Как рассчитать общее сопротивление при параллельном соединении

Последовательное и параллельное соединение резисторов

Как рассчитать общее сопротивление при параллельном соединении

Здравствуйте, уважаемые читатели сайта sesaga.ru. Очень часто в практике радиолюбителя при повторении или наладке радиоэлектронных устройств не всегда под рукой оказывается резистор с нужным сопротивлением, хотя резисторов с другими сопротивлениями имеются в достаточном количестве.

В такой ситуации поступают просто: берут несколько резисторов (два или три) с разными сопротивлениями и, соединяя их последовательно или параллельно, подбирают нужное сопротивление.

В этой статье Вы узнаете, как применяя то или иное соединение можно подобрать необходимое сопротивление.

Последовательное соединение резисторов

Последовательным называют соединение, при котором резисторы следуют друг за другом и образуют электрическую цепь из нескольких элементов, в которой конец одного резистора соединен с началом другого и т.д.

В последовательной цепи электрической ток поочередно протекает по всем резисторам и преодолевает сопротивление каждого из них. При этом ток в этой цепи одинаков. И если последовательно соединить два резистора R1 и R2, их общее (полное) сопротивление Rобщ будет равно сумме их сопротивлений. Это условие справедливо для любого числа резисторов, где:

Например.
При соединении двух резисторов с номиналами R1 = 150 Ом и R2 = 330 Ом их общее сопротивление составит Rобщ = 150 + 330 = 480 Ом.

При соединении трех резисторов R1 = 20 кОм, R2 = 68 кОм и R3 = 180 кОм их общее сопротивление составит Rобщ = 20 + 68 + 180 = 268 кОм.

Запомните. Из нескольких соединенных последовательно резисторов их общее сопротивление Rобщ определяет тот, у которого сопротивление больше по отношению к другим резисторам в этой цепи.

Параллельное соединение резисторов

При параллельном соединении резисторов соединяются их одноименные выводы: начальные выводы соединяются в одной точке, а конечные выводы в другой. Такой способ включения облегчает прохождение электрическому току, потому что он разветвляясь, одновременно протекает по всем соединенным таким образом резисторам.

При параллельном соединении резисторов складываются не сопротивления, а их электрические проводимости (величины, обратные сопротивлениям, т.е. 1/R), поэтому общее (полное) сопротивление Rобщ уменьшается и всегда меньше сопротивлений любого резистора в этой цепи. Формула для определения полного сопротивления имеет вид:

Если параллельно включены два резистора с сопротивлениями R1 и R2, тогда основную формулу немного упрощаем и получаем:

При включении трех резисторов расчет общего сопротивления будет таким:

Например.
При соединении двух резисторов с номиналами R1 = 47 кОм и R2 = 68 кОм их общее сопротивление составит Rобщ = 47•68 / (47 + 68) = 27,8 кОм.

При соединении трех резисторов R1 = 10 Ом, R2 = 15 Ом и R3 = 33 Ом их общее сопротивление равно Rобщ = 10•15•33 / (15•33) + (10•33) + (10•15) = 5,07 Ом.

На заметку. При соединении двух резисторов с одинаковыми номиналами их общее сопротивление Rобщ равно половине сопротивления каждого из них.

Из приведенных примеров можно сделать вывод, что если необходим резистор с большим сопротивлением, применяют последовательное соединение. Если же резистор необходим с меньшим сопротивлением, применяют параллельное соединение.

Ну вот, в принципе, и все, что хотел сказать о последовательном и параллельном соединении резисторов. И в дополнение к статье предлагаю еще рассмотреть и смешанное соединение.
Удачи!

Источник: https://sesaga.ru/posledovatelnoe-i-parallelnoe-soedinenie-rezistorov.html

Параллельное соединение сопротивлений в электрической цепи. Параллельное соединение конденсаторов и катушек

Как рассчитать общее сопротивление при параллельном соединении

Параллельное соединение электрических элементов (проводников, сопротивлений, емкостей, индуктивностей) — это такое соединение, при котором подключенные элементы цепи имеют два общих узла подключения.

Другое определение: сопротивления подключены параллельно, если они подключены одно и той же паре узлов. 

Графическое обозначение схемы параллельного соеднинения

На приведенном рисунке показана схема параллельное подключения сопротивлений R1, R2, R3, R4. Из схемы видно, что все эти четыре сопротивления имеют две общие точки (узла подключения). 

В электротехнике принято, но не строго требуется, рисовать провода горизонтально и вертикально. Поэтому эту же схему можно изобразить, как на рисунке ниже. Это тоже параллельное соединение тех же самых сопротивлений.

Формула для расчета параллельного соединения сопротивлений

При параллельном соединении обратная величина от эквивалентного сопротивления равна сумме обратных величин всех параллельно подключенных сопротивлений. Эквивалентная проводимость равна сумме всех параллельно подключенных проводимостей электрической схемы.

Для приведенной выше схемы эквивалентное сопротивление можно рассчитать по формуле:

В частном случае при подключении параллельно двух сопротивлений:

Эквивалентное сопротивление цепи определяется по формуле:

 В случае подключения «n» одинаковых сопротивлений, эквивалентное сопротивление можно рассчитать по частной формуле:

Формулы для частного рассчета вытекают из основной формулы. 

Формула для расчета параллельного соединения емкостей (конденсаторов)

При параллельном подключении емкостей (конденсаторов) эквивалентная емкость равна сумме параллельно подключенных емкостей:

Формула для расчета параллельного соединения индуктивностей

При параллельном подключении индуктивностей, эквивалентная индуктивность рассчитывается так же, как и эквивалентное сопротивление при параллельном соединении: 

Необходимо обратить внимание, что в формуле не учтены взаимные индуктивности.

Пример свертывания параллельного сопротивления  

Для участка электрической цепи необходимо найти параллельное соединение сопротивлений выполнить их преобразование до одного.

Из схемы видно, что параллельно подключены только R2 и R4. R3 не параллельно, т.к. одним концом оно подключено к источнику ЭДС E1. R1 — одним концом подключено к R5, а не к узлу. R5 — одним концом подключено к R1, а не к узлу. Можно так же говорить, что последовательное соединение сопротивлений R1 и R5 подключено параллельно с R2 и R4.

Рассчитать эквивалентное сопротивлений R14 можно по формуле для двух сопротивлений.

Ток при параллельном соединении

При параллельном соединении сопротивлений ток через каждое сопротивление в общем случае разный. Величина тока обратно пропорциональна величине сопротивления.

Напряжение при параллельном соединении 

При параллельном соединении разность потенциалов между узлами, объединяющими элементы цепи, одинакова для всех элементов.

Применение параллельного соединения

1. В промышленности изготавливаются сопротивления определенных величин. Иногда необходимо получить значение сопротивления вне данных рядов. Для этого можно подключить несколько сопротивлений параллельно. Эквивалентное сопротивление всегда будет меньше самого большого номинала сопротивления.

2. Делитель токов.

Источник: https://kurstoe.ru/osnovnie-svedeniya/preobrazovanie-tcepej/parallelnoe-soedinenie.html

Параллельное соединение резисторов

Как рассчитать общее сопротивление при параллельном соединении

> Теория > Параллельное соединение резисторов

Параллельные соединения резисторов, формула расчёта которых выводится из закона Ома и правил Кирхгофа, являются наиболее распространённым типом включения элементов в электрическую цепь. При параллельном соединении проводников два или несколько элементов объединяются своими контактами с обеих из сторон соответственно. Подключение их к общей схеме осуществляется именно этими узловыми точками.

Особенности включения

Включённые таким образом проводники нередко входят в состав сложных цепочек, содержащих, помимо этого, последовательное соединение отдельных участков.

Для такого включения типичны следующие особенности:

  • Общее напряжение в каждой из ветвей будет иметь одно и то же значение;
  • Протекающий в любом из сопротивлений электрический ток всегда обратно пропорционален величине их номинала.

В частном случае, когда все включённые в параллель резисторы имеют одинаковые номинальные значения, протекающие по ним «индивидуальные» токи также будут равны между собой.

Расчёт

Параллельное соединение резисторов

Сопротивления ряда соединённых в параллель проводящих элементов определяются по общеизвестной форме расчёта, предполагающей сложение их проводимостей (обратных сопротивлению величин).

Протекающий в каждом из отдельных проводников ток в соответствие с законом Ома, может быть найден по формуле:

I= U/R (одного из резисторов).

После ознакомления с общими принципами обсчёта элементов сложных цепочек можно перейти к конкретным примерам решения задач данного класса.

Пример №1

Нередко для решения стоящей перед конструктором задачи требуется путём объединения нескольких элементов получить в итоге конкретное сопротивление. При рассмотрении простейшего варианта такого решения допустим, что общее сопротивление цепочки из нескольких элементов должно составлять 8 Ом. Этот пример нуждается в отдельном рассмотрении по той простой причине, что в стандартном ряду сопротивлений номинал в 8 Ом отсутствует (есть только 7,5 и 8,2 Ом).

Решение этой простейшей задачи удаётся получить за счёт соединения двух одинаковых элементов с сопротивлениями по 16 Ом каждое (такие номиналы в резистивном ряду существуют). Согласно приводимой выше формуле общее сопротивление цепочки в этом случае вычисляется очень просто.

Из неё следует:

16х16/32=8 (Ом), то есть как раз столько, сколько требовалось получить.

Таким сравнительно простым способом удаётся решить задачу формирования общего сопротивления, равного 8-ми Омам.

Пример №2

В качестве ещё одного характерного примера образования требуемого сопротивления можно рассмотреть построение схемы, состоящей из 3-х резисторов.

Общее значение R такого включения может быть рассчитано по формуле последовательного и параллельного соединения в проводниках.

В соответствии с указанными на картинке значениями номиналов, общее сопротивление цепочки будет равно:

1/R = 1/200+1/220+1/470 = 0,0117;

R=1/0,0117 = 85,67Ом.

В итоге находим суммарное сопротивление всей цепочки, получаемой при параллельном соединении трёх элементов с номинальными значениями 200, 240 и 470 Ом.

Важно! Указанный метод применим и при расчёте произвольного числа соединенных в параллель проводников или потребителей.

Также необходимо отметить, что при таком способе включения различных по величине элементов общее сопротивление будет меньше, чем у самого малого номинала.

Расчёт комбинированных схем

Параллельное соединение проводников

Рассмотренный метод может применяться и при расчёте сопротивления более сложных или комбинированных схем, состоящих из целого набора компонентов. Их иногда называют смешанными, поскольку при формировании цепочек используются сразу оба способа. Смешанное соединение резисторов представлено на размещенном ниже рисунке.

В приведённом выше примере требуется посчитать суммарное значение номиналов цепи, состоящей из трех резисторов.

Для упрощения расчета сначала разбиваем все резисторы по типу включения на две самостоятельные группы. Одна из них представляет собой последовательное соединение, а вторая – имеет вид подключения параллельного типа.

Из приведённой схемы видно, что элементы R2 и R3 соединяются последовательно (они объединены в группу 2), которая, в свою очередь, включена в параллель с резистором R1, принадлежащим группе 1.

Для элементов из группы 2 значение общего сопротивления находится как сумма R2 и R3:

R (2+3) = R2 + R3.

Для получения окончательного результата приводим схему к виду, получаемому при параллельном соединении двух сопротивлений. После этого суммарное значение для всей схемы в целом вычисляется согласно уже рассмотренной ранее формуле.

В заключение отметим, что для проведения расчётных операций, относящихся к категории сложных соединений, можно воспользоваться теми же методиками. В их основу заложены всё те же закон Ома и правила Кирхгофа, известные ещё со школьной скамьи. Главное – это грамотно распорядиться всеми описанными выше формулами.

Последовательное и параллельное соединение аккумуляторов

Источник: https://elquanta.ru/teoriya/parallelnoe-soedinenie-rezistorov.html

Как отличается параллельное и последовательное соединение резисторов?

Большое разнообразие схем основано на двух видах соединений – последовательное параллельное. Для каждого типа существуют свои собственные законы и принципы. Именно это и позволяет создавать устройства с самыми различными техническими параметрами, в том числе и резисторы. Что же такое резистор?

ЭТО ИНТЕРЕСНО:  Для чего нужно заземление оборудования

Резистор – радиодеталь, созданная для контроля напряжения и тока в цепи, увеличивая либо понижая его. Резисторы могут быть двух видов – постоянные и переменные. Так, например, светодиоды требуют для себя совсем небольшого тока. Для этого в электрическую цепочку перед светодиодом устанавливается резистор, который обеспечивает необходимое напряжение для работы последнего.

В статье подробны рассмотрены все аспекты последовательного и параллельного подключения резисторов. Бонусом к статье являются видеоролик и детальная информационная статья на рассматриваемую тему.

Последовательное подключение

Начнем с последовательного соединения. По этой схеме каждый резистор подключается с другим только в одной точке, их может быть в цепи 2, 3 и больше. Обозначим сопротивления: R1, R2, R3 и напряжение источника в цепи Uц. При подключении источника питания в ней начнет протекать ток Iц. В цепи с последовательным соединением ток протекает по всем резисторам один за другим.

Поскольку ток течет через все резисторы их сопротивления и ток суммируется, Iц = I1+I2+I3, Rц = R1 +R2 + R3, чем больше отдельно взятое сопротивление, тем тяжелее электронам преодолевать участок цепи. Мощность резисторов при последовательном и параллельном соединении рассчитывается по разным формулам. В последовательных цепях — складываем, в параллельных — это обратно пропорциональная величина.

Последовательное соединение характеризуется тем, что элементы идут друг за другом. Конец одного подключается к началу другого. При подключении полученной цепочки к источнику тока получается кольцо.

Теоретическая часть

Последовательное соединение характерно тем, что через все элементы протекает ток одинаковой силы. То есть, если цепочка состоит из двух резисторов R1 и R2 (как на рисунке ниже), то ток протекающий через каждое из них и любую другую часть цепи будет одинаковой (I = I1 = I2).

Суммарное сопротивление всей цепи последовательно соединенных резисторов считается как сумма сопротивлений всех ее элементов. То есть, номиналы складывают. R = R1 + R2 — это и есть формула расчета сопротивления при последовательном соединении резисторов. Если элементов больше двух, будет просто больше слагаемых.

Еще одно свойство последовательного соединения — на каждом элементе напряжение отличается. Ток в цепи одинаковый, а напряжение на резисторе зависит от его номинала.

Последовательное подключение.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В. Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток.   R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом.

Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2  А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В.

А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором  — 1600 В.  При этом напряжение источника питания — 4000 В. Последовательное соединение – это соединение двух или более резисторов в форме цепи, в которой каждый отдельный резистор соединяется с другим отдельным резистором только в одной точке.

Материал по теме: Как проверить варистор мультиметром.

Общее сопротивление Rобщ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Схема параллельного соединения

Общее сопротивление участка цепи при таком соединении становится ниже. Его высчитывают по формуле: 1/R = 1/R1 + 1/R + 1/R3+. Такая форма хоть и понятна, но неудобна. Формула расчета сопротивления параллельно подключенных резисторов получается тем сложнее, чем больше элементов соединены параллельно. Но больше двух-трех редко кто объединяет, так что на практике достаточно знать только две формулы приведенные ниже.

Будет интересно➡  SMD резисторы: что это такое и для чего используются?

Если подставить значения в эти формулы, то заметим, что результат будет меньше, чем сопротивление резистора с наименьшим номиналом. Это стоит запомнить: результирующее сопротивление включенных параллельно резисторов будет ниже самого маленького номинала. Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом. Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом. Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Как высчитывать сопротивление составных резисторов

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом. При соединении параллельно трех резисторов, считать приходится больше, так как формула сложнее.

Если подключить параллельно 150 Ом, 100 Ом и 50 Ом, результирующее будет 27,3 Ом. Попробуем с более низкими номиналами. Если параллельно включены 20 Ом, 15 Ом и 10 Ом. Получим результирующее сопротивление 4,61 Ом. Вот вам подтверждение правила. Суммарное сопротивление параллельно соединенных резисторов меньше чем самый низкий номинал.

Параллельное соединение резисторов: формула и примеры расчета сопротивления, напряжения, тока и мощности

При проектировании электрических схем возникает необходимость использования последовательного и параллельного соединений резисторов. Соединения применяются также и при ремонтах электрооборудования, поскольку в некоторых ситуациях невозможно найти эквивалентный номинал резистора. Выполнить расчет просто, и справиться с этой операцией может каждый.

Типы проводников

Проводимость веществом электрического тока связана с наличием в нем свободных носителей заряда. Их количество определяется по электронной конфигурации. Для этого необходима химическая формула вещества, при помощи которой можно вычислить их общее число. Значение для каждого элемента берется из периодической системы Дмитрия Ивановича Менделеева.

Электрический ток — упорядоченное движение свободных носителей заряда, на которые воздействует электромагнитное поле. При протекании тока по веществу происходит взаимодействие потока заряженных частиц с узлами кристаллической решетки, при этом часть кинетической энергии частицы превращается в тепловую энергию. Иными словами, частица «ударяется» об атом, а затем снова продолжает движение, набирая скорость под действием электромагнитного поля.

Процесс взаимодействия частиц с узлами кристаллической решетки называется электрической проводимостью или сопротивлением материала. Единицей измерения является Ом, а определить его можно при помощи омметра или расчитать. Согласно свойству проводимости, вещества можно разделить на 3 группы:

  1. Проводники (все металлы, ионизированный газ и электролитические растворы).
  2. Полупроводники (Si, Ge, GaAs, InP и InSb).
  3. Непроводники (диэлектрики или изоляторы).

Проводники всегда проводят электрический ток, поскольку содержат в своем атомарном строении свободные электроны, анионы, катионы и ионы. Полупроводники проводят электричество только при определенных условиях, которые влияют на наличие или отсутствие свободных электронов и дырок.

К факторам, влияющим на проводимость, относятся следующие: температура, освещенность и т. д. Диэлектрики вообще не проводят электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

При выполнении расчетов каждый радиолюбитель должен знать зависимость сопротивления от некоторых физических величин.

Зависимость сопротивления

Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:

  1. Температура окружающей среды и материала.
  2. Электрические величины.
  3. Геометрические свойства вещества.
  4. Тип материала, из которого изготовлен проводник (полупроводник).

К электрическим величинам можно отнести разность потенциалов (напряжение), электродвижущую силу (ЭДС) и силу тока. Геометрией проводника является его длина и площадь поперечного сечения.

Электрические величины

Зависимость величины электропроводимости от параметров электричества определяется законом Ома. Существует две формулировки: одна — для участка, а другая — для полной цепи. В первом случае соотношение определяются, исходя из значений силы тока (I) и напряжения (U) простой формулой: I = U / R. Из соотношения видна прямо пропорциональная зависимость тока от величины напряжения, а также обратно пропорциональная от сопротивления. Можно выразить R: R = U / I.

Вам это будет интересно  Устройство, принцип работы и применение ионистора

Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.

Тип и геометрические параметры

Свойство вещества к проводимости электричества определяется структурой кристаллической решетки, а также количеством свободных носителей. Исходя из этого, тип вещества является ключевым фактором, который определяет величину электропроводимости. В науке коэффициент, определяющий тип вещества, обозначается литерой «р» и называется удельным сопротивлением. Его значение для различных материалов (при температуре +20 градусов по Цельсию) можно найти в специальных таблицах.

Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление.

С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки.

Поперечное сечение можно вычислить по специальному алгоритму:

  1. Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
  2. Визуально определить форму материала.
  3. Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.

В случае когда проводник имеет сложную структуру, необходимо вычислить величину S одного элемента, а затем умножить результат на количество элементов, входящих в его состав. Например, если провод является многожильным, то следует вычислить S для одной жилы.

После этого нужно умножить, полученную величину S, на количество жил. Зависимость R от вышеперечисленных величин можно записать в виде соотношения: R = p * L / S. Литера «L» является длиной проводника.

Однако для получения точных расчетов необходимо учитывать температурные показатели внешней среды и проводника.

Температурные показатели

Существует доказательство зависимости удельного сопротивления материала от температуры, основанное на физическом эксперименте. Для проведения опыта нужно собрать электрическую цепь, состоящую из следующих элементов: источника питания, нихромовой спирали, соединительных проводов амперметра и вольтметра.

ЭТО ИНТЕРЕСНО:  Какая нейтраль является глухозаземленной

Приборы нужны для измерения значений силы тока и напряжения соответственно. При протекании электричества происходит нагревание нихромовой пружины. По мере ее нагревания, показания амперметра уменьшаются.

При этом происходит существенное падение напряжения на участке цепи, о котором свидетельствуют показания вольтметра.

В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * [1 + a * (t — 20)]. Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.

Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a

Источник: https://rusenergetics.ru/praktika/raschet-soprotivleniya-rezistorov

Формула расчета сопротивления при параллельном соединении резистора — Искра Газ

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора, входящего в параллельное соединение.

Источник: https://istra-gaz.ru/raschety/formula-rascheta-soprotivleniya-pri-parallelnom-soedinenii-rezistora.html

Параллельное соединение резисторов. Калькулятор для расчета

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Смешанное соединение резисторов

Смешанным соединением называют участок цепи, где часть резисторов соединяются между собой последовательно, а часть параллельно. В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Как рассчитать общее сопротивление при параллельном соединении

Соединение резисторов, при котором одноименные выводы каждого из элементов собираются в одну точку, называется параллельным. При этом ко всем резисторам подводится один и тот же потенциал, но величина тока через каждый из них будет отличаться. Для составления схем или при замене резисторов в уже существующих цепях важно знать их суммарное сопротивление, как показано на рисунке:

Параллельное соединение резисторов

Данный калькулятор позволяет рассчитать суммарное сопротивление параллельно соединенных резисторов с любым количеством элементов.

Для этого вам необходимо:

  • Указать в графе “количество резисторов” их число, в нашем примере их три;
  • После того, как вы укажите количество элементов, в поле ниже появится три окошка для ввода значения сопротивления каждого из элементов, к примеру, у вас резисторы сопротивлением 20, 30 и 60 Ом;
  • Далее нажмите кнопку “рассчитать” и в окошке “параллельное сопротивление в цепи” вы получите значение сопротивления в 10 Ом.

Чтобы рассчитать другую цепь или при подборе других элементов, нажмите кнопку “сбросить”, чтобы обнулить значение параллельно включенных элементов калькулятора.

Для расчета суммарного сопротивления калькулятором используется такое соотношение:

  • Rсум – суммарное сопротивление параллельно соединенных элементов
  • R1 – сопротивление первого резистора;
  • R2 – сопротивление второго резистора;
  • R3 – сопротивление третьего резистора;
  • Rn – сопротивление n-ого элемента.

Таким образом, в рассматриваемом примере параллельно включены три резистора, поэтому формула для определения суммарного сопротивления будет иметь такой вид:

Чтобы выразить величину суммарного сопротивления необходимо умножить обе половины уравнения на произведение сопротивлений всех трех резисторов. После этого перенести составляющие элементы по правилу пропорции и получить значение сопротивления:

Как видите, расчет параллельного сопротивления резисторов вручную требует немалых усилий, поэтому куда проще его сделать на нашем онлайн калькуляторе.

Обратите внимание, при наличии элементов с сопротивлением в разной размерности Ом, кОм, МОм, их необходимо привести к одной величине, прежде чем производить расчет. К примеру, в Ом и указывать в поле калькулятора для расчета параллельного соединения резисторов значение непосредственно в Омах.

Как правильно соединять резисторы?

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Читать также:  Сверлилка из дрели своими руками видео

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Читать также:  Как поставить патрон на дрель

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

ЭТО ИНТЕРЕСНО:  Что является определением понятия защитное заземление

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Для того чтобы определить общее эквивалентное сопротивление, можно воспользоваться точным и удобным калькулятором. Где, внеся данные по количеству резисторов, калькулятор произведет расчет в автоматическом режиме.

Данное соединение является одним из 2-ух видов, в данном случае оба вывода 1-го из резисторов соединяются с выводами 2-го резистора. В иных случаях их принято соединять параллельно или последовательно, чтобы можно было создать схемы сложного типа.

Для того чтобы найти ток, который протекает через определенный резистор, следует использовать формулу:
Произведемрасчеты согласно примеру
Разрабатывается устройство, в котором есть необходимость использовать резистор, которое имеет сопротивление 8Ом. Исходя из того, что номинальный ряд согласно стандартным значениям таких резисторов не имеет, выходом будет использование 2-ух резисторов соединенных параллельно.

Для такого способа производятся следующие расчеты:

Данная формула показывает, что в случае когда R1 = R2, R будет составлять ровно половину сопротивления 1-го из 2-ух резисторов.
И если R=8Ом, то соответственно R1 и R2 = 2*8=16Ом.

Предложения и пожелания пишите на allcalc.ru@gmail.com

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

Источник: https://morflot.su/kak-rasschitat-obshhee-soprotivlenie-pri/

Особенности включения

Для упрощения темы смешанного соединения резисторов решение задач следует ограничить схемами с подключением к источнику постоянного тока без реактивных компонентов. В этом случае можно исключить сложные колебательные процессы, сопряженные с циклами изменения потребления энергии в нагрузке. Для определения базовых зависимостей достаточно использовать классическую формулу закона Ома:

I (ток) = U (напряжение) / R (сопротивление).

На первой части рисунка показан последовательный проводник. Одинаковый ток можно измерить в любом разрыве с помощью мультиметра. Но даже без экспериментов понятно, что такой результат обеспечен единством пути его прохождения, который создан без разветвлений.

Однако при установке разных резисторов (R1≠R2≠R3) напряжение на отдельных элементах отличается (U1≠U2≠U3). Суммарная величина будет равна потенциалу на клеммах источника питания (Uип = U1 + U2 + U3).

Аналогичным образом вычисляют суммарное сопротивление:

Rобщ = R1 + R2 + R3.

Следующий пример – параллельное подключение. Здесь каждый ток проходит после разветвления по своему пути (ветке). По предыдущему алгоритму рассуждений несложно установить соответствующие зависимости:

  • если R1≠R2≠R3, то I1≠I2≠I3;
  • Iип = I1 + I2 + I3;

Если использовано параллельное соединение, формула для напряжений трансформируется в равенство:

Uип = U1 = U2 = U3.

К сведению. Другие виды соединений – это комбинации представленных вариантов. На отдельных участках цепи действительны рассмотренные выше правила.

Формула параллельного соединения резисторов

Параллельное соединение резисторов

Для этого варианта суммирование номиналов не подходит. При параллельной установке можно складывать только проводимости, которые по величине обратны соответствующим электрическим сопротивлениям. Если применяют параллельное соединение резисторов, формула расчета преобразуется следующим образом:

  • 1/Rобщ = 1/R1 + 1/R2;
  • Rобщ = 1/(1/R1 + 1/R2);
  • Rобщ = R1*R2/R1 + R2.

По аналогичным принципам несложно вывести расчетную формулу для трех, четырех или большего количества пассивных элементов, установленных параллельно.

Расчёт

До изучения технологий вычислений необходимо уточнить основные определения:

  • ветвями называют цепи с одним током;
  • узлы – это места их соединения;
  • контуры – замкнутые пути прохождения токов по нескольким ветвям.

Параллельное соединение проводников

Следует отдельно отметить два постулата. Они получили специфическое название «правила (законы) Кирхгофа» по фамилии ученого, сформулировавшего базовые принципы.

Первый закон (I1 + I2 + + In = 0) определяет равным нулю суммарное значение всех токов, которые входят и выходят из одной точки в месте соединения нескольких ветвей.

Надо подчеркнуть! Данное выражение является точным для любых комбинаций компонентов, включенных в соответствующие цепи (резисторов, источников тока и других). Для удобства и наглядности расчетов учитывают входящие в узел токи с положительным знаком, выходящие – с отрицательным.

Второе правило упомянуто в качестве промежуточного вывода при рассмотрении последовательно включенных резисторов (Uип = U1 + U2 + U3). В классической формулировке закон утверждает равенство суммарных ЭДС источников питания и потенциалов на пассивных элементах, объединенных в одном расчетном контуре.

Последовательное соединение резисторов

С учетом сделанных определений можно составить формулу для любого количества резисторов, установленных в единой цепи без разветвлений:

Rобщ = R1 + R2 + + Rn.

Вне зависимости от иных внешних компонентов, токи на входе и выходе в соответствии с первым правилом Кирхгофа будут одинаковыми.

Пример:

  • Uип = 6,5B;
  • R1= 8 Ом;
  • R2 = 12 Ом;
  • R3 = 4 Ом;
  • Rобщ = 8 + 12 + 4 = 24 Ом;
  • I = 6,5/24 = 0,27 А;
  • U1 = I * R1 = 0,27 * 8 = 2,16 В;
  • U2 = 0,27 * 12 = 3,24 В;
  • U3 = 0,27 * 4 = 1,08 В.

Чтобы проверить последовательное соединение, формула на основе второго правила Кирхгофа пригодится:

Uип = 2,16 + 3,24 +1,08 ≈ 6,5 В.

Расчет подтвердил отсутствие ошибок.

В этом варианте токи разделяются на входе и соединяются на выходе (первый закон Кирхгофа). Направление движения устанавливают от положительной клеммы с отрицательной подключенного источника питания. В соответствии с рассмотренными выше правилами при равенстве напряжений на отдельных резисторах токи в соответствующих цепях будут разными.

Для примера можно использовать предыдущие исходные данные:

  • общее сопротивление при параллельном соединении формула для трех компонентов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3

  • вставив номиналы, делают расчет Rобщ = 8 * 12 * 4 / (8*12 + 12*4 +8*4) = 2,182 Ом;
  • I = 6,5/ 2,182 ≈ 2,98 А;
  • I1 = 6,5/ 8 = 0,8125 А;
  • I2 = 6,5/12 ≈ 0,5417 А;
  • I3 = 6,5/4 = 1,625.

Как и в предыдущем случае, расчет проверяют. Если применяют параллельное сопротивление, формула вычислений должна подтвердить равенство токов:

I = 0,8125 + 0,5417 + 1,6225 = 2,9767 ≈ 2,98 А.

Соблюдено суммарное равенство входных и выходных значений для отдельного узла, поэтому ошибки отсутствуют.

Смешанное соединение резисторов

Если в схеме присутствует комбинация последовательных и параллельных соединений, выполняют последовательно упрощение, пользуясь представленными методиками расчетов.

Последовательное преобразование схемы для упрощения вычислений

На следующем рисунке показана последовательность преобразований:

  • по значениям установленных R3 и R4 определяют общее значение для участка цепи Rэ;
  • далее вычисляют сопротивление последовательных компонентов Rэ и R6;
  • на следующем этапе делают расчет для группы R2, Rэк и R5;
  • завершающее действие – суммирование R1, Rэ и R7 (рис. ниже).

Итоговый результат (Rэк) будет определять общее (эквивалентное) электрическое сопротивление группы резисторов. При необходимости вычисляют значения токов и напряжений в отдельных ветвях.

Типичные подключения

Последовательное и параллельное соединение аккумуляторов

Любой вариант соединений можно разделить на элементарные составляющие по рассмотренной выше методике. На следующем рисунке представлены типичные подключения вместе с основными формулами для расчетов.

Последовательное, параллельное и смешанное соединения

Расчёт комбинированных схем

Принцип упрощения и вычисления эквивалентного сопротивления можно изучить подробно на конкретном примере. Исходные данные (кОм):

  • R1 = 1;
  • R2 = 3;
  • R3 = 3;
  • R4 = 3.

Пояснение к технологии вычислений

Алгоритм действий:

  • суммируют номиналы в последовательной цепи: 3 + 3 = 6;
  • вычисляют сопротивление параллельного участка: 3*6/ (3 + 6) = 2;
  • завершают вычисление: 2 + 1 = 3.

Как рассчитать сложные схемы соединения резисторов

Решение трудной задачи демонстрирует пример преобразования «звезды» в «треугольник». Этот способ поможет рассчитать эквивалентное сопротивление типичной мостовой схемы соединения резистивных компонентов.

Преобразование сложной схемы

Трансформация «звезды» показана на примере одного «луча»:

R2 = (R23 * R24)/ R23 + R24 + R34.

Другую часть рассчитывают по формуле:

R23 =R2 + R3 + (R2 * R3)/R4.

Эквивалентное сопротивление вычисляют следующим образом:

Rэкв = ((R12 + R2) * (R13 + R3))/((R12 + R2) + (R13 + R3)) + R4.

Ток, протекающий в цепи параллельно соединенных резисторов

Для защиты по току светодиода необходима повышенная корректность при выборе подходящих пассивных элементов питающей цепи. Однако в ряду резисторов представлены только определенные номиналы.

Не решает проблему увеличение бюджета. Прецизионные изделия выпускают с минимальными допусками (0,5% и менее). Но и в этом случае речь идет о точности значений. Номиналы предлагают в соответствии с действующими международными стандартами.

Что делать, если необходимо создать цепь с Rобщ = 11,2 Ом, при наличии серийных резисторов 11 и 12 Ом? Для получения обозначенного результата создают параллельное соединение. Расчет можно сделать с применением онлайн калькулятора на специализированном сайте. Вычисления выполняются автоматически после заполнения простой формы. Такие услуги предлагают бесплатно без регистрации.

Таблица для выбора резисторов

Представленный на рисунке справочный материал поможет подобрать подходящие изделия быстро и точно. Для рассматриваемого примера подойдут резисторы 13 и 82 Ом. При параллельной установке они создадут сопротивление участка цепи 11,2 Ом.

Источник: https://amperof.ru/teoriya/parallelnoe-soedinenie-rezistorov-2.html

Соединение резисторов

Радиоэлектроника для начинающих

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Соединение резисторов ⋆ diodov.net

Соединение резисторов разными способами позволяет получить необходимую величину сопротивления и мощности рассеивания одного эквивалентного резистора. Всего существует три способы соединения резисторов – последовательное, параллельное и смешанное.

Параллельное соединение резисторов

При параллельном соединении резисторов увеличивается количество путей для перемещения свободных зарядов, то есть электронов, из одного участка пути к другому. Поэтому при параллельном соединении резисторов их суммарное (общее, эквивалентное) сопротивление всегда ниже наименьшего сопротивления из всех резисторов.

Величина, обратная сопротивлению называется проводимостью. Проводимость измеряется в сименсах [См] и обозначается большей латинской буквой G.

G = 1/R = 1/Ом = См

Поэтому при выполнении различных подсчетов в электрических цепях, имеющих параллельное соединение, пользуются проводимостью.

Если сопротивления всех параллельно соединенных резисторов равны, то для определения общего Rобщ достаточно R одного из них разделить на их общее количество:

Если R1 = R2 = R3 = R4 = R, то

Rобщ = R/4.

Например, каждый из четырех резисторов имеет R = 10 кОм, тогда

Rобщ = 10 кОм/4 = 2,5 кОм.

Мощности рассеивания суммируются также, как и при последовательном соединении.

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как определить рабочую и пусковую обмотку однофазного двигателя

Закрыть