Как проверить диод Зенера

Как проверить диод мультиметром: полная инструкция

Как проверить диод Зенера

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Классификация

Диоды относятся к простым полупроводниковым радиоэлементам на основе p-n перехода. На рисунке представлено графическое обозначение наиболее распространенных типов этих устройств. Анод отмечен «+», катод – «-» (приведено для наглядности, в схемах для определения полярности достаточно графического обозначения).

Принятые обозначения

Типы диодов, указанные на рисунке:

  • А – выпрямительный;
  • B – стабилитрон;
  • С – варикап;
  • D – СВЧ-диод (высоковольтный);
  • E – обращенный диод;
  • F – туннельный;
  • G – светодиод;
  • H – фотодиод.

Теперь рассмотрим способы проверки для каждого из перечисленных видов.

Проверяем выпрямительный диод и стабилитрон

Защитный диод, а также выпрямительный (включая силовой)или шоттки можно проверить при помощи мультиметра (или воспользоваться омметром), для этого переводим прибор в режим прозвонки так, как это показано на фотографии.

Режим мультиметра, при котором тестируются полупроводниковые выпрямительные диоды

Щупы измерительного прибора присоединяем к выводам радиоэлемента. При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление. В этом случае можно констатировать исправность элемента.

Если при обратном подключении мультиметр регистрирует утечку, значит, радиоэлемент «сгорел» и нуждается в замене.

Заметим, данную методику проверки можно использовать для тестирования диодов на генераторе автомобиля.

Тестирование стабилитрона осуществляется по сходному принципу, правда, такая проверка не позволяет определить, осуществляется ли стабилизация напряжения на заданном уровне. Поэтому нам потребуется собрать простую схему.

Тестирование с использованием регулируемого источника питания

Обозначения:

  • БП – регулируемый блок питания (отображающий ток нагрузки и напряжение);
  • R – токоограничительное сопротивление;
  • VT – тестируемый стабилитрон или лавинный диод.

Принцип проверки следующий:

  • производим сборку схемы;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 200 В;

Выбор необходимого режима для тестирования

  • включаем блок питания и начинаем постепенно увеличивать величину напряжения, пока амперметр на блоке питания не покажет, что через цепь протекает ток;
  • подключаем мультиметр, как указано на рисунке и измеряем величину напряжения стабилизации.

Тестирование варикапов

В отличие от обычных диодов, у варикапов p-n переход обладает непостоянной емкостью, величина которой пропорциональна обратному напряжению. Проверка на обрыв или замыкание для этих элементов осуществляется также, как у обычных диодов. Для проверки емкости потребуется мультиметр, у которого есть подобная функция.

Демонстрация проверки варикапа

Для тестирования потребуется установить соответствующий режим мультиметра, как показано на фото (А) и вставить деталь в разъем для конденсаторов.

Как правильно заметил один из комментаторов данной статьи, действительно, определить емкость варикапа, не оперируя номинальным напряжением невозможно. Поэтому, если возникла проблема с идентификацией по внешнему виду, потребуется собрать простую приставку для мультиметра (повторюсь для критиков, именно  цифрового мульти метра с функцией измерения емкости верки конденсаторов, например UT151B).

Приставка к мультиметру для измерения емкости варикапа

Обозначения:

  • Резисторы: R1, R2 -120 кОм (да, два резистора, да последовательно, нет одним заменить нельзя, паразитную емкость, далее без комментариев); R3 – 47 кОм; R4 – 100 Ом.
  • Конденсаторы: С1 – 0,15 мкФ; С2 – 75 пФ; С3 – 630 пФ; С4 – 47 мкФ га 50 вольт.

Устройство требует настройки. Она довольно проста, собранное устройство, подключается к измерительному прибору (мультиметр с функцией измерения емкости). Питание должно подаваться со стабилизированного источника питания (важно) с напряжением 9 вольт (например, батарея Крона). Меняя емкость подстрочного конденсатора (С2) добиваемся показания на индикаторе 100 пФ. Это значение мы будем вычитать от показания прибора.

Данный вариант неидеален, необходимость его практического применения вызывает сомнения, но схема наглядно  демонстрирует зависимости емкости варикапа  от номинального напряжения .

Проверка супрессора (TVS-диода)

Защитный диод, он же  ограничительный стабилитрон, супрессор и TVS-диод. Данные элементы бывают двух типов: симметричные и несимметричные. Первые используются в цепях переменного тока, вторые – постоянного. Если кратко объяснить принцип действия такого диода, то он следующий:

Увеличение  входного напряжения вызывает уменьшение внутреннего сопротивления. В результате увеличивается сила тока в цепи, что вызывает срабатывание предохранителя.  Преимущество устройства заключается в быстроте реакции, что позволяет принять на себя переизбыток напряжения и защитить устройство. Скорость срабатывания – главное достоинство защитного (TVS) диода.

Теперь о проверке. Она ничем не отличается от обычного диода. Правда есть исключение – диоды Зенера, которые также можно отнести к TVS семейству, но по сути это быстрый стабилитрон, работающий по «механизму» лавинного пробоя (эффект Зинера).

  Но, проверка работоспособности скатывается к обычной прозвонке. Создание условий срабатывания приводит к выходу элемента из строя.

Другими словами, способа проверки защитных функций TVS-диода нет, это как проверить спичку (годная она или нет) пытаясь поджечь.

Тестирование высоковольтных диодов

Проверить высоковольтный диод СВЧ печи тем же способом, что и обычный, не получится, в виду его особенностей. Для тестирования этого элемента, понадобится собрать схему (показанную на рисунке ниже), подключенную к блоку питания 40-45 вольт.

Схема для проверки используемого в микроволновке диода

Напряжения 40-45 вольт будет достаточно для поверки большинства элементов данного типа, методика тестирования — как у обычных диодов. Величина сопротивления R должна быть в пределах от 2кОм до 3,6кОм.

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Тестирование диодов туннельного типа

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре ,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до Imax диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до Imin, после чего снова начнет расти.

Тестирование светодиодов

Проверка светодиодов практически ничем не отличается от тестирования выпрямительных диодов. Как это делать, было описано выше. Светодиодную ленту (точнее ее smd элементы), инфракрасный светодиод, а также лазерный, проверяем по той же методике.

К сожалению, мощный радиоэлемент данной группы, у которого повышенное рабочее напряжение, проверить указанным способом не получится. В этом случае дополнительно понадобится стабилизированный источник питания. Алгоритм тестирования следующий:

  • собираем схему, как показано на рисунке. На блоки питания выставляется рабочее напряжение светодиода (указано в даташит). Диапазон измерения на мультиметре должен быть до 10 А. Заметим, что можно использовать зарядное устройство в качестве БП, но тогда необходимо добавить токоограничивающие сопротивление;

Измерение номинального тока на светодиоде

  • измеряем номинальный ток и выключаем блок питания;
  • устанавливаем режим мультиметра, позволяющий измерить постоянное напряжение до 20 В, и подключаем прибор параллельно тестируемому элементу;
  • включаем блок питания и снимаем параметры рабочего напряжения;
  • сравниваем полученные данные с указанными в даташит, и на основании этого анализа определяем работоспособность светодиода.

Проверяем фотодиод

При простой проверке измеряется обратное и прямое сопротивление помещенного под источник света радиоэлемента, после чего его затемняют и повторяют процедуру. Для более точного тестирования потребуется снять вольтамперную характеристику, сделать это можно при помощи несложной схемы.

Пример схемы для снятия вольтамперных характеристик

Для засветки фотодиода в процессе тестирования можно использовать в качестве источника освещения лампу накаливания мощностью от 60Вт или поднести радиодеталь к люстре.

У фотодиодов иногда встречается характерный дефект, который проявляется в виде хаотического изменения тока. Для обнаружения такой неисправности необходимо подключить тестируемый элемент так, как это показано на рисунке, и измерять величину обратного тока  в течение пары минут.

Проверка на «ползучесть»

Если в процессе тестирования уровень тока будет оставаться неизменным, значит, фотодиод можно считать рабочим.

Тестирование без выпайки.

Как показывает практика, протестировать диод не выпаивая, когда он находится на плате, как и другие радиодетали (например, транзистор, конденсатор, тиристор и т.д.), не всегда удается. Это связано с тем, что элементы в цепи могут давать погрешность. Поэтому перед тем, как проверить диод, его необходимо выпаять.

Источник: https://www.asutpp.ru/kak-proverit-diod.html

Стабилитрон или диод Зенера

Как проверить диод Зенера

Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон, служит для стабилизации напряжения на выходе.

Принцип действия стабилитрона

Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.

В момент совершения пробоя величина тока резко повысится, а значение дифференцированного сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.

Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически  не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.

Рис.№2. Стабилитронс резистором

Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.

Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.

Основные электрические параметры, характеризующие стабилитрон

Рис. №4. Электрические характеристики важные для стабилитрона.

Пояснение главных величин, которые характеризуют стабилитрон:

  • Стабилизирующее напряжение – U раб, оно соответствует средней точке в месте стабилизации. Напряжение стабилизации – средняя величина между минимальным и предельно-максимальным значением стабилизируемого напряжения.
  • Минимальный ток стабилизации, для этого значения осуществляется лавинный пробой p-n-перехода обратимого действия, он неизменно соответствует минимальному значению стабилизируемого напряжения.
  • Максимальный предельно-допустимый ток стабилитрона.
  • Ток стабилизации или прямой ток, он определяется, как – Iст.ном = Imax – Imin. (он способен выдержать в течение продолжительного отрезка времени p-n-переход без термического разрушения.
  • Температурный коэффициент – величина, которая служит для определения отношения изменяющейся температуры окружающей среды при токе неизменной величины. Для каждого типа стабилитрона свойствен свой коэффициент температуры.
  • Дифференциальное сопротивление – величина, которая зависит от приращения стабилизационного напряжения к приращению тока в определенном диапазоне частоты.
  • Рассеиваемая мощность – величина мощности, обеспечивающей необходимую надежность и рассеиваемую на стабилитроне.

Типы стабилитронов

Существует три основных типа стабилитронов:

  1. Прецизионные стабилитроны – для них свойственно наличие повышенной стабильности напряжения. Пример: 2С191 или КС211.
  2. Двухсторонние – ограничивают и стабилизируют двухполярное напряжение. Пример: 2С170А или 2С182А.
  3. Быстродействующий стабилитрон – пониженная величина барьерной емкости и небольшая работа переходного процесса – это делает возможным работать в области кратковременных импульсов напряжений. Это такие стабилитроны: 2С175Е; КС182Е; 2С211Е.

Распределение по мощности – это мощные и маломощные стабилитроны.

Особенности использования стабилитронов

Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.

Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.

Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник: https://elektronchic.ru/elektronika/stabilitron-ili-diod-zenera.html

Методы проверки стабилитрона мультиметром и тестером

Как проверить диод Зенера

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя.

Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение.

Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение.

При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого.

Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

ЭТО ИНТЕРЕСНО:  Как рассчитать потребление электроэнергии по току

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет.

Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра.

Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В.

Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом.

Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке.

К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Источник: https://EvoSnab.ru/instrument/test/proverka-stabilitrona

Проверка стабилитрона: как проверить стабилизатор при помощи мультиметра

Любой электроприбор нуждается в стабильном энергоснабжении. Для этого существуют стабилизаторы, ШИМ контроллеры и прочие разновидности блоков питания.

Какой бы простой не была схема стабилизатора, она стоит определенных денег. В некоторых случаях высокое качество питания не требуется. Чаще всего такая ситуация бывает, когда надо обеспечить часть большой электросхемы напряжением, отличным от основного, стабильного.

Самый простой элемент, обеспечивающий относительно стабильное напряжение – это стабилитрон. Поскольку это единичная деталь, ремонт блока питания представляется несложным. Как проверить стабилитрон? Как и любую другую деталь, только есть нюансы, связанные с конструкцией.

Что такое стабилитрон

Практически ни один стабилизатор напряжения не обходится без этого полупроводника. По внешнему виду его легко спутать с диодом. Узнавать, какой из элементов стабилизирует разность потенциалов, можно по маркировке.

Диод Зенера (стабилитрон) имеет высокое сопротивление, до тех пор, пока не наступает пробой. Поданное обратное смещение вызывает пробой перехода, и ток начинает быстро увеличиваться, а сопротивление уменьшается в интервале от сотен Ом до его дольных величин.

Такой режим работы даёт возможность с определённой точностью поддерживать неизменное значение напряжения на элементе.

задача полупроводника – выполнять стабилизацию напряжения. Выпускают в серию детали, рассчитанные на поддержание от 1,8-400 В. Включение радиодетали в схему выполняется параллельно нагрузке.

Условное графическое обозначение элемента

Внимание! Двухполюсник имеет выводы: катод и анод. Если рассматривать область p-n перехода, то вывод, подключенный к p-области, это анод, а к n-области – это катод.

Полупроводниковые элементы, которые составлены из двух встречно направленных стабилитронов, называют двусторонними (двуханодными).

Двусторонний стабилитрон

Классификация этих двухполюсников по функциональному назначению выглядит следующим образом:

  • детали общего применения (дискретные), по мощности: 0-0,3; 0,3-5; 5-10 Вт и выше;
  • прецизионные элементы, имеющие в своей структуре сложную микросхему (скрытая структура);
  • ограничительные стабилитроны, предназначенные для подавителей помех.

Последние предназначены для кратковременного пропускания импульсного тока величиной до сотни ампер. Длительная работа с большими токами вызывает перегрев детали и тепловой пробой.

Внимание! Кремниевый диод (стабилитрон), включенный в схему в обратном направлении, имеет три варианта пробоя: туннельный, лавинный и вызванный тепловой неустойчивостью. Их конструкция подразумевает наступление первых двух пробоев до того, как произойдёт тепловое разрушение перехода.

Схема включения и вольт-амперная характеристика (ВАХ) Zener diode

Стабилизатор 78L05, параметры 78L05, схема включения 78L05

Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки. Эти понятия следует отличать, для чего существует несколько советов. В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства.

Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора. В домашней розетке напряжение способно колебаться в интервале вольт, а на выходе стабилизирующего прибора оно должно равняться вольтам.

Но простым методом проверки действия стабилизатора напряжения пользуются далеко не все, так как доверяют данным по индикатору. Но это доверие не всегда оправдывается, а иногда на китайских приборах цифровой индикатор просто подключен непосредственно к реле.

Источник: https://instanko.ru/izmereniya/kak-proverit-stabilitron.html

Как проверить исправность полупроводниковых элементов: как прозвонить с помощью мультиметра диод и стабилитрон

Часто у мастеров возникает необходимость проверить на исправность такой радиоэлемент, как полупроводниковый диод. Его назначение состоит в том, чтобы пропускать ток при его протекании в одном направлении (от анода к катоду) и не пропускать при протекании его в обратном направлении (от катода к аноду). Это свойство объясняет само название полупроводник. В этом и состоит суть проверки диода: он должен выполнять заданные функции так, как требуется в схеме.

Одна из основных характеристик полупроводниковых элементов — пороговое значение напряжения, то есть значение прикладываемого напряжения к элементу в прямом включении, при котором через него начинает протекать ток. Для разных типов диодов это напряжение имеет разные диапазоны значений. Для германиевых этот диапазон составляет от 0,3 до 0,7 вольта, для кремниевых — от 0,7 до 1,0 вольта. По этому значению судят об исправности полупроводникового диода.

Основные неисправности полупроводников

Диоды могут выходить из строя по разным причинам. Наиболее распространенные из них: протекание повышенного тока через схему, превышение максимального значения обратного напряжения и другие (например, тепловое или механическое воздействие).

Основные неисправности этих полупроводников — пробой и обрыв. Обе неисправности можно выявить с помощью мультиметра. При пробое подключенный к элементу мультиметр в режиме измерения сопротивления показывает минимальное сопротивление порядка единиц Ом.

При обрыве измерительный прибор в том же режиме покажет бесконечное сопротивление как при прямом, так и при обратном подключении.

Перед началом работы любые типы элементов нуждаются в проверке. Не пренебрегайте этим правилом. Существует несколько способов проверить диод:

  • Основной способ проверки — с помощью мультиметра. Встроенная в измеритель проверка. Большинство мультиметров имеют режим прозвонки p-n перехода. Этот режим обычно обозначен значком диода на их передней панели. Чтобы прозвонить мультиметром диод, установите ручку регулятора вашего измерительного прибора на обозначение диода либо нажмите кнопку с этим обозначением на передней панели прибора. Далее подключите красный измерительный щуп к аноду проверяемого элемента, а черный щуп — к катоду. Узнать, какой из выводов анод, а какой катод, можно в интернете, прочитав описание на используемый вами диод. В описаниях обычно указывается маркировка. При подключении описанным способом мультиметр должен показать пороговое прямое напряжение тестируемого диода. Если элемент неисправен, то прибор покажет ноль или сильно отличающееся от порогового показание. При обратном подключении (черный щуп мультиметра к аноду, красный щуп — к катоду) мультиметр должен показать нулевое напряжение.
  • Вам нужно прозвонить диод, если ваш мультиметр не поддерживает режим проверки полупроводниковых приборов. Соберите простую схему. Соедините последовательно источник питания постоянного тока номинальным напряжением 5 вольт, резистор сопротивлением 100 Ом и проверяемый полупроводник. Катод соедините с минусом источника питания, а анод — с резистором. Далее переключите мультиметр в режим определения постоянного напряжения. Красный щуп мультиметра соедините с анодом тестируемого диода, а черный щуп — с катодом. При исправности элемента измеритель покажет пороговое прямое напряжение на нем.
  • Проверка диода в случае отсутствия у мультиметра режима прозвонки полупроводников. Выберите на мультиметре режим измерения сопротивления, диапазон измеряемого сопротивления до 2 кОм. Подсоедините красный щуп прибора к аноду, черный щуп к катоду элемента. При этом измерительный прибор должен показать сопротивление порядка сотен Ом. Если подсоединить мультиметр к полупроводнику наоборот (черный щуп к аноду, красный — к катоду), то он должен показать бесконечное сопротивление или разрыв цепи. Если выдаются другие показания, значит, элемент неисправен.

Диагностика исправности стабилитрона

Стабилитроном называется полупроводниковый элемент, стабилизирующий напряжение в довольно узком диапазоне. При этом через него могут протекать разные токи как большие, так и маленькие.

Диапазон стабилизации стабилитрона по напряжению обычно ограничен сотней милливольт. Конструктивно стабилитрон представляет собой диод, и в прямом включении он так и работает. Стабилизацию напряжения он производит при подаче на него напряжения в обратном включении.

Проверить исправность стабилитрона мультиметром можно точно так же, как и исправность обычного диода.

Необходимо собрать небольшую схему. Для этого нужно последовательно соединить регулируемый источник питания (он должен показывать напряжение и ток через нагрузку), токоограничивающее сопротивление (номиналом от одного до 10 кОм, мощность рассеивания зависит от напряжения стабилизации, но берите не менее 0,125 Вт) и стабилитрон. Катод стабилитрона подключается к плюсу источника питания, анод соединяется с токоограничивающим резистором. Далее выполните следующие действия:

  1. Подключите мультиметр к стабилитрону (красный щуп к катоду, черный к аноду), переключите его в режим определения постоянного напряжения и выберите диапазон измерения до 200 В.
  2. На источнике питания установите минимальное напряжение.
  3. Включите источник питания и постепенно увеличивайте уровень напряжения на нем.
  4. Как только увидите, что начал протекать ток через схему, прекратите регулировку источника питания и отследите на мультиметре напряжение стабилизации стабилитрона.

Тестирование диода без выпаивания

При проверке элементов внутри схем возникают некоторые трудности с определением их характеристик, так как измерительный прибор тестирует все части схемы, включенные между его измерительными щупами.

Таким образом, нужно исключить возможные варианты протекания тока в схеме, в которую установлен нужный элемент. Самый простой вариант — выпаять один из выводов нужного вам для проверки диода. Тогда результаты измерения будут достоверными.

После проведения выпаивания одного из выводов элемента можно проверить его любым из перечисленных выше способов.

Если выпаять один из выводов проблематично, отключите источник питания схемы и попробуйте проверить диод, не выпаивая его. При этом в схеме не должно быть элементов, шунтирующих проверяемый элемент. Результаты проверки также должны быть достоверны.

Источник: https://tokar.guru/hochu-vse-znat/kak-proverit-diod-i-stabilitron-multimetrom.html

Как работает стабилитрон

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-).  Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа  радиоэлектронной аппаратуры.  Если оно изменится в меньшую,  или даже еще хуже, в большую сторону, то аппаратура  в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева  популярный вид современного стабилитрона, а справа один из  образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно  увидеть это схематическое обозначение на нем самом, указывающее, где у него находится  катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это  понятно и дошкольнику.

Теперь  по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом  большой кувшин с водой.

Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан.

Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так  вот, дорогие читатели,  в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит,  напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

ЭТО ИНТЕРЕСНО:  Что такое резистивная нагрузка

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов.  В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст.  – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл ;-)

Итак, собираем схемку.  Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт!  Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне  5,17 Вольт! Изумительно!

Еще добавляем Входное напряжение 20 Вольт,  а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт  – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

где

Iпр – прямой ток, А

Uпр  – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin – это  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне.

Самое  главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.

  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт.  Выбирайте на ваш вкус и цвет.

Источник: https://www.RusElectronic.com/printsip-raboty-stabilitrona/

Как проверить стабилитрон мультиметром

Название полупроводникового элемента, похожего на диод, говорит само за себя. Он позволяет стабилизировать уже сглаженное напряжение за счёт своих физических особенностей. Зачастую возникает такая необходимость, как проверка стабилитрона. Нужно узнать исправность детали, когда не обеспечивается стабилизация напряжения в цепи, где она установлена.

Порядок проверки

Проверку производят обычным тестером, переключив прибор в диапазон для измерений диодов или сопротивления.

Подключение мультиметра для проверки Как проверить резистор мультиметром

Поэлементное описание проверки имеет вид:

  • на приборе выбирается режим измерения сопротивления;
  • щупы тестера подключаются к выводам детали;
  • оцениваются показания прибора, высвечиваемые на дисплее.

Когда собственный источник питания мультиметра подключен плюсовым щупом к аноду, то на дисплее можно зафиксировать показания сопротивления от нескольких долей Ома до его единиц. После замены местами измерительных щупов при исправном элементе получают бесконечно большое сопротивление.

Помня о том, что стабилитрон ведёт себя, как простой диод, устанавливают интервал измерений в кОм. В этом случае сопротивление исправной радиодетали доходит до сотен кОм.

Информация. Показания, выданные на дисплей тестером, часто вводят в заблуждение проводящего измерения. Одинаково высокое сопротивление при различных подключениях щупов не всегда означает пробой элемента. Поданное для измерений напряжение внутреннего источника может превысить номинальное напряжения пробоя, тогда полученные результаты будут ложными.

Как проверить стабилитрон мультиметром на плате

Как проверить емкость аккумулятора мультиметром

Когда нет возможности освободить оба вывода элемента для измерений, как проверить стабилитроны? Желательно выпаять хотя бы одну из ножек (выводов) полупроводникового прибора.

Таким образом разорвать цепь схемы на плате, куда впаян полупроводник. Это позволит избежать искажение показаний при измерениях. Неточность может возникнуть от влияния других элементов, входящих в схему.

Кроме того, нужно обесточить плату, на которой находится проверяемый элемент.

Можно ли проверить деталь, не выпаивая

Как проверить заряд батарейки

Выпаивать полупроводниковую деталь не всегда удобно, особенно, если платы имеют двухсторонний монтаж схемы. Проверка стабилитронов мультиметром без демонтажа вполне возможна.

Если показания измерительного прибора не определяют повреждения, то их можно считать реальными. При результатах, показывающих обрыв, можно быть уверенными, что это тоже факт.

Но, когда измерения регистрируют пробой – низкое сопротивление при любой полярности подключения щупов, то это не всегда так. В этом случае деталь нужно выпаивать.

Осторожно. Измерения тестером с внутренним напряжением, большим напряжения пробоя стабилитрона, может привести к реальному пробою. Для проверки таких элементов удобно пользоваться стрелочными аналоговыми приборами. Напряжение питания у них – не более 3 В.

Аналоговый стрелочный тестер

Как проверить двусторонний стабилитрон

Бывает, что после выпаивания из платы полупроводникового элемента, при изменении полярности на щупах, сопротивление оказывается большим в обоих случаях. Это не обязательно говорит об обрыве. Проверяемый компонент схемы может быть двусторонним стабилитроном. Как проверить стабилитрон мультиметром?

Чтобы протестировать его работоспособность, нужно:

  • увеличить прилагаемое напряжение измерения;
  • менять полярность, подаваемую щупами тестера на выводы;
  • измерять токи и сравнивать ВАХ исследуемой детали.

Совокупность действий поможет определить, исправен или нет такой зенер диод. Зная о том, что в такой радиодетали катоды внутри соединены между собой, необходимо собрать схему.

В схему входят следующие компоненты:

  • тестер;
  • резистор сопротивлением 1 кОм (R);
  • ИП до 30 вольт.

Для измерения все вместе соединяется в схему:

  • подключают резистор к « + » источника питания;
  • стабилитрон присоединяют на второй контакт резистора;
  • щуп тестера подсоединяют с свободному выводу R и клемме « – » ИП;
  • прибор включается в разрыв: « + » ИП и « – » ИП;
  • на приборе выбирается наиболее подходящий режим.

При проверке зинер диода с напряжением стабилизации схема будет рабочей, если, изменяя Uпит в границах 13-30 В, на дисплее прибора сохраняется в пределах 12 В, даже при смене полярности.

Важно! Никакой измерительный прибор не может гарантировать, что полученные результаты действительно верны. Для проверки нужно включить в схему полупроводник, подать питание и провести измерения, которые выявляют неисправную деталь.

Основные неисправности стабилитрона

Работоспособность детали, расположенной в блоках аппаратуры, можно выявить, зная основные неисправности. К ним можно отнести следующие повреждения или отклонения от нормы:

  • пробой перехода;
  • обрыв;
  • неправильное напряжение;
  • неточный ток.

Если первые два пункта вопросов не вызывают, то вторые две позиции относятся к неявным повреждениям.

Внимание! Когда измеренное мультиметром на диоде зенера падение напряжения в прямом направлении совпадает с заявленным значением, это означает, что элемент исправен.

При проверке стабилитрона подключают плюсовой щуп к аноду, а отрицательный – к катоду. В режиме проверки диодов на экране отобразится величина падения напряжения на тестируемом элементе. При переполюсовке щупов на дисплее не будет значений, высветится «1».

При пробое перехода при прямом и обратном прикасании измерительных щупов на дисплее тестера будут высвечиваться цифры. Когда в режиме проверки диода на тестере присутствует звуковое оповещение (пищалка), то оно сработает.

При обрыве перехода измерения ничего не покажут при любом прикладывании щупов тестера. В этом случае даже без выпаивания стабилитрона из платы можно определить его неисправность.

Неправильное напряжение стабилизации определяется только при включении питания схемы. В режиме вольтметра щупами касаются выводов детали и измеряют параметр. В случае отклонения от необходимой величины стабилитрон заменяется.

При определении исправности элемента с напряжением стабилизации до 20-30 В пользуются простым методом. Для этого нужно собрать небольшую макетную модель для испытаний, в неё входят:

  • панель для закрепления микросхем (любая);
  • ограничивающий резистор сопротивлением 4,7 кОм, мощностью до 0,25 Вт;
  • источник питания: подойдёт блок питания от ноутбука, в идеале – источник с регулировкой выходного напряжения.

Панель от микросхемы поможет закреплять в её пазах любой проверяемый элемент.

Осторожно. При подключении в схему проверяемого полупроводника подключают «плюс» к катоду, «минус» – к аноду. Неправильное включение выведет испытуемую деталь из строя.

Схема для проверки напряжения стабилизации

Стабилизация напряжения с использованием стабилитронов – успешное решение в электронных схемах. Правильное тестирование стабилитрона с помощью мультиметра поможет определить неисправную деталь и сберечь схему от повреждения.

Источник: https://amperof.ru/sovety-elektrika/proverit-stabilitron-multimetrom.html

Стабилитрон | Принцип работы и маркировка стабилитронов ⋆ diodov.net

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх.

Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения.

Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх.

С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб.

Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную.

Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом.

Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется).

В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2.

Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

ЭТО ИНТЕРЕСНО:  Что называют силой тока плотностью тока

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени.

Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор.

Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода.

Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе.

Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Источник: https://diodov.net/stabilitron-printsip-raboty-i-markirovka-stabilitronov/

Как проверить диод?

Радиоэлектроника для начинающих

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе.

Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV).

Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.
  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода Измеренное пороговое напряжение, мВ (mV) Тип диода, материал полупроводника
1N5822 167 выпрямительный диод Шоттки
1N5819 200 выпрямительный диод Шоттки
RU4 419 быстрый выпрямительный диод
Д20 358 точечный германиевый диод
Д9 400 точечный германиевый диод
2Д106А 559 диффузионный кремниевый диод
Д104 717 точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;
  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;
  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/kak-proverit-diod.html

Как проверить диод мультиметром. Подробная инструкция

В данной статье объясним как проверить диод мультиметром. Полупроводниковый диод, как компонент электронной схемы, довольно часто выходит из строя по различным причинам, например, превышение максимально допустимого прямого тока, обратного напряжения и тому подобное. Различают два вида неисправности диода – пробой и короткое замыкание.

Действие диода, как полупроводникового прибора с p-n переходом, заключается в том, что он пропускает электрический ток только в одном направлении (от анода к катоду), в обратном же направлении (от катода к аноду) ток не течет.

 Зная это свойство диода можно легко проверить его на неисправность при помощи обычного мультиметра.

Как проверить диод мультиметром

Обычные диоды, так же как и стабилитроны, можно проверить с помощью мультиметра. Чтобы проверить этот полупроводниковый прибор с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов, обычно данный режим имеет значок диода:

Следует отметить, что при проверке в данном режиме, на мультиметре отображается прямое напряжение, а не сопротивление, когда просто прозванивают диод в режиме сопротивления.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS

Мультиметр — RICHMETERS RM101

Richmeters RM101 — удобный цифровой мультиметр с автоматическим изменен

Мультиметр — MASTECH MY68

Измерение: напряжения, тока, сопротивления, емкости, частоты

Признаки исправного диода:

  • При подключении плюсового щупа (красный) мультиметра к аноду диода, а минусового щупа (черный) к катоду диода на экране мультиметра должна высветиться определенная величина прямого напряжения данного диода. У разных типов диодов прямое напряжение  отличается.

    Так у германиевых диодов оно составляет  примерно 0,30,7 вольт, у кремниевых диодов 0,71,0 вольта. Хотя некоторые типы мультиметров могут показывать более низкое значение прямого напряжения в режиме проверки.

  • И на оборот, при подключении минусового щупа мультиметра к аноду диода, а плюсового щупа к катоду диода на экране будет ноль.

При иных показаниях мультиметра можно утверждать о неисправности проверяемого диода.

Альтернативный способ проверки исправности диода

В том случае, если у вас мультиметр не снабжен режимом проверки диодов, то проверить диод можно по простой схеме, которая приведена ниже.

При данной проверке, мультимет необходимо перевести в режим измерения постоянного напряжения. При том подключении исправного  диода, как указано на схеме, вольтметр покажет прямое напряжение на диоде. Если теперь выводы диода поменять местами, то он не будет проводить ток, а вольтметр укажет напряжение питания (в данном случае 5 вольт).

Так же можно прозвонить диод и определить его общее состояние путем измерения сопротивления, как в прямом, так и в обратном направлении.

Для этого необходимо перевести мультиметр в режим измерения сопротивления, диапазон до 2 кОм. При подключении диода в прямом направлении (красный к аноду, черный к катоду) измерительный прибор покажет сопротивление несколько сотен Ом, в обратном направлении прибор покажет символ разрыва цепи, что говорит об очень большом сопротивлении.

Как проверить диодный мост

Прежде чем перейти к вопросу проверки диодного моста, вкратце приведем его описание. Диодный мост представляет собой сборку из четырех диодов, соединенных таким образом, что переменное напряжение (AC), подаваемое к двум из четырех выводов диодного моста, переходит в постоянное напряжение (DC) снимаемое с двух других его выводов.

Таким образом, предназначение диодного моста – выпрямление переменного напряжения с целью получения постоянного напряжения.

Диодный (выпрямительный) мост представляет собой четыре выпрямительных диода соединенных по определенной схеме:

Поскольку диодный мост предназначен для выпрямления переменного напряжения (синусоиды), то при первой полуволне переменного напряжения в работе участвуют одна пара диодов:

 а при следующей полуволне работает другая пара выпрямительных диодов:

Проверка диодного моста ничем не отличается от проверки обычного диода. Просто необходимо определиться, к каким выводам подключать мультиметр. Условно пронумеруем выводы выпрямителя от 1 до 4:

Отсюда следует, что для проверки диодного моста нам достаточно прозвонить 4 диода:

  • 1-й: выводы 1 – 2;
  • 2-й: выводы 2 – 3;
  • 3-й: выводы 1 – 4;
  • 4-й: выводы 4 – 3;

При проверке, необходимо руководствоваться на показания мультиметра, как и при проверке обычных диодов.

Источник: http://www.joyta.ru/7414-kak-proverit-diod-multimetrom/

Понравилась статья? Поделиться с друзьями:
Электрогенератор
В каком году появилась лампочка Ильича

Закрыть