Как зависит сила тока в проводнике от напряжения

Закон Ома

Как зависит сила тока в проводнике от напряжения

28 марта 2013.
Категория: Электротехника.

Закон Ома для участка цепи

Соберем электрическую цепь (рисунок 1, а), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2, двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5. Установим в цепи при помощи реостата сопротивление, равное 2 Ом.

Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А.

Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Таблица 1

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2 46 2 22 1 23

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Таблица 2

Зависимость тока в цепи от сопротивления при неизменном напряжении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2 22 1 23 2 12/3

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

U = I × r ,

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

U = I × r = 20 × 6 = 120 В .

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

1 В = 1 А × 1 Ом .

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

Потеря напряжения

Рисунок 3. Потеря напряжения вдоль электрической цепи

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

U = I × r .

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

U = I × r = 50 × 0,1 = 5 В.

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух медных проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r.

Так как сопротивление r проводов неизвестно, определяем его по формуле:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»);  длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

U = I × r = 15 × 1,22 = 18,3 В

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

127 – 120 = 7 В .

Сопротивление проводов линии должно быть равно:

Из формулы

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье «Электрическое сопротивление и проводимость»).

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»).

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

120 – 40 = 80 В .

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

Закон Ома для полной цепи

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

ЭТО ИНТЕРЕСНО:  Что такое катушка в электрике

Следовательно, электродвижущая сила (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r0 – сопротивление внутренней цепи в омах, U0 – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

E = U0 + U = I × r0 + I × r = I × (r0 + r),

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r0 = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E, замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r0 = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

U = I × r = 0,6 × 2 = 1,2 В.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

U0 = I × r0 = 0,6 × 0,5 = 0,3 В.

Так как E = U0 + U, то

E = 0,3 + 1,2 =1,5 В

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

откуда

E = I × (r0 + r) = 0,6 × (0,5 +2) = 1,5 В.

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает: а) при замкнутой электрической цепи – напряжение сети;

б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Источник: https://www.electromechanics.ru/electrical-engineering/484-ohms-law.html

ЗАВИСИМОСТЬ СИЛЫ ТОКА ОТ НАПРЯЖЕНИЯ

Экспериментально установим, каково соотношение между силой тока и напряжением при неизменном сопротивлении цепи. Соберём электрическую цепь, состоящую из источника тока, резистора, ключа, амперметра и вольтметра. В качестве источника тока будем использовать устройство, которое позволяет изменять выходное напряжение от 0 до 15 В. После каждого изменения напряжения будем снимать показания приборов и записывать их в таблицу.

Опыт показывает, что во сколько раз увеличивается напряжение на участке цепи, во столько же раз увеличивается и сила тока на этом участке, т. е. сила тока в проводнике прямо пропорциональна напряжению на концах этого проводника:   I ~ U.

Построим график зависимости силы тока от напряжения, использовав в качестве значений данные из таблицы. Этот график представляет собой прямую линию, проходящую через начало координат.

График зависимости силы тока от напряжения называется вольт-амперной характеристикой цепи.

ЗАВИСИМОСТЬ СИЛЫ ТОКА ОТ СОПРОТИВЛЕНИЯ

Проверим, как зависит сила тока в цепи от сопротивления при постоянном напряжении в цепи.

В той же электрической цепи будем поддерживать постоянное напряжение, равное 4,5 В. Но вместо одного сопротивления используем магазин сопротивлений. Для каждого сопротивления измерим силу тока в цепи и данные запишем в таблицу.

Если по данным таблицы построить график зависимости силы тока от сопротивления, то он уже не будет прямой линией. Кривая, проведённая по экспериментальным точкам, представляет собой гиперболу.

Итак, опыт показывает, что, чем больше сопротивление проводника, тем меньше сила тока при одном и том же напряжении между концами проводника. Поэтому сила тока в проводнике обратно пропорциональна сопротивлению проводника: I ~ 1/R.

ЗАКОН ОМА

Обобщая результаты обоих опытов, можно утверждать, что сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению.

Это утверждение называется законом Ома для участка цепи и записывается следующим образом:

I = U / R

Закон Ома справедлив только для проводников, у которых сопротивление не зависит от приложенного напряжения и силы тока. К таким проводникам относят металлические проводники, уголь и электролиты. Сопротивление газов зависит от приложенного напряжения, и потому для газов закон Ома не выполняется.

Любопытно, что открытие закона Ома предвосхитил богатый английский лорд Генрих Кавендиш, который занимался физикой и химией в качестве хобби. Кавендиш опубликовал всего 18 научных работ, однако гораздо большее их число так и осталось неизвестными современникам. Блестящие эксперименты Кавендиша с электричеством, проведённые в домашней лаборатории, стали известны только после публикации в 1879 г. Дж. Максвеллом его избранных работ.

Георг Симон Ом (1787—1854) — немецкий физик, установил основной закон электрической цепи, названный его именем.

Вы смотрели Конспект по физике для 8 класса «Закон Ома».

Вернуться к Списку конспектов по физике (Оглавление).

Источник: http://xn--8-8sb3ae5aa.xn--p1ai/zakon-oma/

Конспект

Как зависит сила тока в проводнике от напряжения

В предыдущем конспекте «Электрическое сопротивление» был установлено, что сила тока в проводнике зависит от напряжения на его концах.

Если в опыте менять проводники, оставляя напряжение на них неизменным, то можно показать, что при постоянном напряжении на концах проводника сила тока обратно пропорциональна его сопротивлению.

Объединив зависимость силы тока от напряжения и его зависимость от сопротивления проводника, можно записать: I = U/R. Этот закон, установленный экспериментально, называется закон Ома (для участка цепи).

Закон Ома для участка цепи: сила тока в проводнике прямо пропорциональна приложенному к его концам напряжению и обратно пропорциональна сопротивлению проводника. Прежде всего закон всегда верен для твёрдых и жидких металлических проводников. А также для некоторых других веществ (как правило, твёрдых или жидких).

Потребители электрической энергии (лампочки, резисторы и пр.) могут по-разному соединяться друг с другом в электрической цепи. Два основных типа соединения проводников: последовательное и параллельное. А также есть еще два соединения, которые являются редкими: смешанное и мостовое.

Последовательное соединение проводников

При последовательном соединении проводников конец одного проводника соединится с началом другого проводника, а его конец — с началом третьего и т.д. Например, соединение электрических лампочек в ёлочной гирлянде.  При последовательном соединении проводников ток проходит через все лампочки. При этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд. То есть заряд не скапливается ни в какой части проводника.

Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: I1 = I2 = I.

Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений: R1 + R2 = R. Потому что при последовательном соединении проводников их общая длина увеличивается. Она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

По закону Ома напряжение на каждом проводнике равно: U1 = I*R1, U2 = I*R2. В таком случае общее напряжение равно U = I (R1 + R2).

Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике: U = U1 + U2.

ЭТО ИНТЕРЕСНО:  Как обозначается переменный и постоянный ток

Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

Для последовательного соединения проводников справедливы законы

1) сила тока во всех проводниках одинакова; 2) напряжение на всём соединении равно сумме напряжений на отдельных проводниках; 3) сопротивление всего соединения равно сумме сопротивлений отдельных проводников.

Параллельное соединение проводников

Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи. А вторым концом к другой точке цепи. Вольтметр, подключенный к этим точкам, покажет напряжение и на проводнике 1, и на проводнике 2. В таком случае напряжение на концах всех параллельно соединённых проводников одно и то же: U1 = U2 = U.

При параллельном соединении проводников электрическая цепь разветвляется. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: I = I1 + I2.

В соответствии с законом Ома   I = U/R,   I1 = U1/R1,   I2 = U2/R2. Отсюда следует: U/R = U1/R1 + U2/R2, U = U1 = U2,  1/R = 1/R1 + 1/R2  Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление г, то их общее сопротивление равно: R = г/2. Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения. В результате уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно. Они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них. А также соответствие суммарной силы тока предельно допустимой силе тока.

Для параллельного соединения проводников справедливы законы:

1) напряжение на всех проводниках одинаково; 2) сила тока в месте соединения проводников равна сумме токов в отдельных проводниках; 3) величина, обратная сопротивлению всего соединения, равна сумме величин, обратных сопротивлениям отдельных проводников.

Смешанное соединение проводников

Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.

Существует и 4-й вид соединения проводников — мостовое, которое является самым сложным.

Конспект урока по физике в 8 классе «Закон Ома. Соединение проводников».

Следующая тема: «Работа и мощность электрического тока».

Источник: https://uchitel.pro/%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD-%D0%BE%D0%BC%D0%B0-%D1%81%D0%BE%D0%B5%D0%B4%D0%B8%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2/

Как течет ток

Как зависит сила тока в проводнике от напряжения

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна.

Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой.

В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.

Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц –  электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням).

При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах.

Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях.

Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов.

При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.

Параллельная электрическая цепь

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

ЭТО ИНТЕРЕСНО:  Какие альтернативные источники энергии вам известны

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.

Основные характеристики переменного тока

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).

Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Источник: https://amperof.ru/teoriya/kak-techet-tok.html

Напряжение и сила тока: природа электрических явлений, основные отличия их друг от друга

Электричество в жизни современного человека играет огромную роль. Однако далеко не все понимают принципы и ценность этого явления. Основные характеристики электричества — это две зависящие друг от друга величины: напряжение и сила тока. Для того чтобы знать, чем они отличаются друг от друга, нужно понять их природу. И то, и другое могут иметь как постоянный, так и переменный характер.

Физические проявления

Физически ощутить проявления электричества человеку можно только опосредованно. Если попробовать на язык батарейку — можно почувствовать пощипывание. Это следствие протекания малого тока через организм.

Чувствительная слизистая языка уже ощущает это раздражение. Можно увидеть искры статического электричества между двумя заряженными объектами, например, синтетическими тканями, или в школьном опыте с динамо-машиной.

Все это следствие накопления заряда или потенциального напряжения.

Чтобы узнать, что такое сила тока, нужно определиться с понятием заряда. Как известно, вся материя в мире состоит из атомов. Атомы, в свою очередь, состоят из протонов, нейтронов и электронов. Среди этих частиц нейтрально заряжены только нейтроны. Протоны и электроны обладают потенциальной энергией — электрическим зарядом, который, в частности, и держит атомы в цельном состоянии.

Протоны и нейтроны находятся в ядре атома. Электроны же, напротив, располагаются далеко от ядра и движутся вокруг него по орбитам, сходным с орбитами планет солнечной системы. Чем дальше находится электрон от ядра, тем меньше его связь с центром атома, и тем проще он может потеряться. В различных материалах электроны ведут себя по-разному.

В металлах они слабо связаны с ядром и свободно перемещаются внутри вещества. Однако их общее количество в предмете с нейтральным зарядом всегда должно соответствовать количеству протонов.

Если электроны вследствие каких-то действий покидают вещество, они уносят с собой заряд. Соответственно, заряд, оставшийся в протонах вещества, будет накоплен этим веществом. Электроны могут унести заряд в случаях:

  • Трения двух веществ друг о друга.
  • Воздействия ультрафиолета или радиации.
  • Быстрого перепада температур.

Таким образом, между предметами возникает разность потенциалов, или напряжение, способное вызвать искру. А искра — это уже проявление электрического тока. Заряды разного знака всегда притягиваются друг к другу. Если электроны перешли с одного материала на другой, то один материал накопил положительный заряд, а другой — отрицательный.

При их сближении электроны притянутся к положительно заряженному телу — и возникнет искра. То есть электроток — это движение заряженных ча

Аналогия с гидравликой

Слово ток имеет происхождение от слова течение. Соответственно, можно провести аналогию течения жидкости с электрическим током. Протекание жидкости возможно из одного места в другое, только если возникает сила, заставляющая ее сделать это. В самом простом случае — это разница уровней жидкости. То есть потенциальная энергия, заставляющая жидкое вещество течь от более высокого уровня к более низкому.

Аналогом разности уровней жидкости будет разность потенциалов или напряжение. Аналогом силы тока будет напор потока воды, создаваемый этой разностью уровней. Примеры потоков жидкости:

  • Водопад.
  • Поток, создаваемый водонапорной башней.
  • Реки, текущие туда, где есть наклон территории.

Везде вода течет туда, где уровень меньше, а электроток — от большего напряжения к меньшему.

Связь величин законом Ома

Электротехнические величины также зависят и от материала, в котором протекает . Эти параметры определяются электросопротивлением вещества. Сопротивление бывает как бесконечно большим у диэлектриков, так и падать практически до нуля в условиях сверхпроводимости. Оно зависит от формы проводника (его длины и сечения) и вещества, из которого он изготовлен.

В обычных условиях сопротивление определяется по закону Ома как отношение напряжения к силе тока на участке цепи. То есть разность потенциалов можно найти как произведение силы тока на сопротивление. Знать, чем отличается сила тока от напряжения очень важно для электротехнических расчетов. На этом базируются все основы функционирования электрических цепей.

Постоянный и переменный

Сила тока и напряжение могут быть как постоянными, так и переменными. Постоянство величины говорит о ее неизменности во времени. Напротив, переменные величины периодически изменяют свое значение во времени. Если напряжение питания окажется переменным, то и сила тока, генерируемая им, будет переменной величиной. Это значит, что оба этих значения будут то увеличиваться, то уменьшаться. Форма сигнала может быть различной:

  • Синусоидальный сигнал (плавное возрастание — убывание).
  • Меандр (прямоугольный, треугольный сигнал), когда значение резко претерпевает изменение.
  • Пульсирующий сигнал, изменяющийся то плавно, то резко, согласно некоторому закону.

Вне зависимости от того, постоянным или переменным является ток, его главное отличие от напряжения — то, что ток — это движение носителей заряда, а напряжение — причина этого движения.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/chem-otlichaetsya-napryazhenie-ot-sily-toka.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как различать потенциальную и кинетическую энергию

Закрыть