Какие вещества являются полупроводниками

Тест. Электрический ток в полупроводниках. Собственная и примесная проводимости

Какие вещества являются полупроводниками
Будьте внимательны! У Вас есть 10 минут на прохождение теста. Система оценивания — 5 балльная. Разбалловка теста — 3,4,5 баллов, в зависимости от сложности вопроса. Порядок заданий и вариантов ответов в тесте случайный. С допущенными ошибками и верными ответами можно будет ознакомиться после прохождения теста. Удачи!

Варианты ответов

  • носителями зарядов являются электроны.
  • вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.
  • носителями тока выступают ионы и электроны.
  • носителями тока являются термоэлектроны.
  • носителями тока являются электроны и дырки

Классификация веществ по электрическим свойствам.

Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках

Какие вещества являются полупроводниками

Здравствуйте уважаемые читатели сайта sesaga.ru. На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник. Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Общие понятия

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается.

Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом.

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны.

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной.

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному, заимствованных от четырех соседних атомов.

Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу.

На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов. Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным», а там где он находился до этого, образуется пустое место, которое условно называют дыркой.

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике.

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений, в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками).

Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки, которые будут заполняться другими освободившимися электронами.

То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток.

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку.

Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки, находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле, этот процесс непрерывен: нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному.

Электронно-дырочная проводимость

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной.

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.

Электронная проводимость

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов.

Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным.

И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.

Дырочная проводимость

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона.

В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок.

И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p

Источник: https://sesaga.ru/poluprovodniki-struktura-poluprovodnikov-tipy-provodimosti-i-vozniknovenie-toka-v-poluprovodnikax.html

Внутренний и внешний полупроводник: определение, типы p и n

Какие вещества являются полупроводниками

В статье узнаете что такое внешний и внутренний полупроводник, его типы p и n, какие материалы используются для полупроводников и энергетические зоны внешних полупроводников.

Полупроводник, любой из класса кристаллических твердых тел с промежуточной электрической проводимостью между проводником и изолятором. Полупроводники используются в производстве различных видов электронных устройств, включая диоды, транзисторы и интегральные схемы. Такие устройства нашли широкое применение из-за их компактности, надежности, энергоэффективности и низкой стоимости.

В качестве дискретных компонентов они нашли применение в силовых устройствах, оптических датчиках и излучателях света, включая твердотельные лазеры. Они имеют широкий спектр возможностей по управлению током и напряжением и, что более важно, пригодны для интеграции в сложные, но легко изготавливаемые микроэлектронные схемы.

Они являются и будут в обозримом будущем ключевыми элементами для большинства электронных систем, обслуживающих приложения для связи, обработки сигналов, вычислений и управления как на потребительском, так и на промышленном рынках.

Полупроводниковые Материалы

Твердотельные материалы обычно группируются в три класса: изоляторы, полупроводники и проводники. (При низких температурах некоторые проводники, полупроводники и изоляторы могут стать сверхпроводниками .

) На рисунке показана проводимости σ (и соответствующие удельные сопротивления ρ = 1 / σ), связанные с некоторыми важными материалами в каждом из трех классов.

Изоляторы, такие как плавленый кварц и стекло, имеют очень низкую удельную проводимость, порядка от 10 -18 до 10 -10 сименс на сантиметр; и проводники, такие как алюминий, имеют высокую проводимость, обычно от 10 4 до 10 6 сименс / см.

 Проводимости полупроводников находятся между этими крайними значениями и обычно чувствительны к температуре, освещенности, магнитным полям и незначительным количествам примесных атомов. Например, добавление около 10 атомов бора (известного как легирующая добавка) на миллион атомов кремния может увеличить свою электрическую проводимость в тысячу раз (частично учитывая большую изменчивость, показанную на предыдущем рисунке).

Изучение полупроводниковых материалов началось в начале 19 века. Элементарные полупроводники — это те, которые состоят из отдельных видов атомов, таких как кремний (Si), германий (Ge) и олово (Sn) в столбце IV и селен (Se) и теллур (Te) в столбце VI периодической таблицы. Однако существуют многочисленные составные полупроводники, которые состоят из двух или более элементов.

 Арсенид галлия (GaAs), например, представляет собой бинарное соединение III-V, которое представляет собой комбинацию галлия (Ga) из столбца III и мышьяка(As) из столбца V. Тройные соединения могут образовываться элементами из трех различных столбцов — например, теллурид индия ртути (HgIn 2 Te 4), соединение II-III-VI.

 Они также могут быть образованы элементами из двух столбцов, таких как арсенид алюминия-галлия (Al x Ga 1 — xAs), который является тройным соединением III-V, где и Al, и Ga взяты из столбца III, а индекс xсвязан к композиции из двух элементов из 100 — процентной Al ( х = 1) до 100 процентов Ga ( х = 0).

Чистый кремний является наиболее важным материалом для применения в интегральных схемах, а бинарные и тройные соединения III-V наиболее важны для излучения света.

Внешние полупроводники

После некоторых экспериментов ученые наблюдали увеличение проводимости полупроводника, когда к нему добавляли небольшое количество примеси. Эти материалы представляют собой внешние полупроводники или примесные полупроводники. Другой термин для этих материалов — «Легированный полупроводник». В качестве примесей используются легирующие примеси.

Важным условием легирования является то, что количество добавляемой примеси не должно изменять решеточную структуру полупроводника. Чтобы достичь этого, размеры атомов легирующей примеси и полупроводника должны быть одинаковыми.

Типы легирующих примесей в внешних полупроводниках

Кристаллы кремния и германия легируются с использованием двух типов легирующих примесей:

  1. Пятивалентный (валентность 5); например, мышьяк (As), сурьма (Sb), фосфор (P) и т. д.
  2. Трехвалентный (валентность 3); например, индий (In), бор (B), алюминий (Al) и т. д.

Причина использования этих легирующих примесей состоит в том, что они имеют атомы такого же размера, что и чистый полупроводник. И Si, и Ge принадлежат к четвертой группе в периодической таблице. Следовательно, выбор допантов из третьей и пятой группы. Это гарантирует, что размер атомов мало чем отличается от четвертой группы. Отсюда и трехвалентный и пятивалентный выбор. Эти присадки дают начало двум типам полупроводников:

ЭТО ИНТЕРЕСНО:  Какие источники энергии можно назвать альтернативными

N тип полупроводника

Когда мы добавляем небольшое количество пятивалентной примеси к чистому полупроводнику, тогда образуется полупроводниковый кристалл, известный как полупроводник N-типа.

Сочетание примеси пятивалентного типа с чистым полупроводником обеспечивает наличие большого количества свободных электронов в полупроводниковом кристалле N-типа. Это означает, что полупроводники N-типа имеют большую концентрацию электронов. Примерами пятивалентных примесей являются мышьяк и сурьма.

Пентавалентные примеси также называют «примесью Донара». Их называют так, потому что они жертвуют / поставляют свободные электроны чистому полупроводнику, чтобы сделать его полупроводником N-типа.

Знаете ли вы, почему полупроводник, который вырабатывается донарными примесями, называется полупроводником N-типа? N означает отрицательно заряженный? Полупроводник N-типа не обладает отрицательным зарядом. Их называют полупроводниками N-типа, потому что большинство носителей заряда, присутствующих в полупроводниках этого типа, вызывающих поток тока, являются свободными электронами, которые заряжены отрицательно.

Полупроводник типа P

Когда мы добавляем незначительное количество трехвалентной примеси к чистому полупроводнику, тогда образуется полупроводниковый кристалл, который известен как P-тип полупроводника.

Комбинация трехвалентной примеси с чистым полупроводником обеспечивает наличие большого количества дырок в полупроводниковом кристалле P-типа. Примерами трехвалентных примесей являются галлий и индий. Такие примеси, которые производят полупроводники P-типа, известны как акцепторные примеси, потому что созданные дырки могут принимать электроны.

Трехвалентные примеси также называют «примесью акцептора». Их называют так, потому что они принимают электрон и образуют дыры, чтобы сделать его полупроводником P-типа.

Они называются полупроводниками P-типа, потому что большинство носителей заряда, присутствующих в полупроводниках этого типа, вызывающих протекание тока, представляют собой дырки с положительным зарядом. В противоположность полупроводникам N-типа полупроводники P-типа имеют большую концентрацию дырок, чем концентрацию электронов.

Энергетические зоны внешних полупроводников

В внешних полупроводниках изменение температуры окружающей среды приводит к образованию неосновных носителей заряда. Кроме того, атомы легирующей примеси являются основными носителями. Во время рекомбинации большинство носителей уничтожают большинство этих неосновных носителей. Это приводит к снижению концентрации неосновных носителей.

Следовательно, это влияет на структуру энергетической зоны полупроводника. В таких полупроводниках существуют дополнительные энергетические состояния:

  • Энергетическое состояние за счет донорной примеси (ED)
  • Энергетическое состояние за счет акцепторной примеси (EA)

Приведенная выше диаграмма энергетических зон относится к полупроводнику Si n-типа. Здесь вы можете видеть, что уровень энергии донора (ED) ниже, чем у зоны проводимости (EC). Следовательно, электроны могут перемещаться в зону проводимости с минимальной энергией (~ 0,01 эВ). Кроме того, при комнатной температуре большинство донорных атомов и очень мало атомов Si ионизируются. Следовательно, в зоне проводимости больше всего электронов от донорных примесей.

Приведенная выше диаграмма энергетических зон представляет собой полупроводник Si-типа p-типа. Здесь вы можете видеть, что уровень энергии акцептора (EA) выше, чем у валентной зоны (EV). Следовательно, электроны могут перемещаться из валентной зоны на уровень Ea с минимальной энергией. Также при комнатной температуре большинство акцепторных атомов ионизируются.

Это оставляет дыры в валентной зоне. Следовательно, валентная зона имеет большинство дырок от примесей. Концентрация электронов и дырок в полупроводнике в тепловом равновесии составляет:

n e × n h = n i 2

Внутренний Полупроводник

Внутренний полупроводник — это самая чистая форма полупроводника, элементная, без каких-либо примесей. Естественно доступные элементы, такие как кремний и германий, являются лучшими примерами внутреннего полупроводника. Давайте узнаем их более подробно.

Структура решетки элементов внутреннего полупроводника

Их также называют алмазоподобными структурами. В таких структурах каждый атом окружен четырьмя соседними атомами. Теперь и Si, и Ge имеют четыре валентных электрона, и в кристаллической структуре каждый атом делит один из своих валентных электронов с каждым из своих четырех соседей.

Кроме того, он берет один электрон от каждого из своих соседей. Эта общая пара электронов называется ковалентной связью или валентной связью. Вот как структура Si или Ge выглядит в двумерном измерении с акцентом на ковалентную связь:

Также на изображении выше показана структура со всеми неповрежденными связями. Это возможно только при низких температурах. Когда температура увеличивается и больше энергии становится доступным для валентных электронов, они разрушаются, что приводит к увеличению проводимости элемента.

Теперь тепловая энергия ионизирует только несколько атомов. Эта ионизация создает вакансию в связи. Когда электрон с зарядом -q возбуждается за счет тепловой энергии, он освобождается от связи. Это оставляет вакансию там с эффективным зарядом + q. Эта вакансия с эффективным положительным электронным зарядом является дырой.

Дырка также ведет себя как свободная частица, но с положительным зарядом. В собственных полупроводниках число свободных электронов равно числу дырок и называется внутренней концентрацией носителей.

Внутренний полупроводник — движение отверстий

Другое интересное свойство полупроводников состоит в том, что, как и электроны, дырки тоже движутся. Рассмотрим следующее изображение:

На изображении выше вы можете видеть, что электрон, будучи возбужденным из-за тепловой энергии, отрывается от связи, генерируя свободный электрон. (Место1) В месте, где электрон высвобождается, создается дырка. Теперь представьте, что электрон из Места 2, как показано на рисунке, прыгает в дыру, созданную в Месте 1. Теперь дыра переместится из Места 1 в Место 2, как показано на рисунке ниже:

Важно отметить, что электрон, освобожденный из Зоны 1, не участвует в движении дыры. Он движется независимо, как электрон проводимости, вносящий вклад в электронный ток (Ie) под воздействием электрического поля. Кроме того, движение дыры на самом деле является движением связанных электронов.

Под электрическим полем эти отверстия движутся к отрицательному потенциалу, генерирующему ток отверстия (Ih). Следовательно, общий ток (I) составляет:

I = Ie + Ih

Еще одна важная вещь, которую следует помнить, это то, что помимо процесса генерации свободных электронов и дырок, процесс рекомбинации происходит одновременно. В этом процессе электроны рекомбинируют с дырками. В состоянии равновесия скорость генерации равна скорости рекомбинации.

Собственный полупроводник при T = 0K

При T = 0K собственный полупроводник будет вести себя как изолятор.

Конструктивно существует небольшая энергетическая щель между валентной зоной и зоной проводимости в полупроводнике. Когда температура низкая, электроны не достаточно возбуждены, чтобы перейти в состояние с более высокой энергией. Изображение ниже объясняет, как при T = 0K электроны остаются в валентной зоне, и движение в зону проводимости отсутствует.

При повышении температуры при Т> 0К некоторые электроны возбуждаются. Эти электроны прыгают от валентности к зоне проводимости. Вот как это будет выглядеть:

Источник: https://meanders.ru/poluprovodnik.shtml

Примеры и виды полупроводников: свойства, виды и где используются полупроводники

Проводником принято считать материал, который имеет способность пропускать сквозь себя электрический ток. На основе этого материала изготавливается множество деталей в радиотехнике. В этой статье подробно описано какие бывают полупроводники, и где их чаще всего можно встретить в повседневной жизни, а также представлено несколько наиболее популярных схем.

Определение названия

Полупроводниками называют материалы, внутри которых, в следствие движения электронов, появляется электрический ток, а показатель удельного сопротивления заключается в интервале между проводниками и диэлектриками.

Определение вещества

К таким проводникам можно отнести ряд химических элементов IV, V и VI категорий из таблицы Д. И. Менделеева — графит, кремний, германий, селен и прочие, а также большинство окисей и иных соединений различных металлов. Число подвижных электронов внутри вещества, в основном, небольшое, но оно увеличивается в тысячи раз при под механическим воздействием внешней среды:

  • Повышение температуры,
  • Действие ультрафиолета
  • Наличие в составе определенных добавок.

Характеристики вещества

Полупроводники можно разделить на следующие подгруппы:

  • Электронные (вида n),
  • Дырочные (вида p).

Важно! В веществах вида n в роли носителей можно рассматривать электроны, которые, при возникновении тока, передвигаются по всему полупроводнику в хаотичном порядке.

Как выглядят полупроводниковые приборы

В дырочном виде p в роли носителей зарядов рассматриваются так называемые отверстия (под ними понимается свободное пространство между атомами, на место которого может стать другой электрон). Дырки считаются равносильными положительному заряду. При возникновении тока внутри проводника вида p, электроны выполняют только направленные скачки между ближайшими атомами.

Электропроводимость элементов

Собственной проводимостью полупроводника называется свойство, обусловленное носителями, образовавшимися в следствие перехода электронов из валентной зоны в зону проводимости. При температуре, близкой к абсолютному нулю, все уровни в валентной зоне полностью заполнены, а в зоне проводимости – свободны, и полупроводник по свойствам близок к диэлектрику.

Указание в таблице Менделеева

Повышение температуры приводит к тому, что часть электронов из валентной зоны переходит в зону проводимости. Каждый подобный электрон оставляет после себя в валентной зоне свободное место – дырку, рассматриваемую как эквивалентный частице положительный заряд. Следовательно, электрон и дырка рождаются одновременно – парой.

Свойства особого типа проводимости обусловлены наличием примесей. Введение примеси (порядка 0,01%) изменяет энергетическую структуру полупроводника, в запрещенной зоне появляются локальные энергетические состояния.  Этот процесс получил научное название – легирование.

То есть, процесс, подразумевающий внедрение в состав основного вещества определенных добавок и примесей. Легирование используется во время производства полупроводниковых приборов и деталей. задача этого процесса – изменить концентрацию носителей внутри зарядов.

Для этого можно воспользоваться имплантацией ионов или трансмутационным легированием.

Какие типы существуют

Существует два вида проводимости. Электронная и дырочная. Ниже подробно рассказано о каждом из них.

Виды полупроводников

По характеру проводимости

По типу проводимости

По виду проводимости вещества подразделяют на n-тип и р-тип.

Проводимость «n » — типа

Полупроводник n-типа имеет примесную природу и проводит электрический ток подобно металлам. Примесные элементы, которые добавляют в полупроводники для получения n-типа, называются донорными.

Важно! Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд, переносимый свободным электроном.

Источник: https://rusenergetics.ru/polezno-znat/poluprovodniki-primery

Полупроводники – что это такое

Полупроводники это вещества, которые обладают промежуточными свойствами проводников и диэлектриков в отношении удельной проводимости. Сопротивление полупроводников характеризуется следующими особенностями:

  • Сильная выраженная зависимость от количества и состава примесей в веществе;
  • Повышение температуры вызывает уменьшение сопротивления.

Полупроводниковые элементы

Важно! При температуре, стремящейся к абсолютному нулю, все полупроводники становятся диэлектриками.

Механизм электрической проводимости

Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.

Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.

Дырка

Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.

Обратите внимание! Подвижность электронов выше, чем у дырок.

Электронная и дырочная проводимость

Энергетические зоны

Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:

  • Зона проводимости;
  • Запрещенная зона;
  • Зона валентности.

Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.

Подвижность

При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.

Собственная плотность

Плотность тока – что это такое и в чем измеряется

Наличие запрещенной зоны не служит препятствием к образованию собственных носителей заряда. Плотность электронов и дырок определяется сложной зависимостью, которая показывает, что собственная плотность заряженных частиц растет при увеличении температуры.

Виды полупроводников

Множество веществ, к которым можно отнести полупроводники, классифицируется по величине и характеру проводимости.

По характеру проводимости

Что такое электрическое сопротивление

В силу того, используется чистое вещество либо, в которое внесены примеси, проводимость может иметь различный характер.

Собственная проводимость

В силу разных причин в чистых материалах могут появляться свободные электроны и дырки. В результате образуется собственная проводимость.

Важно! Собственная проводимость характеризуется равной концентрацией дырок и электронов.

Собственная проводимость германия

Примесная проводимость

Большая часть полупроводников, образованных четырехвалентными атомами, имеет собственную проводимость. При целенаправленном внесении примесей веществ третьей или пятой валентности получаются кристаллы, обладающие примесной проводимостью, в которых количество дырок и электронов прямо зависит от типа и количества примесных атомов на единицу объема чистого вещества.

По виду проводимости

Выше было рассмотрено, что в полупроводниках в процессе переноса заряда участвуют не только «традиционные» электроны, но и условные положительные заряды – дырки. Поэтому полупроводниковые материалы имеют два типа проводимости.

Электронные полупроводники (n-типа)

Присутствие в четырехвалентном веществе пятивалентной примеси приводит к тому, что пятый электрон примеси вынужден переместиться на более высокую орбиту, в результате чего на его освобождение требуется небольшое количество энергии.

Такие примесные полупроводники называют веществами n-типа, от слова «negative» – отрицательный. Примеси в данном случае называют донорными, так как они способствуют появлению в веществе свободных электронов.

ЭТО ИНТЕРЕСНО:  Что значит падение напряжения в линиях электропередач

Дырочные полупроводники (р-типа)

Источник: https://amperof.ru/teoriya/poluprovodniki-chto-eto-takoe.html

Виды полупроводников и их использование

В промышленности и энергетической микроэлектронике широкое распространение получили различные виды полупроводников. С их помощью, одна энергия может превращаться в другую, без них не будут нормально работать многие электронные устройства. Существует большое количество типов данных элементов, в зависимости от принципа их работы, назначения, материала, конструктивных особенностей. Для того, чтобы понять порядок действия полупроводников, необходимо знать их основные физические свойства.

Свойства и характеристики полупроводников

Основные электрические свойства полупроводников позволяют рассматривать их, как нечто среднее, между стандартными проводниками и материалами, не проводящими электрический ток. Полупроводниковая группа включает в себя значительно больше разных веществ, чем общее количество проводников и диэлектриков.

Широкое распространение в электронике получили полупроводники, изготовленные из кремния, германия, селена и прочих материалов. Их основной характеристикой считается ярко выраженная зависимость от воздействия температуры. При очень низких температурах, сравнимых с абсолютным нулем, полупроводники приобретают свойства изоляторов, а при повышении температуры, их сопротивление уменьшается с одновременным повышением проводимости.

Свойства этих материалов могут изменяться и под действием света, когда происходит значительное увеличение фотопроводности.

Полупроводники преобразуют световую энергию в электричество, в отличие от проводников, не обладающих этим свойством. Кроме того, увеличению электропроводности способствует введение в полупроводник атомов определенных элементов.

Все эти специфические свойства позволяют использовать полупроводниковые материалы в различных сферах электроники и электротехники.

Виды и применение полупроводников

Благодаря своим качествам, все виды полупроводников разделяются на несколько основных групп.

Диоды. Включают в себя два кристалла из полупроводников, имеющих разную проводимость. Между ними образуется электронно-дырочный переход. Они производятся в различном исполнении, в основном, точечного и плоского типа. В плоских элементах, кристалл германия сплавлен с индием. Точечные диоды состоят из кристалла кремния и металлической иглы.

Транзисторы. Состоят из кристаллических полупроводников в количестве трех штук. Два кристалла обладают одинаковой проводимостью, а в третьем, проводимость имеет противоположное значение. Они называются коллектором, базой и эмиттером. В электронике, транзистор усиливает электрические сигналы.

Тиристоры. Представляют собой элементы, преобразующие электричество. Они имеют три электронно-дырочных перехода с вентильными свойствами. Их свойства позволяют широко использовать тиристоры в автоматике, вычислительных машинах, приборах управления.

Чем полупроводник отличается от изоляторов и проводников

Источник: https://electric-220.ru/news/vidy_poluprovodnikov_i_ikh_ispolzovanie/2014-08-14-674

Полупроводниковые материалы — Химия

Свойства полупроводников — свойство янтаря после натирания шерстью притягивать к себе мелкие предметы, было подмечено очень давно. Но электрические явления, непостоянные и преходящие, долго находились в тени магнитных явлений, более стабильных во времени.

https://www.youtube.com/watch?v=GpknH34JjGE\u0026list=PLcsjsqLLSfNBZmazPZqNkx6MvOsW4Og3j

В 17-18 веках электрические опыты оказались широко доступными, и был сделан ряд новых открытий.

В 1729 году англичанин Стефан Грей обнаружил, что все вещества делятся на 2 класса: неспособные переносить электрический заряд изоляторы (называемые «электрическими телами», поскольку их можно было электризовать трением), и способные переносить заряд проводники (называемые «неэлектрическими телами»).

Современные представления об электрических свойствах веществ

С развитием дальнейших представлений свойства веществ проводить электрический ток стали характеризовать количественно – значением удельной электрической проводимости, измеряемой в сименсах на метр (См/м). При комнатной температуре проводимость проводников лежит в диапазоне от 106 до 108 См/м, а у диэлектриков (изоляторов) меньше 10-8 См/м.

Вещества, по проводимости занимающие промежуточное положение, логично назвать полупроводниками или полуизоляторами. Исторически закрепилось первое название. Проводимость полупроводников лежит в пределах от 10-8 до 106 См/м. Между этими 3 видами веществ не существует резких границ, качественные отличия определяются разницей количественных свойств.

Из физики известно, что электрон в твердом теле не может обладать произвольной энергией, эта энергия может принимать лишь определенные значения, называемые энергетическими уровнями.

Чем ближе электрон в атоме к ядру, тем ниже его энергия. Наибольшей энергией обладает удаленный электрон. В электрических и химических процессах участвуют лишь электроны внешней оболочки атома (электроны т.

н. валентной зоны).

Электроны с более высокой энергией, чем электроны валентной зоны, относятся к электронам зоны проводимости. Эти электроны не связаны с отдельными атомами, и они беспорядочно движутся внутри тела, обеспечивая проводимость.

Атомы вещества, отдавшего электрон в зону проводимости, рассматриваются как заряженные положительно ионы, они неподвижны и образуют кристаллическую решетку вещества, внутри которой движутся электроны проводимости.

У проводников (металлов) зона проводимости примыкает к валентной зоне, и каждый атом металла без помех отдает в зону проводимости один или большее число электронов, что и обеспечивает металлам свойство электропроводности.

Свойства полупроводников определяются шириной запрещенной зоны

У полупроводников и диэлектриков между валентной зоной и зоной проводимости существует т.н. запрещенная зона. Электроны не могут обладать энергией, соответствующей энергии уровней этой зоны. Деление веществ на диэлектрики и полупроводники производится в зависимости от ширины запрещенной зоны.

При ширине запрещенной зоны в несколько электрон-вольт (эВ), у электронов валентной зоны мало шансов попасть в зону проводимости, что и делает эти вещества непроводящими. Так, у алмаза ширина запрещенной зоны 5,6 эВ.

Однако, с повышением температуры, электроны валентной зоны увеличивают свою энергию, и некоторая часть попадает в зону проводимости, что ухудшает изолирующие свойства диэлектриков.

Если же ширина запрещенной зоны порядка одного электрон-вольта, вещество приобретает заметную проводимость уже при комнатной температуре, становясь еще более проводящим с повышением температуры. Подобные вещества мы и относим к полупроводникам, и свойства полупроводников определяются шириной запрещенной зоны.

При комнатной температуре ширина запрещенной зоны у полупроводников менее 2,5-3 эВ. В качестве примера, ширина запрещенной зоны германия 0,72 эВ, а кремния 1,12 эВ.

К широкозонным полупроводникам относятся полупроводники с шириной запрещенной зоны более 2 эВ. Обычно, чем выше у полупроводника ширина запрещенной зоны, тем выше его температура плавления.

Так, у германия температура плавления 936 °С, а у кремния 1414 °С.

Два вида проводимости полупроводников – электронная и дырочная

При температуре абсолютного нуля (-273 °С), в чистом полупроводнике (собственном полупроводнике, или полупроводнике i-типа) все электроны находятся в составе атомов, и полупроводник является диэлектриком. При повышении температуры часть электронов валентной зоны попадает в зону проводимости, и возникает электронная проводимость. Но когда атом теряет электрон, он становится заряженным положительно.

Перемещаться под действием электрического поля атом, занимающий место в кристаллической решетке, не может, но он способен притянуть электрон из соседнего атома, заполнив «дырку» в своей валентной зоне.

Потерявший электрон атом, в свою очередь, также будет искать возможность заполнить образовавшуюся во внешней оболочке «дырку».

Дырка обладает всем и свойствами положительного заряда, и можно считать, что в полупроводнике существуют 2 вида носителей – отрицательно заряженные электроны и положительно заряженные дырки.

Электроны проводимости могут занимать свободные места в валентной зоне, т.е. объединяться с дырками. Такой процесс называется рекомбинацией, и, поскольку генерация и рекомбинация носителей происходит одновременно, при данной температуре количество пар носителей находится в состоянии динамического равновесия – количество возникающих пар сравнивается с количеством рекомбинирующих.

Собственная проводимость полупроводника i-типа складывается из электронной и дырочной проводимости, при этом преобладает электронная проводимость, поскольку электроны подвижнее дырок. Удельная электрическая проводимость металлов или полупроводников зависит от числа носителей заряда в 1 куб. см, или от концентрации электронов и дырок.

https://www.youtube.com/watch?v=wVWreVoMvjg\u0026list=PLcsjsqLLSfNBZmazPZqNkx6MvOsW4Og3j

Если число атомов в 1 куб. см вещества порядка 1022, то при комнатной температуре в металлах число электронов проводимости не меньше числа атомов, т.е.

также порядка 1022, при этом в чистом германии концентрация носителей заряда порядка 1013 см-3, а в кремнии 1010 см-3, что значительно меньше, чем у металла, оттого проводимость полупроводников в миллионы и миллиарды раз хуже, чем у металлов.

Все дело в примесях

При приложении к полупроводнику напряжения возникающее в нем электрическое поле ускоряет электроны и дырки, их движение становится упорядоченным, и возникает электрический ток – ток проводимости. Помимо собственной проводимости, в полупроводниках существует еще и примесная проводимость, обязанная, как можно догадаться по названию, наличию в полупроводнике примесей.

Если к 4-валентному германию добавить ничтожное количество 5-валентной сурьмы, мышьяка или фосфора, на связь с атомами германия атомы примеси задействуют 4 электрона, а пятый окажется в зоне проводимости, что резко улучшает проводимость полупроводника. Такие примеси, атомы которых отдают электроны, называются донорами.

Поскольку в таких полупроводниках преобладает электронная проводимость, они называются полупроводниками n-типа (от английского слова negative — отрицательный).

Чтобы все атомы донора отдавали по электрону в зону проводимости, энергетическая зона атомов донора должна располагаться как можно ближе к зоне проводимости полупроводника, несколько ниже ее.

Источник: https://himya.ru/poluprovodnikovye-materialy.html

Полупроводники

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: полупроводники, собственная и примесная проводимость полупроводников

До сих пор, говоря о способности веществ проводить электрический ток, мы делили их на проводники и диэлектрики. Удельное сопротивление обычных проводников находится в интервале Ом·м; удельное сопротивление диэлектриков превышает эти величины в среднем на порядков: Ом·м.

Но существуют также вещества, которые по своей электропроводности занимают промежуточное положение между проводниками и диэлектриками. Это полупроводники: их удельное сопротивление при комнатной температуре может принимать значения в очень широком диапазоне Ом·м.

К полупроводникам относятся кремний, германий, селен, некоторые другие химические элементы и соединения (Полупроводники чрезвычайно распространены в природе. Например, около 80% массы земной коры приходится на вещества, являющиеся полупроводниками).

Наиболее широко примененяются кремний и германий .

особенность полупроводников заключается в том, что их электропроводность резко увеличивается с повышением температуры. Удельное сопротивление полупроводника убывает с ростом температуры примерно так, как показано на рис. 1.

Рис. 1. Зависимость для полупроводника

Иными словами, при низкой температуре полупроводники ведут себя как диэлектрики, а при высокой — как достаточно хорошие проводники. В этом состоит отличие полупроводников от металлов: удельное сопротивление металла, как вы помните, линейно возрастает с увеличением температуры.

Между полупроводниками и металлами имеются и другие отличия. Так, освещение полупроводника вызывает уменьшение его сопротивления (а на сопротивление металла свет почти не оказывает влияния). Кроме того, электропроводность полупроводников может очень сильно меняться при введении даже ничтожного количества примесей.

Опыт показывает, что, как и в случае металлов, при протекании тока через полупроводник не происходит переноса вещества. Стало быть, электрический ток в полупроводниках обусловлен движением электронов.

Уменьшение сопротивления полупроводника при его нагревании говорит о том, что повышение температуры приводит к увеличению количества свободных зарядов в полупроводнике. В металлах ничего такого не происходит; следовательно, полупроводники обладают иным механизмом электропроводности, чем металлы. И причина этого — различная природа химической связи между атомами металлов и полупроводников.

Ковалентная связь

Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе — их атомы скрепляет ковалентная связь. Давайте вспомним, что это такое.

Электроны, находящиеся на внешнем электронном уровне и называемые валентными, слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются общей электронной парой (рис. 2).

Рис. 2. Ковалентная связь

Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь — это связь, существующая между атомами за счёт общих электронных пар. По этой причине ковалентная связь называется также парноэлектронной.

Кристаллическая структура кремния

Теперь мы готовы подробнее изучить внутреннее устройство полупроводников. В качестве примера рассмотрим самый распространённый в природе полупроводник — кремний. Аналогичное строение имеет и второй по важности полупроводник — германий.

Пространственная структура кремния представлена на рис. 3 (автор картинки — Ben Mills). Шариками изображены атомы кремния, а трубки, их соединяющие, — это каналы ковалентной связи между атомами.

Рис. 3. Кристаллическая структура кремния

Обратите внимание, что каждый атом кремния скреплён с четырьмя соседними атомами. Почему так получается?

Дело в том, что кремний четырёхвалентен — на внешней электронной оболочке атома кремния расположены четыре валентных электрона. Каждый из этих четырёх электронов готов образовать общую электронную пару с валентным электроном другого атома.

Так и происходит! В результате атом кремния окружается четырьмя пристыковавшимися к нему атомами, каждый из которых вносит по одному валентному электрону.

Соответственно, вокруг каждого атома оказывается по восемь электронов (четыре своих и четыре чужих).

Более подробно мы видим это на плоской схеме кристаллической решётки кремния (рис. 4).

Рис. 4. Кристаллическая решётка кремния

Ковалентные связи изображены парами линий, соединяющих атомы; на этих линиях находятся общие электронные пары. Каждый валентный электрон, расположенный на такой линии, большую часть времени проводит в пространстве между двумя соседними атомами.

Однако валентные электроны отнюдь не «привязаны намертво» к соответствующим парам атомов. Происходит перекрытие электронных оболочек всех соседних атомов, так что любой валентный электрон есть общее достояние всех атомов-соседей.

От некоторого атома 1 такой электрон может перейти к соседнему с ним атому 2, затем — к соседнему с ним атому 3 и так далее.

ЭТО ИНТЕРЕСНО:  Можно ли проверить диод без выпаивания

Валентные электроны могут перемещаться по всему пространству кристалла — они, как говорят, принадлежат всему кристаллу (а не какой-либо одной атомной паре).

Тем не менее, валентные электроны кремния не являются свободными (как это имеет место в металле). В полупроводнике связь валентных электронов с атомами гораздо прочнее, чем в металле; ковалентные связи кремния не разрываются при невысоких температурах.

Энергии электронов оказывается недостаточно для того, чтобы под действием внешнего электрического поля начать упорядоченное движение от меньшего потенциала к большему.

Поэтому при достаточно низких температурах полупроводники близки к диэлектрикам — они не проводят электрический ток.

Полупроводниковые материалы: примеры полупроводников :

В нашей статье будут рассмотрены примеры полупроводников, их свойства и сферы применения. Эти материалы имеют свое место в радиотехнике и электронике. Они являются чем-то средним между диэлектриком и проводником.

Кстати, простое стекло тоже можно считать полупроводником – в обычном состоянии оно ток не проводит. Зато при сильном нагреве (практически до жидкого состояния) происходит изменение свойств и стекло становится проводником.

Но это исключительный пример, у других материалов все обстоит немного иначе.

Основные особенности полупроводников

Показатель проводимости составляет около 1000 Ом*м (при температуре 180 градусов). Если сравнивать с металлами, то у полупроводников происходит уменьшение удельной проводимости при возрастании температуры. Такое же свойство имеется у диэлектриков. У полупроводниковых материалов имеется достаточно сильная зависимость показателя удельной проводимости от количества и типа примесей.

Допустим, если ввести в чистый германий всего тысячную долю мышьяка, произойдет увеличение проводимости примерно в 10 раз. Все без исключения полупроводники чувствительны к воздействиям извне – ядерному облучению, свету, электромагнитным полям, давлению и т. д. Можно привести примеры полупроводниковых материалов – это сурьма, кремний, германий, теллур, фосфор, углерод, мышьяк, йод, бор, а также различные соединения этих веществ.

Особенности применения полупроводников

Благодаря тому, что у полупроводниковых материалов такие специфические свойства, они получили довольно широкое распространение. На их основе изготавливают диоды, транзисторы, симисторы, лазеры, тиристоры, датчики давления, магнитного поля, температуры, и т. д.

После освоения полупроводников произошло коренное преобразование в автоматике, радиотехнике, кибернетике и электротехнике.

Именно при помощи использования полупроводников удалось достичь таких маленьких габаритов техники – нет нужды использовать массивные блоки питания и радиолампы размером с полуторалитровую банку.

Ток в полупроводниках

В проводниках ток определяется тем, куда двигаются свободные электроны. В полупроводниковых материалах свободных электронов очень много, на это есть причины. Все валентные электроны, которые имеются в полупроводнике, не свободны, так как они связываются со своими атомами.

В полупроводниках ток может появляться и меняться в достаточно широких пределах, но только при наличии воздействия извне. Ток меняется при нагреве, облучении, введении примесей. Все воздействия способны значительно увеличить у валентных электронов энергию, что способствует их отрыву от атомов. А приложенное напряжение заставляет эти электроны перемещаться в определенном направлении. Другими словами, эти электроны становятся носителями тока.

Дырки в полупроводниках

При повышении температуры или интенсивности внешнего облучения происходит увеличение количества свободных электронов. Следовательно, увеличивается ток. Те атомы в веществе, которые потеряли электроны, становятся положительными ионами, они не перемещаются.

С внешней стороны атома, с которого ушел электрон, остается дырка. В нее может встать другой электрон, который покинул свое место в атоме поблизости. В результате этого на внешней части у соседнего атома образуется дырка – он превращается в ион (положительный).

Если к полупроводнику приложить напряжение, то электроны начнут двигаться от одних атомов к соседним в определенном направлении. Дырки же начнут перемещаться во встречном направлении. Дырка – это положительно заряженная частица.

Причем заряд у нее по модулю такой же, как у электрона. С помощью такого определения можно существенно упростить анализ всех процессов, которые протекают в полупроводниковом кристалле.

Ток дырок (обозначается I Д) – это перемещение частиц в направлении, обратном движению электронов.

Электронно-дырочный переход

У полупроводника имеется два типа электропроводимости – электронная и дырочная. В чистых полупроводниках (без примесей) у дырок и электронов концентрация (N Д и N Э соответственно) одинаковая. По этой причине такая электропроводность называется собственной. Суммарное значение тока будет равно:

I = I Э+I Д.

Но если учесть тот факт, что у электронов значение подвижности больше, чем у дырок, можно прийти к такому неравенству:

I Э > I Д.

Подвижность заряда обозначается буквой М, это одно из главных свойств полупроводников. Подвижность – это отношение двух параметров. Первый – скорость перемещения носителя заряда (обозначается буквой V с индексом «Э» или «Д», в зависимости от типа носителя), второй – это напряженность электрического поля (обозначается буквой Е). Можно выразить в виде формул:

М Э = (V Э / Е).

М Д = (V Д / Е).

Подвижность позволяет определить путь, который проходит дырка или электрон за одну секунду при значении напряженность 1 В/см. можно теперь вычислить собственный ток полупроводникового материала:

I = N * e * (М Э + М Д) * E.

Но нужно отметить, что у нас есть равенства:

V Э =М Э.

N = N Э = N Д.

Буквой е в формуле обозначается заряд электрона (это постоянная величина).

Полупроводниковые приборы

Сразу можно привести примеры полупроводниковых приборов – это транзисторы, тиристоры, диоды, и даже микросхемы. Конечно, это далеко не полный список. Чтобы изготовить полупроводниковый прибор, нужно использовать материалы, у которых проводимость дырочная или электронная. Чтобы получить такой материал, необходимо в идеально чистый полупроводник с концентрацией примесей менее 10-11% ввести добавку (ее называют легирующей примесью).

Те примеси, у которых валентность оказывается больше, чем у полупроводника, отдают свободные электроны. Эти примеси называются донорами. А вот те, у которых валентность меньше, чем у полупроводника, имеют свойство хватать и удерживать электроны. Их называют акцепторами.

Для того чтобы получился полупроводник, который будет обладать лишь проводимостью электронного типа, в исходный материал достаточно ввести вещество, у которого валентность будет всего на единицу больше. Для примера полупроводников в физике школьного курса рассматривается германий – его валентность равна 4.

В него добавляется донор – фосфор или сурьма, у них валентность равна пяти. Металлов-полупроводников немного, они практически не используются в технике.

При этом 4 электрона в каждом атоме осуществляют установку четырех парных (ковалентных) связей с германием. Пятый электрон не имеет такой связи, а значит, он в свободном состоянии. И если приложить к нему напряжение, он будет образовывать электронный ток.

Токи в полупроводниках

Когда ток электронов больше, чем дырок, полупроводник называют n-типа (отрицательного). Рассмотрим пример – в идеально чистый германий вводят немного примеси акцептора (допустим, бор). При этом каждый атом акцептора начнет устанавливать ковалентные связи с германием. Но вот четвертый атом германия не имеет связи с бором. Следовательно, у определенного количества атомов германия будет иметься только один электрон без связи ковалентного типа.

Но достаточно незначительного воздействия извне, чтобы электроны начали покидать свои места. При этом у германия образовываются дырки.

По рисунку видно, что на 2, 4 и 6 атомах свободные электроны начинают присоединяться к бору. По этой причине не создается ток в полупроводнике. На поверхности атомов германия образуются дырки с номерами 1, 3 и 5 – с их помощью происходит переход на них электронов от расположенных рядом атомов. На последних же начинают появляться дырки, так как электроны с них улетают.

Каждая дырка, которая возникает, начнет переходить между атомами германия. При воздействии напряжения дырки начинают двигаться упорядоченно. Другими словами, в веществе появляется ток дырок. Такой тип полупроводников называется дырочным или p-типа.

При воздействии напряжения двигаются не только электроны, но и дырки – они встречают на своем пути разнообразные препятствия. При этом происходит потеря энергии, отклонение от изначальной траектории. Иными словами, заряд носителей рассеивается.

Все это происходит из-за того, что в полупроводнике содержатся загрязняющие примеси.

Вольт-амперная характеристика

Чуть выше были рассмотрены примеры веществ-полупроводников, которые используются в современной технике. У всех материалов имеются свои особенности. В частности, одно из ключевых свойств – это нелинейность вольт-амперной характеристики.

Иными словами, когда происходит увеличение напряжения, которое прикладывается к полупроводнику, происходит быстрое возрастание тока. Сопротивление при этом резко уменьшается. Такое свойство нашло применение в разнообразных вентильных разрядниках. Примеры неупорядоченных полупроводников можно более детально рассмотреть в специализированной литературе, их применение строго ограничено.

Хороший пример: при рабочем значении напряжения у разрядника сопротивление высокое, поэтому от ЛЭП ток не уходит в землю. Но как только в провод или опору ударяет молния, сопротивление очень быстро уменьшается практически до нуля, весь ток уходит в землю. И напряжение снижается до нормального значения.

Симметричная ВАХ

Когда происходит смена полярности напряжения, в полупроводнике ток начинает протекать в обратном направлении. И меняется он по тому же закону. Это говорит о том, что полупроводниковый элемент обладает симметричной вольт-амперной характеристикой.

В том случае, если одна часть элемента имеет дырочный тип, а вторая – электронный, то на границе их соприкосновения появляется p-n-переход (электронно-дырочный). Именно такие переходы имеются во всех элементах – транзисторах, диодах, микросхемах.

Но только в микросхемах на одном кристалле собирается сразу несколько транзисторов – иногда их количество более десятка.

Как происходит образование перехода

А теперь давайте рассмотрим, как происходит образование p-n-перехода. Если контакт дырочного и электронного полупроводников не очень качественный, то происходит образование системы, состоящей из двух областей. Одна будет иметь дырочную проводимость, а вторая – электронную.

И электроны, которые находятся в n-области, начнут диффундировать туда, где их концентрация меньше – то есть, в р-область. Одновременно с электронами дырки двигаются, но направление у них обратное. При взаимной диффузии происходит уменьшение концентрации в n-области электронов и в р-области дырок.

Основное свойство p-n-перехода

Рассмотрев примеры проводников, полупроводников и диэлектриков, можно понять, что свойства у них различные. Например, основное качество полупроводников – это возможность пропускания тока только лишь в одном направлении.

По этой причине приборы, изготовленные с использованием полупроводников, получили широкое распространение в выпрямителях.

На практике, используя несколько измерительных приборов, можно увидеть работу полупроводников и оценить массу параметров – как в режиме покоя, так и при воздействии внешних «раздражителей».

Источник: https://www.syl.ru/article/374653/poluprovodnikovyie-materialyi-primeryi-poluprovodnikov

Полупроводники. Часть III. Типы проводимости полупроводников

По своей способности проводить электрический ток, полупроводники занимают промежуточное место между хорошими проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. Такими факторами могут быть, например, температура или количество примесей. В данной статье мы будем рассматривать влияние примесей на проводимость кремния(Si), самого популярного полупроводника в производстве электронных компонентов.

Кристаллическая решетка кремния

В обычном состоянии, атомы кремния образуют кристаллическую решетку. На внешней электронной оболочке атома находятся четыре электрона. С их помощью, устанавливается ковалентная связь с четырьмя соседними атомами.

Каждый электрон в такой связи принадлежит двум атомам одновременно. Таким образом, у каждого атома на внешней электронной оболочке находиться восемь электронов.

В результате, поскольку последний уровень электронной оболочки оказывается завершенным, у атома очень трудно забрать его электроны и материал ведет себя как диэлектрик (не проводит электрический ток).

Легирование полупроводников

Для того чтобы повысить проводимость полупроводников, их специально загрязняют примесями – атомами химических элементов с другим значением валентности. Примеси с меньшим количеством валентных электронов, чем у полупроводника, называются акцепторами. Примеси с большей валентностью – донорами. Сам этот процесс называется легированием полупроводников. Примерное соотношение — один атом примеси на миллион атомов полупроводника.

1. Электронная проводимость

Добавим в полупроводник кремния пятивалентный атом мышьяка (As). Посредством четырех валентных электронов, мышьяк установит ковалентные связи c четырьмя соседними атомами кремния. Для пятого валентного электрона не останется пары, и он станет слабо связанным с атомом.

Под действием электромагнитного поля, такой электрон легко отрывается, и вовлекается в упорядоченное движение заряженных частиц (электрический ток). Атом, потерявший электрон, превращается в положительно заряженный ион с наличием свободной вакансии — дырки.

Несмотря на присутствие дырок в полупроводнике кремния с примесью мышьяка, основными носителями свободного заряда являются электроны. Такая проводимость называется электронной, а полупроводник с электронной проводимостью — полупроводником N-типа.

2. Дырочная проводимость

Введем в кристалл кремния трехвалентный атом индия (In). Индий установит ковалентные связи лишь с тремя соседними атомами кремния. Для четвертого «соседа», у индия не хватает одного электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов кремния.

Атом индия превратиться в негативно заряженный ион, а в ковалентной связи соседних атомов образуется вакансия (дырка). В свою очередь, на это место может перескочить электрон из соседней ковалентной связи. В результате получается хаотическое блуждание дырок по кристаллу.

Если поместить полупроводник в электромагнитное поле, движение дырок станет упорядоченным, т.е. возникнет электрический ток. Таким образом, обеспечивается дырочная проводимость. Полупроводник с дырочной проводимостью называется полупроводником P-типа.

PN–переход

Соединив вместе материалы P-типа и N-типа, на их стыке мы получим область электронно-дырочного перехода (PN -перехода). Происходящие внутри PN-перехода физические процессы между электронами дырками, легли в основу принципа работы полупроводниковых приборов.

Источник: http://hightolow.ru/semiconductors3.php

Понравилась статья? Поделиться с друзьями:
Электрогенератор
На каком расстоянии от кухонной столешницы должны быть розетки

Закрыть