Как возникает разность потенциалов

Контактные явления, контактная разность потенциалов

Как возникает разность потенциалов

Факт существования твердых тел говорит о том, что существуют силы, которые удерживают, находящиеся в постоянном движении электроны внутри тела. Для того чтобы из тела извлечь электрон, следует затратить работу. Допустим, что твердое тело находится внутри адиабатической оболочки при постоянной температуре T.

В результате теплового движения и перераспределения электронов по скоростям внутри тела кинетической энергии некоторых электронов будет достаточно для преодоления сил, которые удерживают их внутри тела. Из-за этого у поверхности тела возникает «газ» из электронов. Некоторые электроны приближаются к поверхности тела и захватываются внутрь тела.

В состоянии термодинамического равновесия среднее количество электронов, покидающих тело, равно среднему числу электронов возвращающихся. Этот «электронный газ» не вырожден, его плотность может быть записана в виде распределения Больцмана:

где $n_0$ — концентрация электронов у поверхности тела, C — зависит только от температуры, $A_Ф$ —работа выхода. Работа выхода связана с энергией $\mu $ уровня Ферми соотношением:

  • Курсовая работа 450 руб.
  • Реферат 260 руб.
  • Контрольная работа 220 руб.

где $E_0$ — энергия покоящегося электрона вне проводника в вакууме. То есть $A_Ф$ равна работе по перемещению электрона с уровня $\mu $ за пределы твердого тела. Для металлов это утверждение буквально, для диэлектриков несколько условно, так как в них на уровне Ферми нет электронов.

Силы, которые удерживают электроны в твёрдых телах, имеют электрическое происхождение. Они вызваны разностью потенциалов между точками вне тела и внутренними точками. Силы, которые стремятся втянуть электроны внутрь тела тем больше, чем больше работа выхода $A_Ф.$ Они действуют в очень тонком слое (порядка молекулярных размеров $d\approx {10}{-10}м$). Эффективная напряженность электрического поля ($E_{ef}$), которое вызывает появление этих сил порядка:

где работа выхода принята равной нескольким электрон- вольтам. Работу выхода электронов из металла часто выражают в электрон — вольтах. Это внесистемная единица $1эB=1,602\cdot {10}{-19}Дж.$

Контактные явления

Если сблизить поверхности двух тел так близко, что слои их электронного газа перекроются, то тела станут обмениваться электронами. Силы, которые увлекают электрон в тело будут больше у того тела у которого работа выхода больше. После того как сблизили тела с их поверхностей начнется переход электронов от вещества с меньшей работой выхода к веществу с большей работой.

Как результат первое тело будет заряжаться положительно, второе отрицательно. Возникающее между телами электрическое поле будет препятствовать движению электронов в результате которого, оно появилось. В состоянии равновесия напряженность поля достигает такого значения, что переход электронов прекращается. Поверхности имеют одинаковые по величине, но противоположные по знаку заряды.

Между поверхностями устанавливается некоторая разность потенциалов, которая называется контактной.

Появление контактной разности потенциалов было открыто Вольтой в 1797 г. у металлов. Он расположил металлы в ряд, заметил, что если металлы в определенной им последовательности привести в контакт, то при этом каждый предыдущий металл получит более высокий потенциал, чем следующий.

Причем, если несколько металлов одинаковой температуры, привести в контакт, то разность потенциалов между крайними металлами не зависит от того, какими промежуточными металлами они разделяются (закон последовательных контактов Вольты). Если крайние металлы замкнуть в кольцо, то ЭДС в кольце будет равна нулю. Иначе был бы нарушен закон сохранения энергии.

Данное положение не применяется, если в цепи есть электролиты, и могут течь химические реакции.

Контактная разность потенциалов

Для того чтобы объяснить существование контактной разности потенциалов можно использовать модель свободных электронов. Если T=0K, то все уровни энергии до границы Ферми ($\mu $) будет заполнены электронами.

где $n\ $— концентрация электронов проводимости.

Допустим, что мы привели в контакт два металла (1) и (2) с энергиями Ферми равными соответственно ${\mu }_1\ \[{\mu }_1+q_e{\varphi }_{i1}=м_2+q_eц_{i2}\left(4\right).\]

Следовательно,

Так как $q_e{\varphi }_{i1}$.

Этот результат справедлив и при $Te 0.$ В формуле (5) считают, что точка 1 лежит внутри металла (1), а точка 2 внутри второго металла. Это отмечено индексом $i$. Разность потенциалов ${\varphi }_{i2}-{\varphi }_{i1}$ называют внутренней контактной разностью потенциалов. Из формулы (5) следует, что внутренняя контактная разность потенциалов удовлетворяет закону последовательных контактов Вольты. Используя формулу (3), получим:

Источник: https://spravochnick.ru/fizika/mehanizmy_elektroprovodnosti/kontaktnye_yavleniya_kontaktnaya_raznost_potencialov/

Электрический потенциал

Как возникает разность потенциалов

Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.

Физический смысл электрического поля

Учёные давно ломают голову над субстанциями электрического и магнитного полей, но пока сие для них загадка, как и гравитация. существование не оспаривается, но суть неясна. Не секрет электричество люди знали задолго до нашей эры, а к изучению не стремились.

Главные достижения по изучению электричества случились бы минимум на 20 лет раньше, нежели в действительности. До Эрстеда влияние провода с током на магнитную стрелку отмечал Джованни Доменико Романьози в 1802 году. Это подтверждённые официальными изданиями данные, а собственно событие, возможно, произошло раньше. Заслуга Эрстеда лишь в заострении внимания общественности на замеченном факте.

Подобных примеров тьма. Порой учёные вне зависимости друг от друга делали открытия, изобретения. Встречались случаи, когда муж науки думал, что его измышления не новы. Потом удивлялся, когда оказывалось, что авторство теперь принадлежит постороннему человеку, хотя собственное открытие случилось раньше по времени. Замалчивание гарантировало переход доли известности к описавшему событие.

Так происходило в XIX веке – учёные постоянно сотрудничали, что-то обсуждали, порой тяжело найти концы. К примеру, Фарадея упрекали за плагиат конструкции первого человеческого двигателя, а Википедия приписала ему авторство катушки индуктивности, придуманной Лапласом, на которое Майкл не претендовал. Впрочем, когда речь заходит о материи полей, учёные хранят дружное молчание.

Единственным исключением стал Никола Тесла, утверждавший, что все во Вселенной состоит из гармонических колебаний.

Итак, учёные не знают о поле ничего, а электрический потенциал это характеристика поля. Субстанцию никто не видел, долго не могли зарегистрировать и с трудом представляют поныне! Не верите – попробуйте нарисовать в воображении электромагнитную волну:

  1. Известно, что колебание представляет суперпозицию электрического и магнитного полей, изменяющихся во времени.
  2. Вектор напряжённости магнитный перпендикулярен вектору электрическому, связаны через константу среды (некая физическая величина).
  3. На вид это две перпендикулярные волны стоп! Что такое волна?

Так выглядит современная физика. Никто точно не знает, как выглядят поле, колебание, волна, как это нарисовать. Понятно лишь: картинки из учебника слабо описывают происходящее. Дело усугубляется неспособностью человека видеть и чувствовать электромагнитное излучение. Колебание не выглядит синусоидальным, рассматривается для одной точки, линии, фронта и пр. Это, скорее, уплотнение и растяжение эфира, нечто напоминающее трёхмерную неописуемую фигуру.

Длинное предисловие свидетельствует, насколько неизведанным остаётся то, что используется в повседневной жизни. И порой таит реальную опасность для человека. К примеру, доказано, что излучение СВЧ печи постепенно «портит» пищу. Человек, регулярно питающийся из микроволновки, рискует получить в собственное распоряжение обширный список недугов. В первую очередь – болезни крови. Небезопасна для людей и сетевая частота 50 Гц.

Характеристики электрического поля

Человек быстро понял, что электрическое поле есть, уже в XVIII веке – либо раньше – нарисована опилками его картина. Люди увидели линии, выходившие из полюсов. По аналогии стали пытаться изобразить электрическое поле.

К примеру, Шарль Кулон на исходе восемнадцатого столетия открыл закон притяжения и отталкивания зарядов.

Записав формулу, понял, что эквипотенциальные линии силы взаимодействия концентрически расходятся вокруг точечного скопления электричества, а траектории движения – прямолинейны.

Так оказалась изображена первая картина электрического поля. Напоминает картину, как исследователи представляли магнитное, но с гигантской разницей: в природе нашлись заряды обоих знаков. Линии напряжённости уходят в бесконечность (в теории, безусловно, закончатся). А магнитные заряды поодиночке не найдены, линии их всегда замыкаются в видимой области пространства.

Первая картина электрического поля

В остальном нашлось много общего, к примеру, заряды одинакового знака отталкиваются, а разных – притягиваются. Это справедливо для магнитов и электричества.

Гильберт заметил, что магнетизм – сильная субстанция, которую сложно экранировать или уничтожить, а электричество легко разрушается влагой и прочими веществами.

Дёгтя в бочку добавил Кулон, который, следуя Бенджамину Франклину, присвоил электронам отрицательный заряд. Хотя речь шла о количестве флюида. И избыток электронов следовало назвать положительным.

Как результат, линии напряжённости поля располагаются в направлении обратном правильному. Потенциал растёт не туда Главными характеристиками электрического поля считаются:

  1. Напряжённость – показывает, какая сила действует на положительный единичный заряд в данной точке со стороны поля.
  2. Потенциал – показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку.
  3. Напряжение – разность потенциалов между двумя точками. Напряжение определяется исключительно относительно некоторого уровня.

Наиболее вероятно происхождение терминов из латинского языка. Напряжённость ввёл в обиход, предположительно, Алессандро Вольта, а потенциал называется по наименованию типа поля, которое указанной величиной характеризуется: работа по перемещению заряда не зависит от траектории, равна разнице потенциалов начальной и конечной точки. Следовательно, на замкнутой траектории равна нулю.

Нулевой потенциал и потенциальное поле

Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал – универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.

Зарисовка напряжённости поля

В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль.

В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты.

При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.

На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным. Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль. Это становится возможным в трёхфазных цепях.

На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное.

Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения.

Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.

В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками. Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления. Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.

Однако цепи с изолированной нейтралью используются и в целях безопасности. Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт – разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике.

Падение потенциала во внешней электрической цепи

Внешней электрической цепью называется участок, находящийся за пределами источника. На практике ЭДС вырабатывается на вторичных обмотках трёхфазного трансформатора подстанции, считаясь источником. Начиная с вывода, идёт внешняя цепь.

На ней потенциал падает от фазного напряжения до нейтрали. Речь идёт о рядовых потребителях. Когда в дом приходит электричество, это неизменно система трёхфазного тока. Нейтраль глухо заземлена, чтобы обеспечить нужный уровень безопасности. Жилой дом не гарантирует равномерную загрузку всех фаз, через нейтраль потечёт ток. Если цепь использовать для защиты, не возникает полной гарантии безопасности: путь тока способен пролечь через человека, неожиданно взявшегося за заземлитель.

Следовательно, нужно обеспечить два нулевых проводника: рабочий и защитный. Через первый производится зануление металлических частей объекта, через второй – заземление.

Причём за рубежом принято делить две ветви на две разные линии, а в РФ они объединяются в районе контура заземления. Первое сделано для надёжной защиты, второе – для возможности работы в здании трёхфазного оборудования (вдруг пригодится!).

Если в промышленной установке оставить лишь заземление корпуса, это плохо окончится для неудачника, попавшего под электрический потенциал.

Следовательно, западная система хороша для однофазного оборудования. Но за счёт унифицированности система РФ сложнее. Импортное оборудование плохо сочетается с российскими условиями: фильтры питания рассчитаны так, чтобы защитный и рабочий нулевые проводники не пересекались. Причина в электрическом потенциале:

  1. На защитном проводнике всегда потенциал грунта – нуль.
  2. На рабочем допустимо иное значение за счёт падения напряжения на проводах линии электроснабжения.
ЭТО ИНТЕРЕСНО:  Как сопротивление проводника зависит от его размеров

Система TN-C-S

Чтобы выровнять разницу, линии на входе в здание объединяют и заводят на контур громоотвода. Что для импортной техники не становится идеальным решением, предприятия-поставщики электроэнергии несут потери. Это известная система TN-C-S, применяющаяся в РФ. Дома, возведенные ещё в СССР, понемногу переоборудуются.

Источник: https://VashTehnik.ru/enciklopediya/elektricheskij-potencial.html

Что такое разность потенциалов

Как возникает разность потенциалов

Во многих случаях для того, чтобы правильно уяснить суть вопроса, касающегося электротехники, необходимо точно знать, что такое разность потенциалов.

Определение разности потенциалов

Общее понятие состоит в электрическом напряжении, образованном между двумя точками, и представляющем собой работу электрического поля, которую необходимо совершить для перемещения из одной точки в другую положительного единичного заряда.

Таким образом, в равномерном и бесконечном электрическом поле положительный заряд под воздействием этого поля будет перемещен на бесконечное расстояние в направлении, одинаковым с электрическим полем.

Потенциал конкретной точки поля представляет собой работу, производимую электрическим полем при перемещении из этой точки положительного заряда в точку, удаленную бесконечно.

При перемещении заряда в обратном направлении, внешними силами производится работа, направленная на преодоление электрической силы поля.

Разность потенциалов на практике

Разность потенциалов, существующая в двух различных точках поля, получила понятие напряжения, измеряемого в вольтах. В однородном электрическом поле очень хорошо просматривается зависимость между электрическим напряжением и напряженностью электрического поля.

Точки с одинаковым потенциалом, расположенные вокруг заряженной поверхности проводника, полностью зависят от формы этой поверхности. При этом разность потенциалов для отдельных точек, лежащих на одной и той же поверхности имеет нулевое значение. Такая поверхность проводника, где каждая точка обладает одинаковым потенциалом носит название эквипотенциальной поверхности.

Когда происходит приближение к заряженному телу, происходит быстрое увеличение потенциала, а расположение эквипотенциальных поверхностей становится более тесным относительно друг друга. При удалении от заряженных тел, расположение эквипотенциальных поверхностей становится более редким. Расположение электрических силовых линий всегда перпендикулярно с эквипотенциальной поверхностью в каждой точке.

В заряженном проводнике все точки на его поверхности обладают одинаковым потенциалом. То же значение имеется и во внутренних точках проводника.

Проводники, имеющие различные потенциалы, соединенные между собой с помощью металлической проволоки. На ее концах появляется напряжение или разность потенциалов, поэтому вдоль всей проволоки наблюдается действие электрического поля. Свободные электроны начинают двигаться в направлении увеличения потенциала, что вызывает появление электрического тока.

Падение потенциала вдоль проводника

Источник: https://electric-220.ru/news/chto_takoe_raznost_potencialov/2014-01-05-482

Физические основы полупроводников

На практике используются контакты: полупроводник-полупроводник, полупроводник — металл, металл — диэлектрик — полупроводник.

Переход между двумя областями полупроводника с разно­типной проводимостью называется электронно-дырочным перехо­дом или p-n переходом.

Переходы между двумя областями с различной концентрацией примесей одного типа называют электронно-электронными (n+n переход) или дырочно-дырочным (p+ — p), знак «+» означает повы­шенную концентрацию примесей по сравнению со вторым слоем.

Переходы между двумя полупроводниковыми материалами, имеющими различную ширину запрещенной зоны, называют ге­теропереходами. Если одна из областей, образующих переход, является металлом, то такой электрический переход называют переходом металл — полупроводник.

Концентрации основных носителей заряда в p-n переходе мо­гут быть равными или значительно различаться. Электронно-дырочный переход, у которого ppnp, называется симметричным.

Если концентрации основных носителей наряда в областях различны (nnpp или ppnn) и отличаются на два-три по­рядка, то p-n переходы называют несимметричными. Такие пере­ходы на практике используются чаще, чем симметричные.

В зависимости от характера распределения примесей разли­чают две разновидности переходов: резкий (ступенчатый) и плав­ный. При резком переходе концентрации примесей на границе раздела областей изменяются на расстоянии, соизмеримом с диф­фузионной длиной, а при плавном— на расстоянии, значительно большем диффузионной длины.

pn переход в состоянии равновесия

Прежде всего, необходимо сказать, что данные рассуждения действительны при условии, что:

1) на границе раздела p- и n — областей отсутствуют механиче­ские дефекты и включения других химических веществ;

2) при комнатной температуре все атомы примеси ионизированы, т.е. pp = Nа, nn = Nд;

3) на границе p-n перехода тип примеси резко изменяется.

Поскольку концентрация элек­тронов в n-области намного боль­ше их концентрации в р-области, а концентрация дырок в р-области намного больше, чем в n-области (nn ≫ np, pp ≫ pn), то на границе раздела полупроводников возникает градиент (перепад) концентрации подвижных носителей заряда (дырок и электронов):

Рисунок 3 — p-n переход в состоянии равновесия.

Под его действием заряды будут диффундировать из области с более высокой концентрацией в область с пониженной концен­трацией.

Направленное движение свободных носителей, вызван­ное их неравномерным распределением в объеме полупроводника, называют диффузионным движением. Электроны под действием диффузии перемешаются из n-области в p-область, а дырки пере­мещаются из p-области в n-область.

Это движение зарядов (основ­ных носителей) образует диффузионный ток p-n перехода, содер­жащий две составляющие: электронную и дырочную, плотность которых определяется из соотношений:

где:

— градиенты концентраций электронов и дырок соответственно;

Dn и Dp – коэффициенты диффузии электронов и дырок соответственно;

q – заряд электрона.

Коэффициент диффузии показывает количество носителей заряда, пересекающих в единицу времени единичную площадку, перпендикулярную к выбранному направлению, при величине градиента концентрации в этом направлении, равном единице.

В результате протекания диффузионного тока граничный слой обедняется подвижными носителями заряда. В приконтактной области n-типа появляется нескомпенсированный малоподвижный положительный заряд за счет ионов донорной примеси, а в р-области — отрицательный заряд за счет ионов акцепторной примеси.

Таким образом, на границе p- и n-областей возникает двой­ной слой объемного пространственного заряда, наличие которого приводит к образованию электрического поля, напряженность которого равна Eдиф.

Это поле препятствует дальнейшему проте­канию диффузионного тока (тока основных носителей).

Посколь­ку обедненный слой обладает малой электропроводностью (в нем практически отсутствуют подвижные носители заряда), то он на­зывается запирающим слоем или областью объемного заряда.

В n- и р-областях полупроводника, кроме основных носителей, существуют неосновные: дырки в n-области и электроны в р-области. Неосновные носители совершают тепловое движение (дрейф) и перемещаются к запирающему слою p-n перехода. Их перемещение характеризуется подвижностью µ. Подвижность равна средней скорости , приобретаемой носителями заряда в направле­нии действия электрического поля с напряженностью E= 1 В/м:

Поле p-n перехода является ускоряющим для неосновных носителей заряда. Электроны (неосновные носители р-области), подойдя к переходу, подхватываются электрическим полем и пе­ребрасываются в n-область, а дырки n-области — в р-область. Дрейф неосновных носителей вызывает появление электронной и дырочной составляющих тока дрейфа, плотность которых опреде­ляется из соотношений:

где:

n, p – количество электронов и дырок соответственно.

Полная плотность тока дрейфа (тепловой ток):

Если вспомнить вид закона Ома в дифференциальной форме (если воспоминания даются тяжело, то: ), то можно легко заметить, что удельная проводимость полупроводника определяется соотношением:

При комнатной температуре некоторое количество основных носителей заряда обладает энергией, достаточной для преодоления поля запирающего слоя, и протекает незначительный диффу­зионный ток. Этот ток уравновешивается дрейфовым током. По­этому при отсутствии внешнего поля в p-n переходе устанавливается термодинамическое равновесие токов. Ток диф­фузии уравновешивается (компенсируется) дрейфовым током:

Не равномерность концентрации носителей зарядов в полу­проводнике возникает при воздействии внешних управляющих факторов: электрического поля, нагревания, освещения и др. Равновесие концентраций электронов и дырок в полупроводнике нарушается и появляется дополнительная неравновесная концен­трация носителей заряда. После прекращения внешнего воздействия происходит процесс рекомбинации электронов и дырок. По­лупроводник переходит в равновесное состояние.

Контактная разность потенциалов

Вы наверняка уже заметили, что раз у нас есть области с противоположными по знаку зарядами, то должно присутствовать какое-то напряжение. Это напряжение называется контактной разностью потенциалов Uк, и составляет: для кремния (Si) Uк = 0.9-1.2 В; для германия (Ge) Uк = 0.6-0.7 В.

Величина контактной разности потенциалов (потенциального барьера) определяется положением уровней Ферми в областях n- и p-типа:

Для нахождения аналитического выражения контактной разности потенциалов можно воспользоваться условием равновесного состояния p-n перехода, и соотношением Эйнштейна для коэффициента диффузии и подвижности носителей заряда:

где:

— тепловой потенциал (е – элементарный заряд электрона, k – постоянная Больцмана, Т – абсолютная температура);

В результате получается:

Отсюда следует, что контактная разность потенциалов зависит:

1) от ширины запрещенной зоны полупроводника. При оди­наковых концентрациях примесей она выше у полупроводников с большей шириной запрещенной зоны;

2) от концентрации примесей в смежных областях полупро­водника. При их увеличении контактная разность потенциалов возрастает;

3) от температуры полупроводника. При ее увеличении кон­тактная разность потенциалов уменьшается.

Толщина p-n перехода также будет зависеть от концентрации примесей:

где:

— контактная разность потенциалов;

— относительная диэлектрическая проницаемость материала и вакуума соответственно;

— заряд электрона;

— концентрации донорной и акцепторной примесей соответственно.

Источник: https://electronov.net/info-part/index/active-elements/physics-base/2/

Разность потенциалов

Поскольку электрический ток является упорядоченным движением заряженных частиц, то для определения величины тока необходимо знать, как величину энергии частиц, так и силу стороннего воздействия на них.

Сущность понятия потенциальной разницы

Для изучения свойств заряженных частиц, помещенных в электростатическое поле, введено понятие потенциала. Оно означает отношение энергии заряда, помещенного в электростатическое поле, к его величине.

При переносе заряженной частицы в другую точку поля меняется его потенциальная энергия, а величина заряда остается неизменной. Для переноса требуется затратить некоторое количество энергии. Данная энергия по переносу единицы заряда получила название электрического напряжения. Соответственно, больший запас энергии будет ускорять перенос, то есть, чем больше напряжение, тем больше ток в цепи.

В данном случае разность потенциалов – это численное равенство напряжению между точками нахождения единичного заряда. Для общего случая здесь должна добавляться работа сторонних сил, которая называется электродвижущей силой (ЭДС). По своей сути, электричество – это работа стороннего источника (генератора) по поддержанию в электросхеме заданных уровней напряжения и тока.

Единица разности потенциалов

Что такое потенциал в электричестве

В честь ученого (Алессандро Вольта), впервые доказавшего существование разницы потенциалов, единица измерения названа Вольт. В международной системе единиц напряжение обозначается символами:

  • В – в русскоязычной литературе;
  • V – в англоязычной литературе.

Кроме этого, существуют кратные обозначения:

  • мВ – милливольт (0.001 В);
  • кВ – киловольт (1000 В);
  • МВ – мегавольт (1000 кВ).

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

F=q∙E+q∙vхB,

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение.

Силу F воздействия на частицу принято называть силой Лоренца.

Поток вектора магнитной индукции

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Теорема Гаусса для магнитного поля

Электрическое поле — что это такое, понятие в физике

Теорема Гаусса является одной из самых основных в электродинамике законов. Существуют теоремы Гаусса для электрического и магнитного полей, которые входят в состав уравнений Максвелла.

При помощи данного закона устанавливается связь между напряженностью электрического поля и заряда в случае произвольной поверхности. Теорема (закон) Гаусса гласит, что в произвольной замкнутой поверхности поток вектора электрического поля пропорционален заряду, заключенному внутри поверхности.

Для магнитного поля теорема Гаусса говорит о том, что поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Выражение для потенциала поля точечного заряда

Поскольку потенциал равен интегралу от напряженности поля, то можно подставить под знак интеграла выражение для напряженности поля единичного заряда. После интегрирования и преобразования выражение для поля точечного заряда принимает вид:

ϕ=q/(4∙π∙ε0∙ε∙r),

где:

  • ε0 – электрическая постоянная;
  • r – расстояние.

Приведенное выражение свидетельствует, что величина энергии растет пропорционально степени заряженности и падает пропорционально расстоянию.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Электроемкость уединенного проводника

Для связи величин заряда и напряжения введено понятие электрической емкости. Для уединенного проводника (такого, на который отсутствует влияние других заряженных тел) значение емкости – величина постоянная и равная отношению количества заряда к потенциалу. Другими словами, емкость показывает, какой заряд нужно сообщить проводнику, чтобы его потенциальная энергия увеличилась на единицу.

ЭТО ИНТЕРЕСНО:  Как формулируется закон Ома для участка цепи

Электроемкость не зависит от степени заряженности. Роль играют только:

  • форма;
  • геометрические размеры;
  • диэлектрические свойства среды.

Так же, как и емкость электрического конденсатора, электроемкость проводника будет обозначаться в фарадах.

Обратите внимание! На практике электроемкость проводника составляет очень малую величину. Для увеличения значения, особенно при производстве конденсаторов, как элементов с нормированным значением емкости, разработаны особые технологии.

Kvant. Потенциал

А так ли хорошо знаком вам потенциал? // Квант. — 1997. — № 3. — С. 32-33.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

напряжение — усилие, производимое каждой точкой наэлектризованного тела, чтобы избавиться от имеющегося в ней электричества и передать его другим телам

Алессандро Вольта

Электродвижущее действие проявляется в двоякого рода эффектах Я назову первый из этих эффектов электрическим напряжением

Андре Мари Ампер

Учитывая, насколько желательно подчинить расчету силу столь универсального характера, как электричество,.. мы можем сосредоточить свое внимание на одной особой функции,..вместо того чтобы рассеивать свое внимание, исследуя каждую из этих сил в отдельности

Джордж Грин

В каждой точке пространства имеется число, и, когда вы переходите с места на место, это число меняется. Если в какой-то точке пространства поместить предмет, то на него будет действовать сила в том направлении, в котором быстрее всего изменяется это число (я дам ему обычное название — потенциал).

Ричард Фейнман

Между первым и последним из приведенных высказываний — почти двести лет. Они вобрали в себя одну из самых интересных историй о становлении одного из самых замысловатых физических (и не только!) понятий.

Согласитесь, нелегко обнаружить главного персонажа этой истории, скрывающегося под масками то напряжения, то электродвижущей силы, то некой загадочной функции. Все это — потенциал.

А со сколькими его разновидностями вам, возможно, еще придется встретиться: контактная разность потенциалов, потенциал ионизации, гравитационный потенциал А каковы имена ученых, распутывавших терминологический клубок и шлифовавших новое понятие, — Эйлер, Лаплас, Пуассон, Грин, Гаусс!..

Правда, не сразу поймешь, физики ли это или математики? Не удивляйтесь, универсальность этого понятия связана с огромной областью плодотворных его применений — в задачах о распространении тепла, о течении жидкости, в расчетах гравитационных, электрических и магнитных полей.

Пробуя свои силы в решении пусть пока простых проблем, не забывайте о том, что современная теория потенциала — весомый «камень» в фундаменте целой отрасли знаний, называемой математической физикой.

Вопросы и задачи

  1. Потенциал электрического поля некоторого заряда убывает по мере удаления от него. Каков знак этого заряда?
  2. Всегда ли между проводником, заряженным положительно, и проводником, заряженным отрицательно, есть разность потенциалов?
  3. На расстоянии r от центра изолированного проводящего незаряженного шара находится точечный заряд q. Чему равен потенциал шара?
  4. Имеется заряженная сфера.

    Зависит ли потенциал в центре сферы от распределения зарядов на сфере?

  5. Внутрь проводящей заряженной сферы через небольшое отверстие вносится (без соприкосновения) металлический шарик, заряд которого равен по величине, но противоположен по знаку заряду сферы.

    Как изменится потенциал сферы?

  6. Как меняется потенциал поля сферического конденсатора с радиусами внутренней обкладки R1, (заряд +q) и внешней R2 (заряд —q) в зависимости от расстояния r от центра сфер? Начертите график.
  7. Двум удаленным друг от друга проводникам сообщены положительные заряды так, что потенциал первого 100 В, а второго 50 В.

    Будут ли положительные заряды переходить с первого проводника на второй, если привести их в соприкосновение (никаких других тел вблизи нет)?

  8. Пробный шарик соединяют проволочкой с электрометром и обводят по всему контуру заряженного тела, изображенного на рисунке.

    Будут ли при этом меняться показания электрометра? Почему для этого опыта берут длинную проволочку?

  9. В однородное электрическое поле плоского конденсатора помещен проводящий незаряженный шар так, что центр его находится на равных расстояниях от пластин конденсатора. Потенциалы пластин равны +100 В и -100 В соответственно.

    Что представляет собой поверхность нулевого потенциала?

  10. Упругий металлический шарик, несущий заряд q, закреплен на изолирующей упругой подставке. На него с высоты h падает точно такой же и так же заряженный второй шарик. На какую высоту поднимется второй шарик после удара о первый?
  11. По гладкой наклонной плоскости, составляющей угол 45° с горизонтом, соскальзывает небольшое тело, несущее заряд —q.

    Повлияет ли на его скорость у основания наклонной плоскости заряд +q, закрепленный так, как показано на рисунке?

  12. Между точками А и В некоторой цепи, содержащей конденсаторы, разность потенциалов равна U.

    Если к этим точкам присоединить конденсатор емкостью С, то будет ли его заряд равен CU?

  13. Параллельно пластинам заряженного и отключенного от батареи плоского конденсатора вводят незаряженную металлическую пластину, толщина которой в два раза меньше расстояния между обкладками. Как изменится разность потенциалов между обкладками?
  14. Почему к оборванному трамвайному проводу, лежащему на земле, следует подходить все более мелкими шажками?
  15. Между любыми двумя точками однородного проволочного кольца разность потенциалов равна нулю, а ток в кольце существует. Когда это возможно?
  16. Можно ли, находясь в самолете, летящем в магнитном поле Земли, обнаружить разность потенциалов, возникающую между концами крыльев самолета?
  17. Вольфрамовый шарик, находящийся в вакууме, облучают ультрафиолетовым светом. Как со временем будет меняться потенциал шарика?

Микроопыт

Известно, что вблизи поверхности Земли напряженность электрического поля такова, что на расстоянии между уровнем вашего носа и уровнем пяток разность потенциалов составляет около 200 В. Сможете ли вы использовать это напряжение, чтобы зажечь электрическую лампочку? Не опасно ли такое напряжение для вас?

Любопытно, что

Вольта, обнаруживший контактную разность потенциалов, введший в науку термин «напряжение», отмеченный потомками присвоением единице электрического напряжения наименования «вольт», создавший «вольтов столб» — «самый замечательный, — по словам французского ученого Доминика Араго, — прибор, когда-либо изобретенный людьми, не исключая телескопа и паровой машины», не имел ни малейшего представления о том, как и почему этот прибор работает.

прохождение тока через электролит приводит к появлению ЭДС, направленной «навстречу» приложенной извне. На это явление, названное гальванической поляризацией, натолкнулись в начале XIX века. В дальнейшем оно легло в основу изобретения кислотного аккумулятора.

задачу о распределении электричества на проводнике заданной формы наметил в свое время Кулон. Именно решая такого рода задачи, Пуассон, еще до Грина и Гаусса, пришел к мысли ввести некоторую функцию, зависящую от координат и принимающую постоянное значение на поверхности проводника.

свою работу «Опыт применения математического анализа к теориям электричества и магнетизма» Грин написал, будучи самоучкой. До сорока лет, когда он поступил (!) в Кембриджский университет, Грин работал пекарем и мельником, самостоятельно штудируя науки. Важно отметить, что, вводя понятие потенциальной функции, Грин не связывал его с понятием работы, еще не используемым в физике.

электрический ток может протекать не только в цепи, где разность потенциалов между двумя произвольно взятыми точками равна нулю, но и течь от меньшего потенциала к большему, как, скажем, внутри источников тока.

существуют такие электрические поля, для которых определить напряженность можно, а потенциал — нельзя. Например, поле, возникающее при электромагнитной индукции. Именно такие («непотенциальные») поля обеспечивают работу трансформаторов и электродвигателей.

крупный угорь «вырабатывает» напряжение до 600 вольт при токе до 1 ампера. Это оказывается возможным за счет множества цепочек из последовательно соединенных электрических клеток, в каждой из которых создается разность потенциалов около 0,15 вольта. Сами же цепочки «подключаются» параллельно, поэтому суммарным током угорь способен оглушить или даже убить жертву.

когда вы двигаетесь по ковру и, прикоснувшись к чему-либо, извлекаете электрические искры до сантиметра длиной, ваш потенциал составляет от 10000 до 20000 вольт.

разность потенциалов (например, между облаком и землей) при возникновении молнии достигает 4 миллиардов вольт, а типичное значение силы тока в молнии порядка 20000 ампер.

диапазон используемых человеком напряжений «раскинулся» на 12 порядков. Максимально достижимые из них ограничены электрической прочностью изоляторов и составляют миллионы вольт. Минимальные напряжения, с которыми имеют дело в технике, порядка долей микровольта.

Что читать в «Кванте» о потенциале

  1. «Гроза и грозоотвод» — 1991, № 1, с. 35;
  2. «Энергия электрического поля» — 1991, № 8, с. 58;
  3. «Первый источник электрического тока» — 1992, № 1, с. 35;
  4. «Заряженные частицы в электростатическом поле» — 1993, № 11/12, с. 53;
  5. «Электромагнитная индукция» — 1995, № 3, с. 45;
  6. «Метод электростатических изображений» — 1996, № 1, с.

    42;

  7. Калейдоскоп «Кванта» — 1996, № 3, с. 32;
  8. «Электризация капель жидкости» — 1996, № 5, с. 44;
  9. «Движение тел в гравитационных полях» — 1997, № 1, с. 45;
  10. «Занимательный электролиз» — 1997, № 2, с. 40;
  11. «Участок цепи с источником тока» — 1997, № 3, с. 35;
  12. «Потенциал электростатического поля» — 1997, № 3, с. 41.

Ответы

  1. Положительный.
  2. Нет, не всегда. Разность потенциалов может отсутствовать, если проводники находятся в поле, созданном другими заряженными телами (см., например, рисунок, где шары А и В зарядились по индукции под действием внешнего однородного поля).

Источник: http://www.physbook.ru/index.php/Kvant._%D0%9F%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB

Коробка уравнивания потенциалов

> Теория > Коробка уравнивания потенциалов

Для того чтобы понять, как осуществляется выравнивание потенциалов, надо разобраться с понятием потенциалы и разницы между ними.

Схема подключения уравнивания потенциалов

Что такое электрический потенциал и разница потенциалов

Для наглядности можно рассмотреть доходчиво на простом примере две металлических монеты, которые нагреть до разных температур:

ΔТ = 100 – 70 = 30  ̊С – разница температур будет в 30 градусов.

Если соединить монеты, тепло начнет перемещаться: более нагретая – будет отдавать тепло и остывать, менее нагретая – принимает тепло, разогревается больше. Таким образом, происходит теплообмен до выравнивания температуры на двух монетах.

В нашем случае рассматривается электрический потенциал, монеты или другие предметы можно зарядить электрическим зарядом, в этом случае будет перемещаться не тепло, а заряженные частицы от большего заряда к меньшему заряду, произойдет выравнивание потенциалов до сбалансированного состояния зарядов. Таким образом, временно возникает электрический ток.

В международной системе измерения СИ электрический потенциал измеряют как работу электрического поля по перемещению положительного заряда из определенной точки магнитного поля на бесконечно удаленное расстояние.

Величина потенциала измеряется вольтами:

1В = 1Дж/1Кл, где:

  • Дж – энергия магнитного поля, измеряется в Джоулях;
  • Кл – величина заряда, измеряется в Кулонах;

Разница между потенциалами двух зарядов, как в случае с нагревом монет, будет:

ΔВ = 100В – 70В = 30В.

Разность потенциалов уравнение

Разницу потенциалов в электрических цепях между двумя токопроводящими поверхностями, чаще всего это бывают провода, корпуса электроустановок, водопроводные тубы, шины заземления, называют напряжением и обозначают буквой «U».

Не вдаваясь в подробности физических процессов, принимается за аксиому, что в промышленных электрических цепях за объект с абсолютно нулевым потенциалом принимается земля. Поэтому напряжение в цепи измеряется относительно заземляющего контура.

Разность потенциалов в сети и угроза для людей

Распределительная коробка

На рабочих местах в офисах, на производственных линиях большое количество электрооборудования. Оно имеет металлические корпуса для экранирования элементов схем от побочных электромагнитных наводок, которые отрицательно влияют на работу оборудования.

Заводские станки на производстве по причине производственных условий имеют прочные металлические корпуса и много другого оборудования внутри. Все корпуса обязательно заземляются на общий контур заземления.

Промежуточным элементом между общей шиной заземления и элементами, подлежащими заземлению, может быть шина уравнивания потенциалов.

Одним из вариантов, который активно применяется потребителями, считается шина дополнительного уравнивания потенциалов шдуп. Коробки серии шдуп у4 имеют эстетичный вид и удачно вписываются в интерьер.

При замыкании токоведущих частей в приборе на корпус через него начинает проходить ток. Это может произойти при механических повреждениях, деформации металлических листов корпуса или смещения отдельных элементов внутри прибора. Иногда перетирается изоляция проводов, и возникает утечка тока на корпус или короткое замыкание.

Когда контакты заземления надежны, сработает защита, или отдельные элементы прибора выйдут из строя, линия будет обесточена. В этих случаях угроза поражения электрическим током исключается.

Возникающие токи через корпус будут уходить на заземляющий контур, при нарушении заземления, ненадежных контактах на шинах или корпусах, обрывах заземляющих проводников возникает угроза для работающего персонала.

Если коснуться неисправного прибора без заземления, токи на корпусе начинают протекать через человеческое тело. Особенно опасна ситуация, когда прикосновения происходят в двух точках: незаземленного прибора и любого заземленного элемента интерьера, металлического пола, соседнего прибора, батареи, шины заземления или другого объекта. В этом случае тело человека исполняет роль нагрузки, через которую протекает ток на землю.

Пример поражения током в левой части и защита, когда произведено выравнивание потенциалов, в правой части

Напряжение (разность потенциалов) при коротком замыкании фазы на корпус будет равно 220В. При повреждении изоляции проводов оно может быть меньше, это зависит от того, насколько изоляция сохранила свои диэлектрические свойства. Переменное напряжение выше 42В уже может представлять угрозу для человеческой жизни.

Места прикосновений имеют большое значение, некоторые варианты, когда маршрут протекания тока идет через сердце, считаются наиболее опасными, могут привести к смертельному исходу:

  • Через грудь и руки;
  • Через руки в ноги;
  • Особенно опасен маршрут через левую руку, сердце и правую или левую ногу.

В бытовых условиях частного дома или квартиры опасность от разности потенциалов возникает в помещениях с повышенной влажностью. В ванной комнате и на кухне сосредоточено большое количество электрической бытовой техники:

  • Стиральные машины;
  • Микроволновая печь;
  • Холодильник;
  • Нагревающий котел и другая техника.

Большую опасность представляют электрические приборы, находящиеся рядом с трубами водоснабжения или отопления, совмещающие функции электрического оборудования с циркуляцией воды. Вода является хорошим проводником электрического тока, при плохом заземлении стиральная машина, струя из крана, раковина или ванна могут бить током.

Вариант схемы подключения объектов к шине выравнивания потенциалов

Важным моментом является то, что заземление электрических цепей металлических конструкций, канализации, водоснабжения, отопления имеет отдельные несвязанные контура. Даже если все они уходят в землю, то имеют различные сопротивления заземления.

Когда не установлена дополнительная система уравнивания потенциалов между фазой, контуром заземления, системами отопления и водоснабжения, будет разное напряжение. Это создает между ними разность потенциалов, при утечке тока с фазы на любую из коммуникаций.

Напряжение можно замерить обычным мультиметром в режиме измерения переменного напряжения на пределе 200 или 750 В.

Например:

  • Между фазой и отоплением – 180 В;
  • Фаза – водоснабжение – 120В.

При таком раскладе при неисправной стиральной машине без заземления при соприкосновении с корпусом и металлической водопроводной трубой через тело пройдет переменный ток напряжением 120В. Даже между водопроводом и контуром отопительной системы будет:

U (отопление – водопровод) = 180В – 120В = 60В, это вполне достаточно чтобы травмировать человека током при прикосновении к этим коммуникациям одновременно.

В современных условиях металлические трубы в многоквартирных домах меняют на пластиковые отдельными участками. Самая плохая ситуация, когда соседи сверху и снизу заменили, а на промежуточном этаже остались металлические конструкции, они никак не замкнуты на землю. В этом случае напряжение:

  • Фаза – водоснабжения может быть еще меньше 20-30В, казалось бы, хорошо, это не смертельно;
  • Но при утечке разница потенциалов отопление – водоснабжения будет еще больше 180В-30В = 150В.

К сведению. Для того чтобы дополнительная система уравнивания потенциалов была эффективна, в электрических сетях на различных объектах используется коробка уравнивания потенциалов.

Конструкция и подключение коробки уравнивания потенциалов (КУП)

Что такое уравнивание потенциалов? По своей сути, коробка для выравнивания потенциалов (КУП) представляет собой обычное коммутационное устройство: в пластиковом корпусе крепится латунная шина с отверстиями под болтовое крепление проводников. Выравнивание потенциалов конструкцией различных коммуникаций осуществляется подключением их к единому контуру заземления, который работает как уравнитель электрических потенциалов.

Внешний вид коробки модели шдуп у4

КУП рекомендуется устанавливать в ванной комнате, на кухне, где проходят стояки различных сантехнических коммуникаций, при этом обеспечивается беспрепятственный доступ к ней.

Дополнительная система выравнивания потенциалов ДСУП имеет несколько вариантов коробок, одна из наиболее эффективно используемых – куп2603. Они очень удобны, в моделях куп2603 и куп куп2603 1 хорошо сочетается цена и качество, поэтому они так популярны у потенциальных покупателей. Удачный вариант для различных вариантов ДСУП.

Пример подключения труб к шине КУП

На шину коробки в ДСУП подключается вся доступная к прикосновению в помещении бытовая электротехника.

Обратите внимание! Система уравнивания потенциалов по ПУЭ (правила устройства электроустановки) издание №7 п. 7.1.88 требует в ванной комнате все токопроводящие конструкции различных коммуникаций, выходящих за пределы помещения, подключать на шину КУП. Над нагревательными элементами пола, залитыми в бетон, закладывается металлическая сетка, которая также подключается к КУП.

Примерный перечень подключаемых элементов:

  • Шина РЕ заземления в РЩ как элемент заземляющего контура;
  • Металлическая труба водоотвода (канализация);
  • Трубы водопровода холодного и горячего стояков;
  • Все отводы заземления бытового электрооборудования;
  • Трубы отопительной системы;
  • Металлический корпус ванной и раковины.

Пример подключения ванны к шине КУП

Все соединения ДСУП рекомендуется осуществлять проводом ПВ 1х4 с ПВХ изоляцией желто-зеленого цвета.

После выравнивания потенциалов с помощью ДСУП напряжения между конструкциями различных коммуникаций не будет, следовательно, при прикосновении к ним нет оснований опасаться ударов электрическим током.

Источник: https://elquanta.ru/teoriya/korobka-uravnivaniya-potencialov.html

Что такое электрический потенциал простыми словами — Электрик

Электрический потенциал – это скалярная физическая величина, характеризующая напряжённость поля. Через параметр также выражается электрическое напряжение.

Что такое электрический потенциал простыми словами – Все об электричестве

Всем привет, на связи с вами снова Владимир Васильев.  Новогодние празднования подходят к концу, а значить надо готовиться к рабочим будням, с чем вас дорогие друзья и поздравляю! Хех,  только не надо расстраиваться и впадать в депрессию, нужно мыслить позитивно.

Так вот в эти новогодние праздники я как-то размышлял о аудитории моего блога: «Кто он? Кто тот посетитель моего блога, что каждый день заходит почитать мои посты?».  Может быть это прошаренный  спец зашел из любопытства почитать что я тут накалякал?  А может это какой -нибудь доктор радиотехнических наук зашел посмотреть как спаять схему мультивибратора?

Источник: https://electricdo.ru/chto-takoe-elektricheskij-potencial-prostymi-slovami.html

Электрическое поле: определение, классификация, характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в  электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородноеэлектрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию.

Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3).

Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4).  Их неоднородность очевидна.

Рис. 3. Электрический диполь Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ=W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией,  называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

  • электростатического;
  • дипольного;
  • системы и одноимённых зарядов;
  • однородного поля.

Рис. 7. Линии напряжённости различных полей

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

  • метод сеток или конечных разностей;
  • метод эквивалентных зарядов;
  • вариационные методы;
  • расчёты с использованием интегральных уравнений и другие.

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Источник: https://www.asutpp.ru/elektricheskoe-pole.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Для чего применяется заземление станка

Закрыть