Какие бывают источники энергии

Альтернативная энергия: производство, использование, виды, плюсы и минусы

Какие бывают источники энергии

Альтернативная энергия для частного дома — мечта многих людей, которые желают избавиться от платы за коммунальные платежи. Но все ли мы понимаем, что это такое? Так вот, альтернативная энергия — это любой источник энергии, который является альтернативой традиционному виду топлива.

В основном они относятся к классу возобновляемых, а их цель — справиться с проблемами, возникающими от использования традиционных источников, а именно сильным загрязнением окружающей среды углекислым газом.

С течением времени понятие того, что представляет собой альтернативный источник, сильно изменилось, так же как и усилились противоречия в отношении их использования. Определение некоторых источников в качестве «альтернативных» считается весьма противоречивым.

Причиной тому служит многообразие путей использования материалов и сильное отличие целей сторонников их применения. Таким образом, любители делать альтернативные источники энергии своими руками могут сильно навредить окружающей среде даже не осознавая это.

Виды альтернативных источников энергии

  • Гидроэнергетика: получение энергии из движения воды. К этому классу относятся традиционные ГЭС, а также приливные и волновые электростанции.
  • Ядерная энергетика: используется огромное количество энергии, которое высвобождается при ядерном делении тяжелых элементов.
  • Ветроэнергетика: генерация электричества за счет вращения ветром специальных установок.
  • Солнечная энергетика: получение полезной энергии из солнечного света и излучения. Термальные преобразователи задействуют тепло Солнца, а свет используется для генерации электричества фотогальваническими устройствами.
  • Геотермальная энергетика: использование горячих источников нашей планеты, чтобы прогревать строения или производить электричество.
  • Биотопливо: альтернатива нефти, применяемая в качестве топлива в машинах, мотоциклах и т. д.
  • Водород: носитель энергии, можно отнести к биотопливу. Существует множество способов получения материала, например из воды с помощью электролиза.

История

Некоторые ученые историки исследовали основные моменты смены традиционной энергетики на схожую по назначению. Они считают, что такие переходы оказали существенное влияние на экономическую обстановку. Типичным фактором данного процесса является снижение стабильности поставок основного вида энергии в совокупности с сильным ростом цен на него.

Уголь как альтернатива древесине

Одним из основных видов топлива в средние века была древесина. Чрезмерное пользование материалом привело к сильному обезлесиванию, а следовательно нехватке источника энергии. Именно тогда люди нашли для себя нового спасителя — мягкий уголь. Вот как рисует ситуацию того времени Норман Ф. Кантор:

В ранние средневековье население Европы существовало рядом с большими запасами леса. После 1250 года человечество имело такой существенный опыт в работе с деревьями, что к 1500 году н.э. у них отсутствовало достаточное количество материала для житейских нужд Таким образом, в это время население оказалось на грани топливной и пищевой катастрофы. Найти выход из ситуации помогло применение мягкого угля, а также освоение таких растительных культур как кукуруза и картофель.

Нефть как альтернатива китовому маслу

На старте 19 века китовое масло было доминирующим источником топлива для ламп, а так же являлось основным видом смазки . Однако к середине века постоянное вырезание животного привело к резкому подъему стоимости масла. Именно это стало ключевым фактором, после которого люди начали смотреть в сторону нефти.

Этанол против ископаемого топлива

Еще в начале 20 века Александр Грэхем Белл предлагал заменить традиционные ископаемые источники топлива на этанол из растительных культур, таких как кукуруза или пшеница. Он говорил, что привычные нам материалы для топлива могут закончиться достаточно быстро, а их основной недостаток — они не возобновляются.

В конце 20 века Бразилия запустила этанольную программу. За счет ее реализации страна начала экспортировать данного топливо больше всех в мире, а так же заняла вторую строчку международного рейтинга по объему его производства.

В качестве исходного материала они решили использовать сахарный тростник — это дешевый вид растения, к тому же его отходы можно отправить в топку на получение дополнительной энергии.

Сейчас в Бразилии больше нет транспортных средств, работающих на старом виде топлива, а найти этанол на любой заправке страны можно было еще в 2008 году.

Специальный целлюлозный этанол можно получить из разного сырья, а его создание подразумевает задействование полного объема урожая. Такой подход должен повысить сбор растительной продукции и понизить уровень углерода, который появляется из-за удобрений, требующих много энергии при производстве.

Газификация угля вместо нефти

В конце 20 века правительство США хотела избавиться от зависимости в дорогостоящей нефти из-за границы. В качестве альтернативы власти выбрали газификацию угля, но вскоре из-за падения стоимости нефти программу пришлось закрыть. Также стоит отметить, что данный метод имеет сильные загрязняющие последствия.

Вспомогательные технологии

Вспомогательные технологии — любые виды разработок, которые помогают снизить НЕ эффективность систем. Например, большинство техники выделяет огромное количество энергии в никуда, в воздух. Ваш компьютер или телефон вырабатывает тепло, которое можно было бы направить в правильное русло, тем самым увеличив полезность работы устройства.

Запасание термальной энергии

Кондиционирование холода в виде замерзшей воды, сохранение жара в источнике — это пути запасать энергию. Специальными разработками можно сохранить термальную энергию как на сутки, так и на целые сезоны. Виды источников различны:

  • естественные — солнечные коллекторы способны использовать тепловую энергию солнца, а сухие градирни применяются для запасения холода;
  • выработанная энергия — например, от различного рода устройств, процессов или деятельности электростанций. Самым простым примером послужит обычный компьютер, вырабатывающий при работе тепло, которое можно было бы использовать;
  • избыточная энергия — например, сезонные превышение нормы выработки от гидроэнергетики или ветропарков.

Примером послужит сообщество Drake Landing (Альберта, Канада). Тепло, запасенное в скважине или любом изолированном источнике с помощью солнечных коллекторов, почти весь год обеспечивает их термальной энергией.

Рекуперация

Рекуперация — повторное задействование уже израсходованной энергии. Технологию часто еще называют регенерацией. В основном выделяют два пути рекуперации: тепла и кинетической энергии.

(Система рекуперации торможения bmw i3)

Компьютеры имеют свойство нагреваться во время работы, поэтому их необходимо постоянно охлаждать, дабы они не вышли из строя. Таким образом здесь описывается сразу два случая траты энергии: на понижение температуры устройства и нагрев воздуха, который в итоге и нужно охлаждать. Теперь представьте, что в одном месте собраны сотни и даже тысячи таких машин, и насколько большие затраты придется нести владельцу.

А ведь именно с этой проблемой сталкиваются собственники дата-центров. Но некоторые фирмы находят пути снижения издержек — одним из них как раз и является рекуперация тепла. Дата-центр компании Яндекс в Финляндии использует естественный холод с улицы для охлаждения серверов, а выделяемое компьютерами тепло они отравляют на отопление домов близлежащего городка.

Как все это работает, можно посмотреть в специальном ролике компании:

Источник: https://mbhn.ru/alternativnaya-energetika-vidy-preimushchestva-i-nedostatki-primery

Виды источников энергии и их влияние на окружающую среду

Какие бывают источники энергии

Энергия – это то, без чего невозможно существование не только человека, но и всего живого на земле. Поэтому вопросы, связанные с использованием различных источников энергии и их воздействия на окружающую среду будут стоять перед человечеством всегда.

И если вопрос возобновляемости таких источников рано или поздно будет решен, то проблемы влияния на экологию планеты создаваемых людьми энергетических систем, будь то гидроэлектростанции, атомная энергетика или солнечные батареи вряд ли когда-нибудь потеряют свою актуальность.

Основные виды энергии, необходимой для жизни на планете и деятельности человека

Существуют разные классификации видов энергии. Одна из них — по форме, в которой она поступает на службу человеку. При этом количество энергии – величина постоянная. Происходит лишь перетекание её из одной формы в другую при помощи разного типа энергоносителей в ходе различных химических и физических процессов. Основными видами энергии на земле являются:

  • химическая;
  • лучистая (энергия света);
  • тепловая;
  • гравитационная;
  • кинетическая;
  • электрическая;
  • ядерная.

Каждый из известных источников энергии даёт возможность получать как один, так и несколько её видов одновременно. Например, солнце – источник тепла, света и целого спектра других видов излучения. При этом солнечная батарея производит электрическую энергию, которая затем снова трансформируется в свет и тепло. Все виды энергии тесно связаны между собой.

Типы энергии ещё принято делить на:

  • потенциальную (например, любое тело на земле, даже находясь в покое, обладает потенциальной энергией, источником которой является земная гравитация);
  • кинетическую (то есть, связанную с любым видом движения).

Энергия также может являться:

  • первичной (непосредственно исходящей от источника, например, солнечный свет, тепло);
  • вторичной (возникающей в процессе преобразования первичной энергии, например, электрическая).

Следует заметить, что преобразование одного вида энергии в другой не является изобретением человека. Такие процессы присутствовали в природе всегда, они лежат в основе существования всего живого и самой планеты. Человек лишь сумел изучить законы, по которым они развиваются, и попытался поставить их себе на службу.

Так, например, химическая энергия, возникающая в процессе потребления людьми растительной или животной пищи, в процессе обмена веществ преобразуется в тепловую, поддерживающую температуру его организма, и кинетическую, дающую возможность работать его органам, а телу двигаться, снова отдавая энергию природе в виде тепла и химических процессов.

Такое перетекание энергии происходит постоянно, и до определённой поры человек не имел возможности вмешаться в этот процесс. Всё изменилось, когда он научился сознательно использовать её источники.

Например, использование энергии пара стало величайшим открытием человечества перед изобретением электричества и совершило техническую революцию в XIX веке.

Тепловая энергия горящего дерева, угля или нефтепродуктов, нагревая котёл с водой, преобразовывалась в кинетическую энергию пара, приводящего в движение промышленные станки, двигатели паровозов и пароходов. Началась эра активного воздействия человека на окружающую среду, но к чему это может привести, стало понятно далеко не сразу.

Основные виды источников энергии

Таких видов существует несколько и, возможно, в ходе технического прогресса к ним добавятся новые. Их классификации могут иметь в своей основе разные принципы. Наиболее глобальным из таких принципов является конечность источника либо способность его к возобновлению. На этой основе все они делятся на две большие группы:

  • возобновляемые;
  • невозобновляемые.

К возобновляемым источникам принято относить:

  • Солнце;
  • воздух (ветер);
  • воду;
  • гравитацию;
  • геотермальные источники (вулканы, гейзеры и другие, основанные на термических процессах внутри Земли);
  • биосфера планеты (как источник биологической массы растений).

Строго говоря, практически все перечисленные источники правильнее было бы назвать условно-возобновляемыми, так как не существует ничего вечного. Ядерные процессы, идущие на Солнце и в недрах Земли, которые сегодня являются мощнейшим источником энергии, безусловно конечны.

Движение воды и воздуха возможно лишь при наличии таковых. О возобновляемости биомассы растений и говорить не приходится. Однако в обозримом будущем при отсутствии глобальных катастроф данные источники действительно представляются неистощимыми.

По крайней мере, в результате деятельности человека.

С невозобновляемыми источниками дело обстоит совсем иначе. Их истощение в процессе эксплуатации людьми происходит на наших глазах. Основные их виды:

  • дерево;
  • уголь;
  • нефть;
  • газ;
  • химические элементы, являющиеся источником радиоактивного излучения.

Использование дерева давно перестало быть актуальным ввиду катастрофического оскудения его запасов. Уничтожение лесов, наверное, самый первый значимый ущерб, который был нанесён природе энергетической деятельностью человека. Ещё в XX веке стало понятно, что истощение запасов нефти, газа и угля – перспектива не только реальная, но и достаточно близкая.

Некоторые учёные уже пытаются точно рассчитать, когда это произойдёт. В качестве реального источника энергии в обозримом будущем остаются процессы ядерного распада, лежащие в основе атомной энергетики, где источникам в ближайшее время истощение не грозит.

К сожалению, современный уровень развития технологий и достижения ядерной физики пока не могут гарантировать полную безопасность подобных процессов.

Именно системный кризис энергетики, а также сложная экологическая обстановка заставляют сегодня человечество всё чаще задумываться о возвращении к возобновляемым природным источникам.

Влияние на окружающую среду

Вторжение человека в природную энергетическую и экологическую системы планеты не может не отражаться на состоянии окружающей среды. Где-то такое воздействие почти незаметно, но где-то оно носит катастрофический характер.

Принято считать, что практически все возобновляемые источники энергии являются экологически безопасными. Это не совсем верно. Да, большинство из них действительно не наносят вреда окружающей среде, и в этом их огромное преимущество.

Многие учёные считают, что само выживание человечества будет зависеть от того, сумеет ли оно полностью заменить ими виды, наносящие вред экологии.

Солнце, воздух, гравитация и тепловая энергия Земли действительно являются «чистыми» источниками энергии, использование которых абсолютно безопасно для окружающей среды. Однако практически все они в настоящее время имеют слишком низкий КПД для того, чтобы полностью заменить собой экологически «вредные» источники.

Большое будущее пророчат солнечным электростанциям после того как люди научатся более эффективно преобразовывать энергию звезды в электрическую на любых широтах и при любой погоде. Надо отметить, что положительные сдвиги в этом направлении наблюдаются уже сейчас.

Солнечные панели, бывшие очень дорогими эксклюзивными установками для научных и государственных нужд, уже стали доступны для рядового потребителя, всё чаще выбирающего данный вариант электроснабжения для своего дома.

К сожалению, всё сказанное о возобновляемых источниках не относится к гидроэлектростанциям и установкам, работающим на биологическом топливе. Влияние последних пока недостаточно изучено, однако не вызывает сомнений, что любое вторжение человека в структуру биосферы, нарушающее биобаланс в природе, может иметь самые печальные последствия. С последствиями же использования рек для строительства гидроэлектростанций человечество знакомо достаточно хорошо.

Всплеск популярности данного вида электростанций относится к первой половине XX века. Тогда казалось, что вращающая турбины вода из естественного источника (перекрытой шлюзами и, как правило, сильно изменившей русло реки) является оптимальным вариантом экологически чистого и практически вечного источника энергии. То, что при таком вольном обращении с реками разрушается экосистема целых регионов, лежащих вверх и вниз по течению, люди заметили не сразу.

Тревогу забили, когда в результате обезвоживания или, наоборот, заболачивания огромных территорий началась массовая гибель сначала рыбы, затем — животных и птиц, выветривание почв из-за потери лесов, истощение сельскохозяйственных земель из-за недостатка воды в засушливых районах и многое другое. Сегодня к строительству гидросооружений подходят с гораздо большей осторожностью, стараясь грубо не нарушать сложившуюся экосистему рек.

Однако полностью избежать неблагоприятных воздействий очень трудно.

Но все остальные опасности блекнут на фоне того, что происходи с окружающей средой в результате эксплуатации тепловых электростанций. Основанные на энергии, получаемой в результате сжигания того или иного вида топлива, они по сей день представляют собой главный источник электроэнергии на планете.

Они действительно эффективны и неприхотливы в использовании, могут работать на нефтепродуктах, газе, угле и любых других горючих материалах, что позволяет вырабатывать максимально дешевое электричество.

Однако вред, наносимый теплоэлектростанциями окружающей среде, несопоставим с причиняемым всеми остальными их видами вместе взятыми.

Безусловно, свою долю в загрязнение вносит также применение перечисленных энергоносителей и продуктов их переработки в других областях, прежде всего на транспорте и в промышленности.

Сжигание угля, нефти, газа и других видов топлива, независимо от сферы их применения, кроме прямого загрязнения атмосферы, почвы и воды, приводит к колоссальным выбросам углекислого газа, которые, по мнению специалистов, являются главной причиной так называемого парникового эффекта.

В более долгосрочной перспективе запускаемые ими процессы ведут к катастрофическим изменениям климата на планете со всеми вытекающими из этого последствиями.

На атомные электростанции многие сегодня возлагают большие надежды. При правильной работе они эффективны, безопасны для людей и окружающей среды, дают относительно недорогую электроэнергию.

Если учёным удастся полностью взять под контроль процесс распада атомного ядра и поставить его на службу людям, человечество будет обеспечено чистым, доступным и дешевым источником энергии на много веков вперёд.

К сожалению, пока огромным минусом данного вида электростанций являются катастрофические неподвластные человеку последствия, которые может повлечь за собой любая их авария.

Источник: https://econrj.ru/stati/solnechnie-jelektrostancii-i-vsjo-s-nimi-svjazannoe/vidi-istochnikov-jenergii-i-ih-vlijanie-na-okruzhajushhuju-sredu.html

Мировые источники энергии

Какие бывают источники энергии

Для существования и развития человеческого общества необходимы мировые источники энергии. Решающая роль в развитии мировой энергетики принадлежит ресурсам энергии, выяснению вопроса о том, какими геологическими и разведанными запасами различных источников энергии и, в частности, нефти и газа, располагает человечество, каков энергетический потенциал нашей планеты.

ЭТО ИНТЕРЕСНО:  Как проверить сдвоенный диод Шоттки

По степени долговечности источники энергии делятся на возобновляемые и не возобновляемые. К возобновляемым или неисчерпаемым источникам энергии относятся: солнечная энергия, энергия ветра, энергия приливов и отливов, гидроэнергия, геотермальная энергия.

Не возобновляемые источники энергии: атомная энергия и энергия каустобиолитов. Каустобиолиты — это горючие полезные ископаемые (каусто — горючий, биос — органический, литос — камень). К ним относятся каменный уголь, нефть, природные углеводородные газы, сланцы, торф.

Мировые источники энергии: солнечная энергия

Ежедневно на Землю поступает 1,5⋅10*22  Дж солнечной энергии. Около 30 % солнечных лучей отражается облаками и земной поверхностью, но большая часть проникает через атмосферу. Нагревая атмосферу, океаны и сушу, солнечное тепло вызывает ветры, дожди, снегопады и океанские течения.

Однако вся энергия вновь излучается в холодный космос, сохраняя земную поверхность в тепловом равновесии.

Небольшая часть солнечной энергии аккумулируется в озёрах и реках, другая же часть — в живых растениях и животных. Солнечная энергия обладает такими свойствами, которые не встречаются ни у одного другого источника: она возобновляема, экологически чиста, управляема, по величине в тысячи раз превосходит всю ту энергию, которая используется в настоящее время.

Солнечная энергия используется для обогрева теплиц, домов, аккумулируется в солнечных батареях, которые преобразуют солнечную радиацию в электроэнергию, на космических кораблях применяются солнечные панели или фотоэлементы, обеспечивающие космонавтов электроэнергией при работе в открытом космосе. Недостаток этой энергии в том, что солнечные лучи рассеиваются земной поверхностью и требуется большая поверхность, собирающая солнечный свет.

Энергия ветра

Примерно 46 % поступающей солнечной энергии поглощается океаном, сушей и атмосферой. Эта энергия вызывает ветры, волны и океанские течения, нагревает моря и порождает колебания погоды.

Оценка энергии ветра в глобальном масштабе – порядка 10*15 Вт, однако большая часть энергии сосредоточена в ветрах, дующих на заоблачных высотах, и, следовательно, недоступна для использования на поверхности суши.

Устойчивые поверхностные ветры обладают мощностью порядка 10*12 Вт и могут быть использованы ветряными установками и в перевозках по морю.

В последние годы производство ветровой энергии в мире ежегодно увеличивается на 28 %. Предполагается, что к 2020 году на эту энергию будет приходиться до 10 % производимого в мире электричества.

В 2005 году принят закон Азербайджанской Республики о применении энергии Солнца и ветра, которых достаточно в стране.

Энергия приливов и отливов

Приливы являются результатом гравитационного притяжения Луны и Солнца, причём воздействие Луны значительно больше. Сила приливов является выражением силы вращения планеты. Высота приливов не везде одинакова.

Она редко превышает один метр при больших глубинах в океане, а над континентальным шельфом может достигать до 20 метров. Мощность приливов оценивается в 0,85⋅10*20 Дж. Во Франции (река Ранс) и в России (Кислая Губа) станции уже генерируют электричество из приливных волн. В утилизации приливов и отливов существует много проблем.

Для эффективной работы станций требуется высота приливной волны более 5 м и наличие перекрытых лёгкими плотинами заливов — эстуариев. Но почти везде прибрежные приливы имеют высоту около 2 м и только, примерно, 30 мест на Земле удовлетворяют указанным требованиям.

Наиболее важными из них являются: два смежных залива — Фанди (Канада) и Пассамукуодди (США); французское побережье вдоль Ла-Манша, где станция на Ранс успешно действует уже много лет, в Ирландском море эстуарии рек Англии, Белое море (Россия) и побережье Кимберли (Австралия).

Энергия приливов может иметь достаточно большое значение в будущем, потому что является одной из немногих энергетических систем, которые действуют без серьёзного ущерба для окружающей среды.

Гидроэнергия

Примерно 23 % солнечной радиации уходит на испарение воды, выпадающей затем в виде дождя и снега.

Энергия воды представляет собой возобновляемые ресурсы. Примитивным образом сила воды использовалась за тысячи лет до двадцатого столетия, когда началось широкомасштабное перекрытие рек для производства электроэнергии. Из всех возобновляемых энергетических ресурсов наиболее интенсивно используется сила воды.

Но неблагоприятным обстоятельством является то, что плотины имеют конечный и, скорее всего, короткий срок жизни. Движущийся поток воды переносит груз тонких глинистых частиц в виде суспензии; как только поток перекрывается, и скорость воды падает, этот материал отлагается, и резервуар может быть целиком заполнен ими за 50-200 лет.

Наибольший неосвоенный потенциал этой энергии может быть использован там, где имеются большие запасы энергии воды.

Геотермальная энергия

При погружении вглубь земли на 1 км температура увеличивается от 15 до 75 С. В ядре земли температура, вероятно, превышает 5000 C. В среднем из недр к поверхности поступает 6,3⋅10*6 Дж энергии. Кроме того, геотермальная энергия связана с распадом таких радиоактивных элементов как U

238 , U 235 , Th 232 , K 40, которые в рассеянном виде распространены в недрах повсеместно. При этом подземные воды нагреваются и выходят на поверхность в виде пара и горячей воды (гейзеры). Геотермальные горячие воды используются в Исландии, Японии, Италии, Индонезии, на Филиппинах, России, Америке и Новой Зелландии для обогрева домов, плавательных бассейнов, теплиц. Но они имеют всё же малое значение по сравнению с производством электроэнергии.

Атомная энергия

Атомную энергию можно получить с помощью двух процессов. Первый — слияние или синтез лёгких элементов, таких как водород и литий, при котором образуются более тяжёлые элементы.

Это процессы, идущие на Солнце и в водородной бомбе, но они трудно контролируемы; возможно, в будущем синтез таких элементов может стать главным источником энергии. Второй процесс — деление (распад) тяжёлых элементов, таких как уран и торий. Это процесс, идущий в атомной бомбе.

Поскольку эта реакция может быть контролируема, деление тяжёлых элементов уже используется для генерации электричества на атомных электростанциях. Природной способностью к распаду обладает только уран-235, который составляет всего 0,7 % общего количества природных атомов урана.

Цепная реакция урана-235 впервые была осуществлена профессором Энрико Ферми 2 декабря 1942 года в одном из наиболее важных экспериментов в истории Земли. Стоимость выделения атомов урана-235 высока. Однако при распаде одного атома урана-235 высвобождается 3,2⋅10*11 Дж энергии.

Поскольку в 1 г атома урана-235 содержится около 2,56⋅10-21  атомов, то при распаде 1 г урана образуется около 8,19⋅10*10 Дж, что эквивалентно энергии, получаемой при сгорании 2,7 т угля. В настоящее время на уране-235 работает около 300 атомных электростанций. Первое место по использованию атомной энергии занимает США (около 50 %), затем Европа (30 %) и Япония (12 %). При использовании атомной энергии остро стоит проблема безопасности, а также проблема утилизации радиоактивных отходов.

Горючие ископаемые

В настоящее время используются три вида горючих ископаемых: каменный уголь, нефть и природный газ. На их долю приходится около 90 % мировой энергии. Уголь. Мировые запасы всех видов углей оцениваются в 13800 млрд. т., а дополнительные потенциальные ресурсы — в 6650 млрд. т. География распределения такова: примерно 43 % углей мира залегают в России, 29 % — в Северной Америке, 14,5 % — в странах Азии, главным образом в Китае, и 5,5 % — в Европе. На остальной мир приходится 8 %.

Хотя уголь во всём мире не является ведущим видом топлива, в некоторых странах он всё ещё преобладает, и, возможно, в будущем трудности в снабжении нефтью и газом приведут к возрастающему использованию угля. При использовании угля возникает много трудностей. Он содержит от 0,2 % до 7 % серы, присутствующей в основном в виде пирита FeS2, сульфата закисного железа FeSO4⋅7H2O, гипса CaSO4⋅2H2 O и некоторых органических соединений.

Когда уголь сгорает, выделяется окисленная сера, выбросы которой в атмосферу вызывают кислотные дожди и смог. Другая проблема — это сама добыча угля. Подземные методы разработки трудны и даже опасны. Разработка открытым методом более эффективна и менее опасна, но вызывает нарушение поверхностного слоя на большой площади. В современном мире основное применение в качестве источников энергии имеют нефть и природные углеводородные газы.

Источник: https://globecore.ru/mirovye_istochniki_energii/

Альтернативная энергетика: за чем будущее?

Сегодня весь мир обеспечен электроэнергией благодаря сжиганию угля и газа (ископаемое топливо), эксплуатации водного потока и управлению ядерной реакцией. Эти подходы достаточно эффективны, но в будущем нам придётся от них отказаться, обратившись к такому направлению, как альтернативная энергетика.

Во многом эта необходимость обусловлена тем, что ископаемое топливо ограничено. Кроме того традиционные способы добычи электроэнергии являются одним из факторов загрязнения окружающей среды. Поэтому мир нуждается в «здоровой» альтернативе.

Предлагаем свою версию ТОПа нетрадиционных способов получения энергии, которые в будущем могут стать заменой привычным электростанциям.

7 место. Распределённая энергетика

Перед тем как рассматривать альтернативные источники энергетики, разберём одну интересную концепцию, которая в перспективе способна изменить структуру энергетической системы.

Сегодня электроэнергия производится на больших станциях, передаётся на распределительные сети и поступает в наши дома. Распределённый подход подразумевает постепенный отказ от централизованного производства электричества. Добиться этого можно посредством строительства небольших источников энергии в непосредственной близости к потребителю или группе потребителей.

В качестве источников энергии могут использоваться:

  • микротурбинные электростанции;
  • газотурбинные электростанции;
  • паровые котлы;
  • солнечные батареи;
  • ветряки;
  • тепловые насосы и пр.

Такие миниэлектростанции для дома будут подключены к общей сети. Туда будут поступать излишки энергии, а при необходимости электросеть сможет компенсировать недостаток питания, например, когда солнечные панели работают хуже из-за облачной погоды.

Однако реализация этой концепции сегодня и в ближайшем будущем маловероятна, если говорить о глобальных масштабах. Связанно это в первую очередь с большой дороговизной перехода от централизованной энергетики к распределённой.

6 место. Грозовая энергетика

Зачем генерировать электричество, когда его можно просто «ловить» из воздуха? В среднем один разряд молнии – это 5 млрд Дж энергии, что эквивалентно сжиганию 145 л бензина. Теоретически грозовые электростанции позволят снизить стоимость электроэнергии в разы.

Выглядеть всё будет так: станции размещаются в регионах с повышенной грозовой активностью, «собирают» разряды и накапливают энергию. После этого энергия подаётся в сеть. Ловить молнии можно с помощью гигантских громоотводов, но остается главная проблема – за доли секунды накопить как можно больше энергии молнии. На современном этапе не обойтись без суперконденсаторов и преобразователей напряжения, но в будущем возможно появление более деликатного подхода.

Концепт громовой электростанции

Если говорить об электричестве «из воздуха», нельзя ни вспомнить о приверженцах образования свободной энергии. Например, Никола Тесла в своё время якобы продемонстрировал устройство для получения электрического тока из эфира для работы автомобиля.

Ещё много интересного в наших соцсетях

Подробнее: Интересные изобретения Николы Теслы

5 место. Сжигание возобновляемого топлива

Вместо угля на электростанциях можно сжигать так называемое «биотопливо». Таковым является переработанное растительное и животное сырьё, продукты жизнедеятельности организмов и некоторые промышленные отходы органического происхождения. В качестве примера можно привести обычные дрова, щепу и биодизель, который встречается на заправках.

В энергетической сфере чаще всего применяется древесная щепа. Она собирается при лесозаготовке или на деревообрабатывающем производстве. После измельчения она прессуется в топливные гранулы и в таком виде отправляется на ТЭС.

К 2019 году в Бельгии должно завершиться строительство крупнейшей электростанции, которая будет работать на биотопливе. Согласно прогнозам, она должна будет производить 215 МВт электроэнергии. Этого хватит на 450 000 домов.

Интересный факт! Многие страны практикуют выращивание так называемого «энергетического леса» – деревья и кустарники, наилучшим образом подходящие для энергетических нужд.

Будет ли альтернативная энергетика развиваться в направлении биотоплива пока маловероятно, ведь есть более перспективные решения.

4 место. Приливные и волновые электростанции

Традиционные гидроэлектростанции работают по следующему принципу:

  1. Напор воды поступает на турбины.
  2. Турбины начинают вращаться.
  3. Вращение передаётся на генераторы, которые вырабатывают электроэнергию.

Строительство ГЭС обходится дороже ТЭС и возможно только в местах с большими запасами энергии воды. Но самая главная проблема – это нанесение вреда экосистемам из-за необходимости строительства плотин.

Приливные электростанции работают по схожему принципу, но используют для выработки энергии силу приливов и отливов.

«Водные» виды альтернативной энергетики включают такое интересное направление, как волновая энергетика. Её суть сводится к генерации электричества посредством использования энергии волн океана, которая гораздо выше приливной. Самой мощной волновой электростанцией на сегодня является Pelamis P-750, которая вырабатывает 2,25 МВт электрической энергии.

Раскачиваясь на волнах, эти огромные конвекторы («змеи») изгибаются, вследствие чего внутри приходят в движение гидравлические поршни. Они прокачивают масло через гидравлические двигатели, которые в свою очередь вращают электрогенераторы. Полученное электричество доставляется на берег через кабель, который проложен по дну. В перспективе количество конвекторов будет многократно увеличено и станция сможет вырабатывать до 21 МВт.

3 место. Геотермальные станции

Альтернативная энергетика неплохо развита и в геотермальном направлении. Геотермальные станции вырабатывают электричество, фактически преобразуя энергию земли, а точнее — тепловую энергию подземных источников.

Существует несколько типов таких электростанций, но во всех случаях они основываются на одинаковом принципе работы: пар из подземного источника поднимается по скважине и вращает турбину, подключенную к электрогенератору. Сегодня распространена практика, когда в подземный резервуар на большую глубину закачивается вода, там она под воздействием высоких температур испаряется и в виде пара под давлением поступает на турбины.

Источник: https://topor.info/hi-tech/alternativnaya-energetika

Что такое – природные источники энергии? Виды возобновляемых источников энергии

Под выражением «возобновляемая энергия» либо регенеративная, то есть «зеленая энергия», подразумевается энергия источников, неисчерпаемая по человеческим меркам. В окружающей среде она представлена в широком спектре – солнечная, ветровая, водная, включая морские волны и течения, силы приливов и отливов океана, биомассы, геотермального тепла.

Возобновляемые природные ресурсы в жизни человека

В последние годы широкое развитие получила альтернативная энергетика. Она представлена самыми разнообразными видами ВИЭ, которые постоянно возобновляются.

Под формулировкой «возобновляемые источники энергии» подразумеваются определенные формы энергии, вырабатываемые в естественных условиях, за счет происходящих на поверхности Земли природных процессов.

Условно они делятся на классы – возобновляемые и невозобновляемые:

  • к первому классу относятся источники, которые имеют неисчерпаемые источники энергии по человеческим меркам. Они постоянно пополняются естественным путем в ходе прохождения планетой определенного цикла;
  • второй класс представлен невозобновимыми природными ресурсами, в число которых входит газ, нефть, уголь, уран. Они относятся к энергоресурсам, сокращающимся с истечением времени без возобновления до прежних размеров.

Возобновляемый источник энергии предоставляют ресурсы, в число которых входит солнечный свет, водный поток, приливы и геотермальная теплота. Их возобновлению способствует круговорот воды в природе, цикличность его определяется временем года. Явление способствует постоянному восполнению энергии естественным путем.

Виэ подразделяется на группы – традиционные и нетрадиционные источники

В первую группу входит:

  • гидравлическая энергия воды, которая преобразуется в электрическую энергию. Каждая энергетическая станция вырабатывает ее посредством действия гидросилового оборудования, устанавливаемого на ней;
  • энергия биомассы, получаемая в ходе сжигания древесного угля, дров, торфа. Она применяется в основном для выработки тепла, подаваемого в отопительную систему жилых и нежилых зданий;
  • геотермальная энергия, являющаяся результатом естественного гниения и поглощения минералами, находящимися в недрах земли, солнечной энергии. В сущности, солнце есть неисчерпаемый источник энергии. Его тепловое излучение преобразовывается в электрическую энергию с применением фотоэлементов, тепловых машин.

Вторая группа состоит из энергии, которая существует в природе, окружающей человека:

  • солнечной;
  • ветровой;
  • морских волн и течений;
  • приливов и отливов океана;
  • биотоплива;
  • низкопотенциальной тепловой.

Принцип использования возобновимой энергии заключается в ее извлечении из постоянно происходящих в окружающей среде геологических процессов. Она предоставляется потребителю, который использует ее для решения технических задач и удовлетворения своих нужд.

Характеристики отдельных ВИЭ

Многие нетрадиционные и возобновляемые источники энергии без затруднений устанавливаются в жилых зданиях. Отдельные его виды можно применять в тяжелой и легкой промышленности, установив в производственных зданиях. В их число входят возобновляемые ресурсы, предоставляемые человеку самой природой.

Наибольшую популярность обрела энергия биомассы, являющаяся одним из видов «зеленой энергии». Она позволяет рационально использовать природные ресурсы планеты. Ресурсами являются отходы деревообрабатывающей и бумажной промышленности, отраслей сельского хозяйства, включая бытовой и строительный мусор, из которого вырабатывается естественным путем метан.

Воздушные массы атмосферы есть своего рода вечный неиссякаемый источник, потому что обладают огромной кинетической энергией. Они перемещаются под воздействием геологической деятельности ветра. Его сила преобразуется в электрическую энергию с помощью ветровых установок. Несмотря на довольно высокую стоимость, они успешно используются в районах со спокойным ландшафтом.

Еще один вечный источник энергии – Солнце. Солнечная энергетика является одним из направлений НВИЭ, основанной на непосредственном применении солнечного излучения для получения энергии. Она является бесплатным источником, который возобновляется. Помимо того, ее относят к категории «чистая энергетика», не производящей вредных отходов. Но солнечные установки применимы только в тех широтах планеты, где достаточно солнечного света для выработки электрической энергии.

ЭТО ИНТЕРЕСНО:  Что такое заземления и зануления

Водный поток есть неиссякаемый источник, обладающий потенциальной и кинетической энергией. Она в ходе работы преобразуется в электрический ток. Ярким примером использования гидравлической энергии рек, воды является строительство малых и микро ГЭС, а также крупных ГЭС с большими мощностями.

Малые и микро ГЭС обрели популярность во многих странах, использующих энергию возобновляемых источников малых водотоков с целью выработки электрического тока. Нужно заметить, что в последние годы строительство крупных гидроэлектростанций сократилось до минимума.

«Зеленая энергетика» представлена энергией приливов и отливов океанов, морских волн и течений. Для их использования на берегу морей и океанов строятся приливные станции. Они преобразуют кинетическую энергию вращения Земли, возникающую за счет гравитационных сил Луны и Солнца, которые два раза в сутки изменяют уровень воды.

Достоинства и недостатки ВИЭ

Основное преимущество заключается в том, что возобновляемые ресурсы являются дешевым источником энергии. Это неиссякаемый источник энергии, который предоставлен в неограниченном количестве в окружающей среде, не являясь следствием целенаправленной деятельности человека.

Нужно заметить, что возобновляемые источники энергии имеют один недостаток. Он заключается в низкой степени концентрации, поэтому нельзя получаемую энергию передать на большие расстояния. Как правило, ВИЭ подлежит использованию вблизи потребителя.

Возобновляемая энергетика будущего

Учеными планеты ведутся дальнейшие разработки технологии водородного топлива, которая выделяет энергию при помощи синтеза атомов водорода в атом гелия. В будущем они намерены получать возобновляемые ресурсы не только с применением наземных конструкций, но и спутников Земли, чтобы использовать находящуюся в черных дырах космическую энергию.

Основные предпосылки для развития ВИЭ в Российской Федерации:

  • обеспечение энергетической безопасности страны;
  • сохранение окружающей среды, что позволит обеспечить экологическую безопасность;
  • достижение нового уровня на мировом рынке возобновляемой энергии, что обозначено в общем стратегическом плане развития государства;
  • претворение в жизнь мер, способствующих сохранить собственные возобновляемые ресурсы для будущих поколений;
  • увеличение размеров потребления сырья, которое используется в качестве топлива.

В перспективе использование возобновляемых источников энергии позволит человечеству восполнить топливный дефицит, удешевить добычу топлива, тепла и моторного масла. Кроме того, их использование очищает атмосферу, что, несомненно, поможет улучшить экологическую обстановку планеты.

И в заключение необходимо отметить, что возобновляемые источники электроэнергии обладают несомненным преимуществом. Оно заключается в их неисчерпаемости и экологической чистоте. Человек может использовать их без каких-либо опасений, потому что они не нарушают энергетический баланс планеты. К тому же возобновляемые ресурсы находятся вокруг него всюду.

Источник: https://ekoenergia.ru/alternativnaya-gidroenergetika/vozobnovlyaemyie-istochniki-energii.html

ТОП-10 нестандартных источников альтернативной энергии

Альтернативная энергетика — совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

Buoyant Airborne Turbine (BAT), огромный аэростат с ветряной турбиной, может набирать высоту до 600 метров. На этом уровне скорость ветра значительно выше, чем у поверхности земли, что позволяет удвоить выработку энергии.

2. Волновая электростанция

Oyster Желтый поплавок — надводная часть насоса, который находится на 15-метровой глубине в полукилометре от берега. Используя энергию волн, Oyster («Устрица») перегоняет воду на вполне обычную гидроэлектростанцию, расположенную на суше. Система способна вырабатывать до 800 кВт электроэнергии, обеспечивая светом и теплом до 80 домов.

3. Биотопливо на основе водорослей

Водоросли содержат до 75% натуральных масел, растут очень быстро, не нуждаются в пахотных землях или воде для полива. С одного акра (4047 кв. м.) «морской травы» можно получить от 18 до 27 тысяч литров биотоплива в год. Для сравнения: сахарный тростник при тех же исходных дает лишь 3600 литров биоэтанола.

4. Солнечные батареи в оконных стеклах

Стандартные солнечные батареи преобразуют энергию Солнца в электричество с эффективностью 10−20%, а их эксплуатация довольно затратна. Но недавно ученые из университета Калифорнии разработали прозрачные панели на основе относительно недорогого пластика. Батареи черпают энергию из инфракрасного света и могут заменить обычные оконные стекла.

5. Вулканическое электричество

Принцип работы геотермальной электростанции такой же, как и у теплоэлектростанции, только вместо угля используется тепло земных недр. Для добычи этого вида энергии идеальны районы с высокой вулканической активностью, где магма подходит близко к поверхности.

6. Сферическая солнечная батарея

Даже в облачный день заполненный жидкостью стеклянный шар Betaray работает в четыре раза эффективнее, чем обычная солнечная батарея. И даже в ясную ночь сфера не дремлет, извлекая энергию из лунного света.

7. Вирус М13

Ученым Национальной лаборатории имени Лоуренса в Беркли (Калифорния) удалось модифицировать вирус-бактериофаг М13 так, что он создает электрический заряд при механической деформации материала. Чтобы получить электричество, достаточно нажать на кнопку или провести пальцем по дисплею. Впрочем, пока максимальный заряд, который удалось получить «инфекционным путем», равен возможностям четверти микропальчиковой батарейки.

8. Торий

Торий — радиоактивный металл, похожий на уран, но способный давать в 90 раз больше энергии при распаде. В природе он встречается в 3-4 раза чаще, чем уран, а всего один грамм вещества по количеству выделяемого тепла эквивалентен 7400 галлонам (33640 литрам) бензина. 8 грамм тория хватит, чтобы автомобиль мог ехать более 100 лет или 1,6 млн км без дозаправки. В общем, компания Laser Power Systems объявила о начале работ над ториевым двигателем. Посмотрим-с!

9. Микроволновый двигатель

Как известно, космический корабль получает импульс для взлета за счет выброса и сгорания ракетного топлива. Основы физики попытался перечеркнуть Роджер Шойер. Его двигатель EMDrive (мы о нем писали) не нуждается в горючем, создавая тягу с помощью микроволн, которые отражаются от внутренних стенок герметичного контейнера. Впереди еще долгий путь: силы тяги такого мотора не хватает даже для того, чтобы сбросить со стола монету.

10. Международный экспериментальный термоядерный реактор 

Предназначение ITER— воссоздать процессы, происходящие внутри звезд. В противовес расщеплению ядра речь идет о безопасном и безотходном синтезе двух элементов. Получив 50 мегаватт энергии, ITER вернет 500 мегаватт — достаточно, чтобы обеспечить электричеством 130 000 домов. Запуск реактора, базирующегося на юге Франции, произойдет в начале 2030-х, а подключить его к энергетической сети получится не раньше 2040 года.

Николай Дикобпев

Источник: https://www.kramola.info/vesti/neobyknovennoe/top-10-nestandartnyh-istochnikov-alternativnoy-energii

Солнце и ветер как альтернативные источники энергии для дома и дачи

Традиционными источниками энергии является органическое топливо, но запасы угля, газа и нефти ограничены. Поэтому приходится искать альтернативные источники энергии – возобновляемые, а потому неиссякаемые. Потратившись на установку лишь единожды, использование альтернативных источников энергии возможно пожизненно – конечно, при условии периодического ухода за установками.

Какие бывают альтернативные источники энергии, и как они используются, вы узнаете на этой странице.

Солнце и ветер как альтернативные источники энергии известны давно, хотя в России они распространены не так широко, как в европейских странах. Однако обойти вниманием этот бесплатный природный ресурс для получения электрической энергии невозможно. Тем более что применение альтернативных источников энергии не только экономически довольно выгодно, но и экологически безопасно.

Одним из условий, которые позволят использовать энергию ветра в качестве альтернативного источника энергии, является необходимость иметь ветряк — ветроэнергетическую установку.

Кроме того, важно иметь дом на территории, где сильные ветры не редкость, хотя и небольших порывов будет достаточно для работы ветряка мощностью 1,5—4 кВт.

Такой альтернативный источник энергии для дома вполне обеспечит скромные потребности: свет, просмотр телевизора, подзарядку ноутбука. Для этого достаточно установки мощностью 500—600 Вт.

Данный вид альтернативного источника энергии представляет собой конструкцию, состоящую из следующих элементов:

мачты,

ветроголовки с тремя лопастями,

генератора,

опорно-поворотного узла,

контроллера,

зарядного устройства,

аккумулятора,

инвертора.

Ветроэнергетическая установка работает так: лопасти, зафиксированные на колесе, приходят во вращение под воздействием ветра; колесо сообщает крутящий момент на вал генератора, который вырабатывает энергию.

Между ее количеством и размером колеса есть прямая зависимость: чем больше колесо, тем легче оно захватывает ветер, тем больше энергии вырабатывается. Энергия поступает в зарядное устройство, которое трансформирует ее в постоянный электрический ток, необходимый для зарядки аккумуляторов.

Всеми процессами управляет контроллер. Для получения переменного тока, на котором работает вся бытовая техника, имеется инвертор.

Чтобы смонтировать этот альтернативный источник электрической энергии, необходимо подготовить бетонный фундамент, включающий закладной элемент (железобетонное кольцо), залитый раствором. Стальную мачту в вертикальном положении удерживают растяжки.

В настоящее время приобрести ветроэнергетическую установку, причем не только импортного, но и отечественного производства, не проблема. Понятно, что стоимость ее напрямую зависит от мощности, например ветроэнергетическая установка в 1 кВт (она даст 120 кВт в месяц) обойдется примерно в 35 000 руб.

Фото этого альтернативного источника энергии можно посмотреть здесь:

К альтернативным источникам энергии относят солнечные батареи

Наличием сильных ветров на территории России могут похвастаться не все регионы. Это же относится и к солнечным дням, количество которых в разной местности различно, хотя даже сильная облачность не мешает получать 100 Вт с 1 м2. Чтобы выработать 10 кВт энергии, необходимо, чтобы площадь солнечных батарей составляла 100 м2.

Чтобы использовать солнце как альтернативный источник энергии, солнечную энергию нужно преобразовать в электрическую. Для этого потребуются специальные элементы, сам же процесс трансформации называется фотоэлектрическим эффектом, а модуль, использующийся для этого,— фотоэлектрическим элементом.

По обе стороны фотоэлемента смонтированы токоотводы. Когда солнечные лучи попадают на фотоэлемент, часть света (фотон) поглощается. При этом освобождается один электрон. В этот момент образуется ток. Электричество, образованное в солнечном элементе, может сразу использоваться или накапливаться в аккумуляторной батарее.

Отдельные фотоэлементы не в состоянии обеспечить дом необходимым количеством энергии, поэтому их собирают в панели, различные по размеру и типу.

Как правило, для использования солнечной энергии как альтернативного источника энергии панели собирают в кремниевые фотоэлектрические модули, размер которых варьируется от 0,4 до 1,6 м2, мощностью 40—160 Вт.

Применение солнечной энергии как альтернативного источника электрической энергии

Будучи объединенными, панели образуют солнечные батареи — альтернативный источник энергии, коэффициент полезного действия которого пока невелик и составляет 5-15% (только 15% света преобразуется в электрическую энергию).

Комплекс солнечных батарей с контроллером, инвертором, аккумуляторами, кабелем, электронагрузкой и поддерживающей структурой называется солнечной станцией, которая может рассматриваться и применяться в качестве системы аварийного источника электроснабжения.

https://www.youtube.com/watch?v=wn4rQbVclkg\u0026list=PLdzImrXX-Yk28QpNj0xvVZ6W8LbyKOf4b

Стоимость станции из четырех модулей мощностью 115 Вт, двух аккумуляторов, инвертора мощностью 1 кВт и контроллера составит примерно 125000руб. Достаточно ли такого альтернативного источника энергии для дачи, зависит от энергозатрат, которые перед покупкой комплекса необходимо подсчитать.

Если электричество в доме есть, то помогут показания счетчика за месяц; если оно не заведено, то следует установить все предметы, которые являются потребителями энергии, сложить их мощность и умножить на количество часов работы в месяц — это и будет количество энергозатрат.

Разумеется, необходимо оптимизировать количество потребляемой энергии, например, за счет установки энергосберегающих лампочек, уличных фонариков, работающих от солнечной батареи, и т. д.

Соединения и ответвления проводов и кабелей необходимо выполнять в специально предназначенных для этого разветвительных и соединительных коробках (их можно различить по количеству отверстий: в первых их четыре, во вторых — два).

Надо признать, что альтернативные источники энергии еще не превратились в обыденность, поскольку первоначальные затраты на приобретение оборудования достаточно высоки, и окупятся они не ранее чем через 10 лет. Однако перспективы, которые открываются, как утверждают ученые, огромные.

Какие есть ещё альтернативные источники энергии

Ниже вы узнаете, какие есть ещё альтернативные источники энергии, способные заменить традиционные.

К альтернативным источникам энергии относят передвижные электростанции. Они мобильны, компактны, мощны, обладают значительным ресурсом, долговечны, работают с достаточно низким уровнем шума и при большом перепаде температур — от +45 до -50 °С.

Основными комплектующими передвижной электростанции являются генератор и двигатель внутреннего сгорания. Альтернативным источником энергии являются станции синхронные (для применения при аварийной ситуации) и асинхронные (для поддержания напряжения в сети и подключения электроприборов, реагирующих на скачки напряжения).

Передвижные станции могут работать на бензине или дизельном топливе. Первые используют в качестве источника электроснабжения при перебоях с подачей электричества. Их мощность колеблется в пределах от 0,5 до 12 кВт, чего вполне хватает для выполнения незначительных объемов работ. Генератор оснащен автозапуском, т. е. он начинает действовать при отключении электричества. Уровень шума бензиновых электростанций примерно на 20—30% ниже, чем дизельных.

Дизельная электростанция рассчитана на постоянную работу. Ее мощность варьируется в значительном пределе — от 12 до 2500 кВт. Станции могут давать разное количество оборотов в минуту — до 3000 об/мин. Для постоянного энергоснабжения дома и участка достаточно, если этот параметр будет составлять 1500 об/мин. Дизельные станции последнего поколения могут бесперебойно работать круглый год.

При покупке передвижной электростанции надо выбрать агрегат необходимой мощности. Для этого надо установить, какие именно приборы будут работать от нее. Среди постоянных потребителей энергии нужно назвать холодильник, лампы, среди периодически включаемых — утюг, электроинструмент и т. п.

Чтобы рассчитать мощность станции, надо суммировать мощности тех приборов, которые активно эксплуатируются, и прибавить дополнительно 20 %.

Если потребности небольшого садового домика обеспечит станция мощностью 2 кВт, то для индивидуального благоустроенного дома потребуется станция мощностью 10— 20 кВт.

Источник: https://www.stroy-dom.net/?p=4350

Альтернативные источники энергии в наши дни

Без энергии жизнь человечества немыслима. Все мы привыкли использовать в качестве источников энергии органическое топливо – уголь, газ, нефть. Однако их запасы в природе, как известно, ограничены. И рано или поздно наступит день, когда они иссякнут. На вопрос «что делать в преддверии энергетического кризиса?» уже давно найден ответ: надо искать другие возможности – нетрадиционные, возобновляемые и альтернативные источники энергии.

Солнечная энергия

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества (используя фотоэлектрические элементы).

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками солнечной энергии являются зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Ветряная энергия

Одним из перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора. Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.

https://www.youtube.com/watch?v=AF-RThC1cS0\u0026list=PLdzImrXX-Yk28QpNj0xvVZ6W8LbyKOf4b

К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума, вследствие чего их стараются строить вдали от мест проживания людей.

Геотермальная энергия

Огромное количество тепловой энергии хранится в глубинах Земли. Это обусловлено тем, что температура ядра Земли чрезвычайно высока. В некоторых местах земного шара происходит прямой выход высокотемпературной магмы на поверхность Земли: вулканические области, горячие источники воды или пара. Энергию этих геотермальных источников и предлагают использовать в качестве альтернативного источника сторонники геотермальной энергетики.

Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии.

К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.

К негативным сторонам можно отнести тот факт, что термальные воды сильно минерализованы, а зачастую ещё и насыщены токсичными соединениями. Это делает невозможным сброс отработанных термальных вод в поверхностные водоёмы. Поэтому для отработанную воду необходимо закачивать обратно в подземный водоносный горизонт. Кроме того, некоторые учёные-сейсмологи выступают против любого вмешательства в глубокие слои Земли, утверждая, что это может спровоцировать землетрясения.

Использование других видов альтернативных источников энергии:

Как видим, альтернатива традиционным источникам энергии – существует. И это вселяет надежду на то, что в будущем человечество сможет преодолеть энергетический кризис, связанный с истощением невозобновляемых источников энергии!

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/elektroenergetika-v-mire/alternativnyie-istochniki-energii

Виды энергетики: традиционная и альтернативная. Энергия будущего

Все существующие направления энергетики можно условно разделить на зрелые, развивающиеся и находящиеся в стадии теоретической проработки. Одни технологии доступны для реализации даже в условиях частного хозяйства, а другие могут использоваться только в рамках промышленного обеспечения.

ЭТО ИНТЕРЕСНО:  Что такое вольт и ватт

Рассматривать и оценивать современные виды энергетики можно с разных позиций, однако принципиальное значение имеют универсальные критерии экономической целесообразности и производственной эффективности.

Во многом по этим параметрам сегодня расходятся концепции применения традиционных и альтернативных технологий генерации энергии.

Традиционная энергетика

Это широкий пласт сформировавшихся отраслей тепло- и электроэнергетики, обеспечивающей порядка 95% мировых потребителей энергии. Генерация ресурса происходит на специальных станциях – это объекты ТЭС, ГЭС, АЭС и т. д. Они работают с готовой сырьевой базой, в процессе переработки которой происходит выработка целевой энергии. Выделяют следующие стадии производства энергии:

  • Изготовление, подготовка и доставка исходного сырья на объект выработки того или иного вида энергии. Это могут быть процессы добычи и обогащения топлива, сжигание нефтепродуктов и т. д.
  • Передача сырья к узлам и агрегатам, непосредственно преобразующим энергию.
  • Процессы преобразования энергии из первичной во вторичную. Эти циклы присутствуют не на всех станциях, но, к примеру, для удобства доставки и последующего распределения энергии могут использоваться разные ее формы – в основном тепло и электричество.
  • Обслуживание готовой преобразованной энергии, ее передача и распределение.

На завершающем этапе ресурс отправляется конечным потребителям, в качестве которых могут выступать и отрасли народного хозяйства, и рядовые домовладельцы.

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя.

Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными.

Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Гидроэнергетика

Гидротехнические сооружения в виде энергетических подстанций предназначены для выработки электричества в результате преобразования энергии потока воды. То есть, технологический процесс генерации обеспечивается сочетанием искусственных и природных явлений.

В ходе работы станция создает достаточный напор воды, которая в дальнейшем направляется к турбинным лопастям и активизирует электрогенераторы. Гидрологические виды энергетики различаются по типу используемых агрегатов, конфигурации взаимодействия оборудования с естественными потоками воды и т. д.

По рабочим показателям можно выделить следующие разновидности гидростанций:

  • Малые – вырабатывают до 5 МВт.
  • Средние – до 25 МВт.
  • Мощные – более 25 МВт.

Также применяется классификация в зависимости от силы напора воды:

  • Низконапорные станции – до 25 м.
  • Средненапорные – от 25 м.
  • Высоконапорные – выше 60 м.

К достоинствам гидроэлектростанций относят экологическую чистоту, экономическую доступность (бесплатная энергия), неисчерпаемость рабочего ресурса. В то же время гидротехнические сооружения требуют больших начальных затрат на техническую организацию аккумулирующей инфраструктуры, а также имеют ограничения по географическому размещению станций – только там, где реки обеспечивают достаточный напор воды.

Атомная энергетика

В некотором смысле это подвид тепловой энергетики, но практически производственные показатели работы ядерных станций на порядок выше ТЭС.

В России используют полные циклы выработки атомной электроэнергии, что позволяет генерировать большие объемы энергетического ресурса, но имеют место и огромные риски использования технологий обработки урановой руды.

Обсуждением вопросов безопасности и популяризации задач данной отрасли, в частности, занимается АНО «Информационный центр атомной энергетики», имеющий представительства в 17 регионах России.

Ключевую роль в исполнении процессов генерации ядерной энергии играет реактор. Это агрегат, предназначенный для поддержания реакций деления атомов, которые, в свою очередь, сопровождаются выделением тепловой энергии. Существуют разные типы реакторов, отличающиеся применяемым видом топлива и теплоносителем.

Чаще используется конфигурация с легководным реактором, использующим в качестве теплоносителя обычную воду. Основным ресурсом переработки в ядерной атомной энергетике выступает урановая руда. По этой причине АЭС обычно проектируются с расчетом на размещение реакторов вблизи от месторождений урана.

На сегодняшний день в России действует 37 реакторов, совокупная мощность выработки которых составляет около 190 млрд кВт*ч/год.

Характеристика альтернативной энергетики

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию.

Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении.

Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Геотермальная энергетика

Один из самых распространенных способов получения энергии в бытовых условиях. Геотермальная энергия вырабатывается в процессе аккумуляции, передачи и преобразования внутреннего тепла Земли. В промышленных масштабах обслуживаются подземные породы на глубинах до 2-3 км, где температура может превышать 100°С.

Что касается индивидуального применения геотермальных систем, то чаще задействуются поверхностные аккумуляторы, располагаемые не в скважинах на глубине, а горизонтально. В отличие от других подходов к выработке альтернативной энергии, практически все геотермальные виды энергетики в производственном цикле обходятся без этапа преобразования.

То есть первичная тепловая энергия в этой же форме и поставляется конечному потребителю. Поэтому используется такое понятие, как геотермальные системы отопления.

Солнечная энергетика

Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.

Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества.

Отчасти этот вид энергетики схож с принципами работы гидроэлектростанциями, но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Ветровая энергетика

Еще один доступный для применения в частном хозяйстве способ получения электричества, отличающийся технологической простотой и экономической доступностью.

В качестве обрабатываемого ресурса выступает кинетическая энергия воздушных масс, а роль аккумулятора выполняет двигатель с вращающимися лопастями.

Обычно в ветровой энергетике применяют генераторы электрического тока, которые активизируются в результате вращения вертикальных или горизонтальных роторов с пропеллерами. Средняя бытовая станция такого типа способна генерировать 2-3 кВт.

Энергетические технологии будущего

По оценкам экспертов, к 2100 г совокупная доля угля и нефти в мировом балансе составит около 3%, что должно отодвинуть термоядерную энергетику на роль второстепенного источника энергетических ресурсов.

На первое же место должны встать солнечные станции, а также новые концепции преобразования космической энергии, основанной на беспроводных каналах передачи. Процессы становления энергии будущего должны начаться уже к 2030 г.

, когда наступит период отказа от углеводородных источников топлива и перехода к «чистым» и возобновляемым ресурсам.

Перспективы российской энергетики

Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте.

Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям.

В России и сегодня этот сегмент предлагает немало привлекательных идей – в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.

Заключение

Современные проблемы энергетического обеспечения ставят крупнейшие государства перед выбором между мощностью и экологической чистотой выработки тепла и электричества.

Большинство освоенных альтернативных источников энергии при всех своих плюсах не способны в полной мере заменить традиционные ресурсы, которые, в свою очередь, могут использоваться еще несколько десятилетий. Поэтому энергию будущего многие специалисты представляют как некий симбиоз различных концепций генерации энергоресурсов.

Причем новые технологии ожидаются не только на промышленном уровне, но и в бытовом хозяйстве. В этой связи можно отметить градиент-температурные и биомассовые принципы энергетической выработки.

Источник: https://FB.ru/article/380605/vidyi-energetiki-traditsionnaya-i-alternativnaya-energiya-buduschego

Какие существуют виды источников электрического тока?

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному.

Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока.

Металлические термопары используют лишь для измерения температуры.

СПРАВКА! Чтобы получить термопару, необходимо соединить 2 различных металла.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор.

В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой.

Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока.

Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту.

Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Источник: https://odinelectric.ru/elektrosnabzhenie/vidy-istochnikov-electricheskogo-toka

Источники энергии

В основном энергию, используемую в быту и промышленности, мы добываем на поверхности Земли или в ее недрах.

Например, во многих слаборазвитых странах жгут древесину для отопления и освещения жилищ, тогда как в развитых странах для получения электроэнергии сжигают различные ископаемые источники топлива — уголь, нефть и газ.

Ископаемые виды топлива представляют собой не возобновляемые источники энергии. Их запасы восстановить невозможно. Ученые сейчас изучают возможности использования неисчерпаемых источников энергии.

Ископаемые виды топлива

Уголь, нефть и газ — невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье «Древнейшие формы жизни«). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии.

Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250.

При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

Возобновляемые источники энергии

По мере роста численности населения (см. статью «Население Земли«) людям требуется все больше энергии, и многие страны переходят к использованию возобновляемых источников энергии — солнца, ветра и воды. Идея их применения пользуется широкой популярностью, так как это — экологически чистые источники, использование которых не наносит вреда окружающей среде.

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.

Энергия ветра

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти ветряка, приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия

Атомная энергия — тепловая энергия, выделяющаяся при распаде мельчайших частиц материи — атомов. Основным топливом для получения атомной энергии является уран — элемент, содержащийся в земной коре.

Многие люди считают атомную энергию энергией будущего, но ее применение на практике создает ряд серьезных проблем. Атомные электростанции не выделяют ядовитых газов, но могут создавать немало трудностей, так как это топливо радиоактивно. Оно излучает радиацию, убивающую все живые организмы.

Если радиация попадает в почву или в атмосферу, это влечет за собой катастрофические последствия.

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр).

Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины.

Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония:

Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать:

1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.

2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке. Соблюдайте осторожность при обращении с кнопками.

3. Приклейте прокладки к крышке и воткните в нее стержень.

4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.

Источник: https://www.polnaja-jenciklopedija.ru/planeta-zemlya/istochniki-jenergii-na-zemle.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Для чего нужен сварочный инвертор

Закрыть