке;2.Резистор, который снижает разницу электротока до достижения им безопасного уровня;3.Светодиод, который загорается, если это фаза;

4.Плоский контакт, который способствует возникновению сети с участием тела оператора.

Помимо отверток-тестеров имеются и иные варианты определения какой именно из контактов в розетке имеет поломку. С помощью такого оборудования электрики и определяют фазу и ноль в розетке. Кому-то привычнее использовать более точный тестер, который функционирует как вольтметр.

По показателям вольтметра можно сказать:

1.О наличии напряжения 220В между нулем и фазой;2.О напряжении между нулем и землей либо его отсутствии;

3.О напряжении между нулем и фазой либо его отсутствии.

Источник: http://orteamoscow.ru/News/5232/

Перекос фаз. Причины возникновения и устранение. Защита

В трехфазной электрической сети на каждой фазе должно быть одно и то же напряжение, с допустимым отклонением. Если напряжение распределено по фазам неравномерно, то возникает перекос фаз. В результате такого явления в промышленном оборудовании (электродвигатели, трансформаторы) происходит значительное уменьшение мощности. В бытовых условиях такой перекос между фазами может привести к неисправностям электрических устройств и других потребителей энергии.

Когда электрические устройства подключены на одну фазу, то есть риск возникновения перекоса между фазами. Чтобы не допускать нарушения снабжения электрической энергией, необходимо разобраться в том, от чего возникает такое отрицательное явление.

Причины возникновения

Существуют разные причины перекоса по напряжению между фазами. Основной популярной причиной стало неравномерное и неграмотное распределение нагрузки по фазам сети. При появлении перекоса на участке с трехфазным питанием, можно говорить о том, что некоторые фазы эксплуатируются с чрезмерной нагрузкой, а третья фаза нагружена незначительно.

Чаще всего однофазные нагрузки в виде бытовых электрических устройств подключают на одну фазу. Поэтому перекос фаз появляется при одновременном запуске нескольких мощных устройств. Начальными признаками перекоса являются работающие бытовые приборы, у которых заметно снизилась мощность, либо они совсем отключились. При этом приборы освещения стали выдавать тусклый свет, а лампы дневного света при этом мерцают.

Для более точного определения того, есть ли перекос фаз, нужно вызвать специалиста, и на месте провести тщательную проверку. Только путем проведения измерений можно выявить разницу в напряжении на разных фазах.

Последствия и опасность

опасность этого явления состоит в некорректной работе бытовых устройств, и возникновения возможности выхода их из строя. Максимальная часть отрицательных последствий приходится на разные виды электрических двигателей, установленных в различной бытовой технике.

Отрицательные факторы влияния перекоса фаз делятся на три вида:

  1. Возникновение неисправностей подключенных электрических устройств, оборудования и приборов, снижение их срока эксплуатации.
  2. Неисправности источников электроэнергии: повреждения, повышение расхода энергии, снижение срока службы источника.
  3. Негативные факторы для потребителей энергии: повышение затрат на оплату электроэнергии, вероятность получения травм, необходимость проведения ремонта и обслуживания электрооборудования.

Если перекос фаз образовался на автономной отдельной электростанции, то потребление топлива и смазочных материалов в этом случае существенно повысится, а генератор может выйти из строя.

Если на одной фазе напряжение выше, чем на двух других фазах, то нарушается электробезопасность, что может привести к возгоранию электропроводки и оборудования.

В результате видно, что последствия этого отрицательного явления существенные, их устранение и решение может привести к значительному материальному ущербу. Для предотвращения таких негативных ситуаций, необходимо заблаговременно принять соответствующие меры.

Способы защиты

Для нормальной эксплуатации трехфазной сети, а также чтобы напряжение на отдельной фазе соответствовала номинальному значению, необходимо применять специальные приборы и устройства. Обычно для этого подключают стабилизатор напряжения.

В быту применяются однофазные исполнения, способные защитить электрооборудование. В производственных условиях используется 3-фазный стабилизатор, включающий в себя три однофазных устройства. Однако полностью устранить фазные перекосы эти приборы не способны, так как они выравнивают напряжение в одной фазе.

Иногда такие устройства сами создают условия для неравномерного распределения электроэнергии. Эта проблема может решиться только с помощью специальных технологий, выравнивающих напряжение между всеми фазами.

Существует несколько способов защиты:

  • Использование устройств, выравнивающих нагрузку по фазам в автоматическом режиме.
  • Создание проекта снабжения электрической энергией объекта с учетом предполагаемых значений нагрузок.
  • Изменение электрической схемы цепи с учетом мощности потребителей.
  • Подключение специального реле, которое будет контролировать величину напряжения на фазах, и отключать питание при выявлении несимметрии.

Такими методами можно защитить электрические устройства от неисправностей, и исключить перекос напряжения.

Симметрирующий трансформатор

Чтобы предотвратить перекос напряжений между фазами и поддерживать определенное значение фазного напряжения, следует применять специальную технологию, позволяющую выравнивать значение напряжения не отдельно на некоторой фазе, а обеспечивать симметричность всех трех фаз, то есть всю трехфазную сеть. Такая альтернативная технология реализована в симметрирующем трансформаторе.

Такой инновационный прибор может работать при 100-процентном перекосе напряжения и способен устранить фазный перекос напряжений в широком интервале их изменений, при любых причинах возникновения этого негативного явления:

  • Перекос во входной сети пинания, возникший вследствие повреждений распределительной сети.
  • Неравномерное разделение нагрузок между фазами.
  • Включение в работу мощного устройства.
  • Смешанные причины перекоса.

Задачами, разрешаемыми путем включения в работу симметрирующего трансформатора, являются:

  • Равномерное распределение потребителей между фазами.
  • Устранение перекоса фазных напряжений (выравнивание всех фаз между собой в трехфазной сети).
  • Поддержание заданного значения напряжения на каждой фазе.
  • Преобразование трехфазной электрической сети питания в 1-фазную сеть: — с гальванической развязкой сети питания и потребителя электроэнергии; — без гальванической развязки;— с изменением (повышением или снижением) напряжения на его выходе.
  • Преобразование трехфазной сети, состоящей из трех проводов, в трехфазную сеть с четырьмя проводами (создание рабочего нулевого провода для возможности подсоединения нагрузки на фазу).
  • Возможность получения 50% 3-фазной мощности с одной фазы.
  • Применение генераторов с меньшей мощностью для такой же группы потребителей.
  • Включение в работу более мощных нагрузок при ограничениях на допустимую мощность из общей государственной сети, либо при работе от автономного источника.
  • Во время промерзания трубопроводов или обледенения проводов возможен отогрев этих коммуникаций, а также другого оборудования.

Допустимые нормы на перекос фаз

Основным рабочим документом, регламентирующим качество электрической энергии, и нормы несимметрии в трехфазной сети считается ГОСТ13109-97, а допускаемое отклонение нагрузок определяется по документу СП31-110, в котором для вводно-распределительных устройств допускаются разница величины нагрузок между фазами не более 15%, а для распределительных щитов – не более 30%.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/perekos-faz/

Линейное напряжение: формула, соотношение фазного и линейного напряжения

Электрические цепи характеризуются наличием различных типов напряжения. Линейное напряжение (ЛН) возникает между фазовыми проводами трёхфазной цепи. У всех частей (фаз) многофазной цепи характеристика тока идентична.

Название цепей (шести-, трёх- или 2-фазные) обуславливаются числом фаз. Наибольшее распространение получили трёхфазные электроцепи, так как являются наиболее экономичными в сравнении с многофазными или 2-фазными.

А также позволяют на одном агрегате получить ЛН и фазное напряжение (ФН).

Какое напряжение называется линейным, а какое фазным

Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.

Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.

Трёхфазный ток

Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.

Чему равно линейное напряжение

В большей части стран мира стандартное ЛН составляет примерно 380В.

Вам это будет интересно  Особенности светильника ДРЛ 250

В трёхфазных цепях фазное и линейное напряжение находятся в соотношении 220В/380В соответственно.

В чем измеряется

Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.

Мультиметром измеряется напряжение в трёхфазной сети так:

  1. Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
  2. Линейные напряжения: А-В, А-С, В-С.

Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.

Как измерить

Измерить подобную систему можно мультиметром или применив физические формулы.

Измерение подключения к сети

ЛН рассчитывается по формуле Кирхгофа: ∑ Ik = 0. Здесь сила тока равняется нулю во всех частях электроцепи, то есть к=1. Используется также закон Ома: I=U/R. Применив обе формулы можно высчитать параметры клейма или электросети.

В системе из несколько линий, потребуется найти напряжение между 0 и фазой IL = IF. Значения IL и IF непостоянные и меняются при разных вариациях подключения. Потому линейные параметры точно такие же, как и фазные.

Фазное

Для того чтобы получить показания подключения фазного вида, потребуется специальное оборудование, например, мультиметр, вольтметр. Для того чтобы измерить токи и напряжения в трёхфазных цепях обычно достаточно знать данные одного линейного тока и одного ЛН.

Перекос фаз

ФН измеряется при проседании (падении) линейного. Из линейных величин извлекается Квадратный корень из трёх. Полученный показатель и есть параметры ФН.

Линейное

Для расчёта соотношения линейного проводника и фазы применяется формула: Uл=Uф∙√3, Uф — фазовое, Uл — линейное.

Важно! Формула справедлива, только если IL = IF. Когда в цепь добавлены другие отводящие элементы, то для них потребуется сделать персональный расчёт фазового напряжения. Тогда Uф нужно заменить цифровыми величинами самостоятельного клейма.

Реактивная трёхфазная мощность рассчитывается по формуле: Q = Qа + Qb + Qс. Значение активной мощности можно найти, используя аналогичную формулу: P = Pа + Pb + Pс. Необходимость в подобных расчётах возникает, если к электрической сети подключается промышленная система.

Вам это будет интересно  Особенности измерения освещенности в люксах

Распространённость сетей с линейным током объясняется их относительной безопасностью и несложностью разведения электропроводки. Электрооборудование присоединено исключительно к одному фазному проводу (по нему проходит ток) и только он может быть опасен, второй — это заземление. ЛН возникает в трёхфазной цепи и даёт увеличение приблизительно на 73%.

Источник: https://rusenergetics.ru/polezno-znat/lineynoe-napryazhenie

Что такое линейное и фазное напряжение, каково их соотношение?

Снабжение электричеством городов, предприятий и жилищ ведется с помощью сети из трёх фаз. Так сложилось исторически, что трёхфазные машины переменного тока используются для генерирования электроэнергии и её потребления (в электроустановках).

Такое количество было выбрано для минимальных затрат на создание вращающегося магнитного поля или использования этой энергии в целях генерации электричества. Встречаются и специфичные 6-тифазные генераторы, в автомобилях например, но там они нужны для других целей.

В этой статье мы будем вести речь о том, что собой представляют фазное и линейное напряжение в трёхфазных цепях, чем они связаны и в чем различие.

Переменное напряжение и его величины

Напряжение различают по роду тока: переменное и постоянное. Переменное может быть разной формы, основная суть в том, что с течением времени изменяется его знак и величина. У постоянного знак всегда одной полярности, а величина может быть стабилизированной или нестабилизированной.

В наших розетках напряжение переменное синусоидальной формы. Выделяют разные его значения, чаще всего используются понятия мгновенное, амплитудное и действующее.

Как понятно из названия, мгновенное напряжение — это количество вольт в конкретный момент времени.

Амплитудное – это размах синусоиды относительно нуля в вольтах, действующее — это интеграл от функции напряжения по времени, соотношение между ними такое: действующее в √2 или 1,41 раз меньше амплитудного. Вот как это выглядит на графике:

Напряжение в трехфазных цепях

В трёхфазных цепях выделяют два вида напряжения – линейное и фазное. Чтобы разобрать их отличия нужно взглянуть на векторную диаграмму и график. Ниже вы видите три вектора Ua, Ub, Uc – это вектора напряжений или фаз. Угол между ними 120°, иногда говорят 120 электрических градусов. Этот угол соответствует таковому в простейших электрических машинах между обмотками (полюсами).

Если отразить вектор Ub так, чтобы сохранился его угол наклона, но начало и конец поменялись местами, его знак изменится на противоположный. Тогда установим начала вектора –Ub в конец вектора Ua, расстояние между началом Ua и концом –Ub будет соответствовать вектору линейного напряжения Uл.

Простыми словами мы видим, что величина линейного напряжения больше чем фазного. Давайте разберем график напряжений в трёхфазной сети.

Красной вертикальной линией выделено линейное напряжение межу фазой 1 и фазой 2, а желтой линией выделено фазное амплитудное фазы 2.

КРАТКО: Линейное напряжение измеряется между фазой и фазой, а фазное между фазой и нулём.

С точки зрения расчетов, разница между напряжениями обуславливается решением этой формулы:

Линейное напряжение больше фазного в √3 или в 1,73 раза.

Нагрузка к трёхфазной сети может быть подключена по трём или четырем проводам. Четвертый проводник – нулевой (нейтральный). В зависимости от типа сеть может быть с изолированной нейтралью и глухозаземленной. Вообще при равномерной нагрузке три фазы можно подать и без нулевого провода.

Он нужен для того, чтобы напряжения и токи распределялись равномерно и не было перекоса фаз, а также в качестве защитного.

В глухозаземленных сетях, при пробое на корпус выбьет автоматический разъединитель или перегорит предохранитель в щите, так вы избежите опасности поражения электрическим током.

Отлично то, что в такой сети у нас одновременно есть два напряжения, которые можно использовать исходя из требований нагрузки.

Для примера: обратите внимание на электрический щиток в подъезде вашего дома. К вам приходит три фазы, а в квартиру заведена одна из них и ноль. Таким образом, вы получаете в розетках 220В (фазное), а между фазами в подъезде 380В (линейное).

Схемы подключения потребителей к трём фазам

Все двигателя, мощные нагреватели и прочая трёхфазная нагрузка может быть подключена по схеме звезды или треугольника. При этом большинство электродвигателей в борно имеют набор перемычек, которые в зависимости от их положения формируют звезду или треугольник из обмоток, но об этом позже. Что такое соединение звездой?

Соединение звездой предполагает соединение обмоток генератора таким образом, когда концы обмоток соединяются в одну точку, а к началам обмоток подключается нагрузка. Звездой же соединяются и обмотки двигателя и мощных нагревателей, только вместо обмоток в них выступают ТЭНы.

Давайте рассуждать на примере электродвигателя. При соединении его обмоток звездой линейное напряжение 380 В приложено к двум обмоткам, и так с каждой парой фаз.

На рисунке A, B, C – начала обмоток, а X, Y, Z – концы, соединенные в одну точку и эта точка заземлена. Здесь вы видите сеть с глухозаземленной нейтралью (провод N). На практике это выглядит так, как на фото борно электродвигателя:

Красным квадратом выделены концы обмоток, они соединены между собой перемычками, такое расположение перемычек (в линию) говорит о том, что они соединены по звезде. Синим цветом – питающие три фазы.

На этом фото промаркированы начала (W1, V1, U1) и концы (W2, V2, U2), обратите внимание на то, что они сдвинуты относительно начал, это нужно для удобного соединения в треугольник:

При соединении в треугольник к каждой обмотке приложено линейное напряжение, это приводит к тому, что протекают большие токи. Обмотка должна быть рассчитана на такое подключение.

У каждого из способов включения есть свои достоинства и недостатки, некоторые двигателя вообще в процессе пуска переключаются со звезды на треугольник.

Нюансы

В продолжение разговора о двигателях нельзя оставить без внимания вопрос выбора схемы включения. Дело в том, что обычно двигателя на своем шильдике содержат маркировку:

В первой строке вы видите условные обозначения треугольника и звезды, обратите внимание, треугольник идет первым. Далее 220/380В – это напряжение на треугольнике и звезде, значит, что при соединении треугольником нужно, чтобы линейное напряжение было равно 220В. Если в вашей сети напряжение равно 380 – значит нужно подключать двигатель в звезду. В то время как фазное всегда на 1,73 меньше, не зависимо от величины линейного.

Отличным примером является следующий двигатель:

Здесь номинальные напряжения уже 380/660, это значит, что его для линейного 380 нужно подключать треугольником, а звезда предназначена для питания от трёх фаз 660В.

Если в мощных нагрузках чаще оперируют с величинами межфазного напряжения, то в осветительных цепях в 99% % случаев используют фазное напряжение (между фазой и нулем). Исключением являются электрокраны и подобное, где может использоваться трансформатор с вторичными обмотками с линейным 220 В. Но это скорее тонкости и специфика конкретных устройств. Новичкам запомнить проще так: фазное напряжение – это то, которое в розетке между фазой и нулем, линейное – в линии.

Наверняка вы не знаете:

Источник: https://samelectrik.ru/linejnoe-i-faznoe-napryazhenie.html

ЭТО ИНТЕРЕСНО:  Что делает диод в схеме
Понравилась статья? Поделиться с друзьями:
Электрогенератор
В чем разница между активным и реактивным сопротивлением

Закрыть