Как определить общее сопротивление цепи при параллельном соединении

Задачи на параллельное и последовательное соединение проводников с подробными решениями

Как определить общее сопротивление цепи при параллельном соединении

Что бы ни происходило в мире, учиться надо всегда. Кстати, для тех, кто не знает, как организовать учебу на удаленке, мы подготовили отдельную статью. А сегодня займемся решением задач на последовательное и параллельное соеднинение проводников. Решение задач – отличный способ, чтобы успокоить нервы и не поддаваться панике.

Присоединяйтесь к нам в телеграме: там вас ждут актуальные новости и приятные скидки.

Последовательное и параллельное соединение проводников: решение задач

Как решать задачи с параллельным и последовательным соединением проводников? Для начала повторите теорию, вспомните общую памятку по решению физических задач и на всякий случай держите под рукой формулы.

Задача №1 на последовательное соединение проводников

Условие

Проводники сопротивлением 20 Ом и 30 Ом соединены последовательно. Напряжение на концах первого проводника равно 12 В. Определите напряжение, сопротивление и силу тока в цепи на втором проводнике, а также полное напряжение.

Решение

По закону Ома:

Для последовательного соединения проводников:

Ответ: 50 Ом; 18 В; 0,6 А; 30 В.

Задача №2 на параллельное соединение проводников

Условие

Два проводника соединены параллельно. Сила тока в первом проводнике равна 0,5 А, во втором — 1 А. Сопротивление первого проводника составляет 18 Ом. Определите сопротивление второго проводника и силу тока на всем участке цепи.

Решение

Для параллельного соединения:

По закону Ома:

При решении задач не забывайте проверять размерности величин и при необходимости переводить их в систему СИ.

Ответ: 1,5 А; 9 Ом.

Задача №3 на последовательное и параллельное соединение проводников

Условие 

Электрогрелка состоит из трех одинаковых секций. Во сколько раз быстрее грелка будет нагревать некоторое количество воды от 10 до 100 градусов Цельсия при параллельном включении всех секций, нежели при последовательном их включении? 

Решение

Пусть сопротивление каждой секции равно R. Тогда при параллельном включении их в сеть напряжение на каждой секции равно напряжению в сети (U), и на трех секциях будет выделяться тепло:

При последовательном соединении суммарное сопротивление цепи равно 3R, а выделяющееся количество теплоты:

Как видим, выделяющееся тепло для первой схемы в 9 раз больше, так что и скорость нагрева воды будет в 9 раз выше.

Ответ: в 9 раз.

Задача №4 на смешанное соединение проводников

Условие

Участок цепи состоит из двух последовательно соединенных сопротивлений, каждое из которых равно 1 Ом. К этим двум резисторам параллельно подключают еще одно сопротивление, значение которого составляет 2 Ом. Всю эту цепь подключают к источнику тока, который создает на концах данного соединения напряжение 2,4 В. Определите силу тока во всей электрической цепи.

Решение

Согласно схеме, искомая сила тока – это сила тока, протекающая через амперметр. 

Резисторы R1 и R2 соединены последовательно, резистор R3 – параллельно к ним. 

Резисторы 1 и 2 можно заменить эквивалентным сопротивлением R со штрихом и перерисовать схему в упрощенном виде:

Сопротивления R3 и R со штрихом соединены параллельно, можно найти общее сопротивление электрической цепи по формуле для параллельного соединения:

Теперь цепь можно перерисовать в еще более упрощенном виде и рассчитать силу тока по закону Ома:

Ответ: 2.4 А.

Задача №5 на закон Кирхгофа

Правила Кирхгофа применяются для расчета сложных электрических цепей.

Условие

Три сопротивления R1 = 5 Ом, R2 = 1 Ом, R3 = 3 Ом и два источника тока соединены так, как показано на рисунке. Внутренними сопротивлениями  источников тока можно пренебречь. ЭДС первого источника тока равна 1,4 В, и сила тока, текущего через сопротивление R3, равна I3= 1 А.  Определите ЭДС второго источника тока.

Решение

Выберем направление обхода контуров по часовой стрелке и запишем закон Кирхгофа для точки A (расположим ее между двумя источниками и сопротивлением R2)  и двух контуров:

Подставим числа, получим

Решая систему уравнений, получаем ответ: Е2=3.6 В.

Ответ: 3.6 В.

Вопросы на параллельное и последовательное соединение проводников

Вопрос 1. Схематически изобразите последовательное соединение проводников

Ответ. На рисунке ниже изображен участок цепи с последовательно соединенными проводниками:

Вопрос 2. Схематически изобразите параллельное соединение проводников

Ответ. На рисунке ниже изображено параллельное соединение проводников:

Вопрос 3. Приведите основные формулы и соотношения для последовательного соединения проводников.

Ответ. При последовательном соединении:

  1. Сила тока во всех проводниках одинакова.
  2. Общее напряжение равно сумме напряжений на каждом проводнике.
  3. Полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Вопрос 4. Приведите основные формулы и соотношения для параллельного соединения проводников.

Ответ. Для параллельного соединения проводников:

  1. Напряжение на всех проводниках одинаково.
  2. Сила тока в неразветвленной цепи равна сумме токов в параллельно соединенных проводниках.
  3. Величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Вопрос 5. Какие электрические цепи нельзя рассчитать с помощью формул для последовательного и параллельного соединения проводников?

Ответ. С помощью приведенных выше формул можно рассчитать лишь относительно простые электрические цепи. Для расчета сложных цепей, включающих в себя несколько источников тока и состоящих из многих резисторов, применяются правила Кирхгофа.

Нужна помощь в решении задач или любых других учебных заданий? Обращайтесь в профессиональный сервис для учащихся: мы найдем верное решение.

Автор

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник: https://Zaochnik.ru/blog/zadachi-na-parallelnoe-i-posledovatelnoe-soedinenie-provodnikov-s-podrobnymi-reshenijami/

Как найти сопротивление цепи при параллельном соединении

Как определить общее сопротивление цепи при параллельном соединении

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов

В жизни последовательное соединение резисторов имеет вид:

Последовательно соединённые резисторы серии МЛТ

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

ЭТО ИНТЕРЕСНО:  Как определить направление тока в проводнике

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

Общее номинальное сопротивление составного резистора обозначено как Rобщ.

Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,RN.

Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов

Можно соединять резисторы и параллельно:

Два резистора МЛТ-2, соединённых параллельно

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.

Замер общего сопротивления при последовательном соединении

Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.

Измерение сопротивления при параллельном соединении

Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:

При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Источник: https://ingener-pto.ru/2019/12/12/kak-najti-soprotivlenie-cepi-pri-parallelnom/

Расчет импеданса в параллельном соединении элементов цепи — Электрик

Как определить общее сопротивление цепи при параллельном соединении

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми.

Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б).

Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью.        а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

Извлекая квадратный корень из обеих частей этого равенства, получим,

 Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е.

полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе.

Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

ЭТО ИНТЕРЕСНО:  Чем отличается анод от катода

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°.

К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи.

Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью.                                                а) — схема цепи; б) — треугольник сопротивлений.

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

 В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

Или

                         (6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C.

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

  •                        (7)
  • Приводя к общему знаменателю подкоренное выражение, получим:
  •   (8)
  •  откуда:
  •                               (9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

  1. Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:
  2.                              (10)
  3.  Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков.

Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура.

  • Формула полного сопротивления для этого случая будет:
  •                    (11)
  •  Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:
  •  (12)

 В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

  1.                                      (13)
  2.  При соблюдении этого условия полное сопротивление колебательного контура будет равно:
  3.                                      (14)
  4.  где L—индуктивность катушки в Гн;
  5. С—емкость конденсатора в Ф;
  6. R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: https://orensbyt.ru/avtomatizatsiya/raschet-impedansa-v-parallelnom-soedinenii-elementov-tsepi.html

Сопротивление при параллельном и последовательном соединении резисторов

Практически все проводники обладают свойством создавать препятствие для течения электрического тока, известное как электрическое сопротивление, измеряемое в омах. Довольно часто в различных схемах требуется отрегулировать ток и напряжение.

С этой целью в электронике широко применяются резисторы, обладающие точным значением сопротивления. Однако сопротивление при параллельном и последовательном соединении резисторов дает разные результаты, поэтому в каждом случае требуется своя методика расчетов.

Стабильные и точные параметры этих элементов обеспечивают дальнейшую надежную эксплуатацию всей электрической схемы.

Схема последовательного соединения

При последовательном соединении выполняется подключение каждого последующего резистора к предыдущему элементу. В результате, образуется непрерывная цепь, без каких-либо разветвлений. Значение тока будет одинаковым в каждой точке этой цепи: Iобщ = I1 = I2. Напряжение U1 и U2, наоборот, будет отличаться в разных точках.

Работа по переносу заряда через всю цепь будет состоять из суммы работ по переносу заряда в каждом резисторе, то есть: Uобщ = U1 + U2. В соответствии с законом Ома, напряжение U равно произведению тока и сопротивления, то есть IR.

Поэтому в окончательном виде напряжение или работа будет выглядеть следующим образом: IR = IR1 + IR2. В этой формуле значение R является общим сопротивлением цепи. На основании этой формулы можно сделать вывод, что в точках подключения резисторов начинает падать напряжение: Rобщ = R1 + R2 + . Rn.

Отсюда следует, что при увеличении количества подключенных элементов, растет и падение напряжения.

Таким образом, общее значение сопротивления при последовательном соединении составляет сумму всех последовательно соединенных сопротивлений. Данный вывод действует для любых участков цепи, где имеется рассматриваемый вид соединения.

Калькулятор сопротивлений резисторов

Источник: https://electric-220.ru/news/soprotivlenie_pri_posledovatelnom_i_parallelnom_soedinenii_rezistorov/2016-10-27-1098

Параллельное соединение резисторов

Физика > Параллельное соединение резисторов

Чему равно сопротивление резисторов при параллельном соединении: общее сопротивление цепи, схема параллельного соединения, формула закона Ома, расчет.

В параллельной цепи полное сопротивление достигает суммы инверсии каждого.

Задача обучения

  • Определить общее сопротивление.

Основные пункты

  • В параллельном соединении полное сопротивление меньше, чем наименьшее из отдельных.
  • Каждый резистор наделен одним напряжением.
  • Параллельные резисторы получают общее количество тока, но и делят его.
ЭТО ИНТЕРЕСНО:  Как определить полярность диода

Термины

  • Параллельность – расположение электрических составляющих так, чтобы ток протекал вдоль двух или более путей.
  • Сопротивление – противодействие потоку электрического тока.

Обзор

Резисторы в электрической схеме цепи могут располагаться последовательно или параллельно. Полное сопротивление зависит от индивидуальных значений и метода связи.

Параллельное соединение

Мы сталкиваемся с параллельным соединением резисторов, если каждый резистор подключается к источнику напряжения индивидуально. Поэтому каждый обладает полным напряжением. Ниже представлена схема параллельного соединения резисторов в электрической цепи.

Параллельное соединение резисторов

Резисторы используют столько тока, как если бы они были единственными в цепи. Это применяют в доме, чтобы обеспечить независимую работу прибора.

Закон Ома в параллельном подключении

У каждого резистора есть полное напряжение. Тогда закон Ома будет выглядеть как:

I1 = V/R1

I2 = V/R2

I3 = V/R3.

Суммарный ток будет приравниваться к результату сложения отдельных:

Три резистора в параллельном соединении с батареей и эквивалентным сопротивлением

I = I1 + I2 + I3.

Подставим выражение для отдельных токов: I = V/R1 + V/R2 + V/R3 или I = V (1/R1 + 1/R2 + 1/R3).

Мы видим, что общее сопротивление в параллельном подключении достигает суммы инверсии каждого отдельного. Поэтому выходим на формулу:

Rn (параллельно) = 1/R1 + 1/R2 + 1/R3 + 1/Rn.

Подобное соотношение выводит на суммарное сопротивление, которое уступает наименьшему из индивидуальных. При параллельном подключении больше тока протекает от источника, чем поток для каждого по отдельности, поэтому сопротивление ниже.

Каждый резистор обладает полным напряжением источника, но и разделяют общий ток. Например, у нас есть батарея 1.5В. В последовательном подключении две лампочки будут гореть также ярко, как если бы это была всего одна. Однако батарея расходуется быстрее, потому что гарантирует полную энергию сразу для двух лампочек.

Читайте нас на Яндекс.Дзен

Источник: https://v-kosmose.com/fizika/parallelnoe-soedinenie-rezistorov/

Параллельное и смешанное соединение резисторов: разные способы подключения сопротивления

Ни одна операция в электронике или электротехнике не обходится без вычисления сопротивления. В этом случае рассматривают только тот участок цепи, в котором находится смешанное соединение резисторов. Инженерам и физикам необходимо понимать то, как именно происходят расчёты в таких схемах. Всего разделяют несколько видов подключения, которые используются в цепях различной сложности.

  • Последовательное соединение
  • Параллельное подключение
  • Смешанный вариант

Выделяют такие способы соединения резисторов: последовательное, параллельное и комбинированное. При последовательном подключении конец первого резистора подключают к началу второго, его часть к третьему.

Так действуют со всеми составляющими. То есть все компоненты цепи следуют друг за другом. Через них в таком подключении будет проходить один общий электрический ток.

Для таких схем физики применяют формулу, в которой между точками А и В есть только один путь протекания заряженных электронов.

От количества подключённых резисторов зависит сопротивление протекающему электричеству. Чем больше составляющих, тем оно выше. Его рассчитывают по формуле: R общее = R1+R2++Rn, где:

  • R общее — это сумма всех сопротивлений;
  • R1 — первый резистор;
  • R2 — второй компонент;
  • Rn — последняя составляющая в цепи.

Параллельное подключение

Параллельное соединение подразумевает подключение начал резисторов к одной точке, а концов к другой. Сами компоненты при этом расположены на одинаковом расстоянии друг от друга, а их количество не ограничено. По каждой составляющей электричество протекает отдельно, выбирая один из нескольких путей.

Из-за того, что в цепи находится несколько компонентов и путей прохода тока, сопротивление значительно меньше, чем при последовательном соединении. То есть общая сумма противодействия уменьшается пропорционально увеличению количества составляющих. Формула для определения общей суммы противостояния электричеству: 1/R общее = 1/R1+1/R2++1/Rn.

В расчётах общее сопротивление всегда должно быть меньше любого из составляющих цепи. Способ вычисления суммы противостояния для схемы из двух резисторов немного отличается: 1/R общее = (R1 х R2)/(R1+R2). Если в системе у компонентов одинаковые показатели сопротивления, то общее число будет равно половине одного из составляющих.

Смешанный вариант

В смешанном соединении сопротивлений комбинируют последовательную и параллельную схему подключений. В этом случае несколько компонентов соединяют одним способом, а другие — вторым, но все они включены в одну цепь. В физике такой метод соединения называют последовательно-параллельным.

Для вычисления суммы противостояния электричеству схему нужно разбить на мелкие участки, в которых резисторы подключены одинаковым способом. Затем расчёты проводят по алгоритму:

  • в цепи с параллельно соединёнными компонентами высчитывают эквивалентное сопротивление;
  • после этого высчитывают противостояние на последовательно подключённых участках схемы;
  • наглядную иллюстрацию нужно перерисовать, обычно получается цепь с последовательным соединением резисторов;
  • рассчитывают сопротивление в новой схеме по одной из двух формул.

Лучше понять методы вычислений поможет пример. Если в схеме всего пять компонентов, они могут располагаться по-разному. Начало первого резистора подключено к точке А, конец — к В. От неё идёт отдельная схема с комбинированным соединением. Вторая и третья составляющие находятся на последовательной линии, четвёртый компонент параллелен им. От конечной точки этой цепи — Г — исходит последний резистор.

Сначала высчитывают сумму сопротивления последовательного участка внутренней схемы: R2+R3. После этого цепь перерисовывают так, чтобы второй и третий компоненты были соединены в один. В результате внутренняя цепь имеет параллельное подключение. Теперь высчитывают её противостояние: (R2,3xR4)/(R2,3+R4). Можно второй раз изобразить полученную цепь.

В схеме будет три резистора, соединённые последовательным методов. Причём средний включает параметры второго, третьего и четвёртого компонента.

Теперь можно узнать общую сумму сопротивлений. Для этого складывают показатели противостояний электричеству первого, пятого и остальных составляющих. Формула будет иметь вид: R1+(R2,3xR4)/(R2,3+R4)+R5. Можно сразу подставить в неё все параметры компонентов.

На практике последовательный и параллельный метод соединения используются редко, ведь в приборах схемы обычно сложные. Поэтому в цепях резисторы часто соединены комбинированным способом. Сопротивление в таких случаях высчитывают пошагово.

Если сразу выводить числа в общую формулу, то можно ошибиться и получить неверные результаты. А это может отрицательно сказаться на работе электрического прибора.

Источник: https://220v.guru/elementy-elektriki/rezistory/smeshannoe-soedinenie-rezistorov.html

Полное сопротивление цепи переменного тока — Основы электроники

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как крепится патрон в люстре

Закрыть