Как определить направление тока

Направление электрического тока

Как определить направление тока

Всем известно, что суть электрического тока заключается в упорядоченном движении заряженных частиц в каких-либо проводниках. Чаще всего для этих целей используются различные металлы, где в качестве тока выступают отрицательно заряженные частицы – электроны. В кислотных, щелочных и солевых растворах электрический ток возникает в результате движения положительных и отрицательных ионов.

Откуда берется электрический ток

С самого начала, когда это явление было открыто, у ученых возникал вопрос: какие движущиеся заряженные частицы образуют направление тока? Чтобы до конца разобраться в данной проблеме, следует остановиться на источниках тока, поскольку именно они инициируют движение заряженных частиц в проводниках.

Движение заряженных частиц появляется в результате действия, производимого аккумуляторами, батареями, генераторами и другими устройствами, преобразующими различные виды энергии в электрическую. Закон сохранения энергии наглядно действует в процессе таких преобразований.

Сами частицы начинают двигаться, когда цепь становится замкнутой, а в проводнике возникает электрическое поле, оказывающее определенное воздействие на свободные электроны.

В связи с этим было установлено, что все источники тока обладают установленной электродвижущей силой или ЭДС.

Электроны не появляются из источников тока, они присутствуют в самих проводниках и, являясь свободными, начинают двигаться под действием созданного поля.

В качестве наиболее яркого сравнительного примера выступает насос перекачивающий жидкость в трубах, замкнутых между собой. В зависимости от диаметра труб и количества разветвлений, жидкость может двигаться по ним с большей или меньшей скоростью.

Эти свойства в полной мере характеризуют течение тока, которое изменяется в соответствии с сечением проводника.

На практике это выглядит следующим образом. Провод, сечением 1,5 мм2, рассчитан на максимальную силу тока в 16 А. К нему может быть подключена нагрузка не более 3-3,5 кВт. При подключении более мощного оборудования проводник не выдержит и выйдет из строя.

Что такое ток короткого замыкания

Разобравшись с источниками тока, необходимо определить его направление, которое приняли ученые после проведенных исследований в этой области. Условно было принято направление движения положительных зарядов, поскольку ток от положительного полюса движется к отрицательному полюсу источника тока.

Движение частиц и направление тока

Прежде всего, следует отметить, что не все движущиеся заряженные частицы вызывают образование тока. Например, под действием тепла заряды будут двигаться, но это движение – хаотическое и ненаправленное. Если же к тепловому движению добавляется действие электрическое поле, то под его влиянием хаотические перемещения частиц примут определенную направленность.

Заряженные частицы, образующие ток, движутся в направлении, в зависимости от знака их заряда. То есть, движение положительно заряженных частиц происходит от «+» к «-», а отрицательно заряженных, наоборот, от «-» к «+». Встречное движение характерно для газовой и электролитической среды, поэтому часто возникает вопрос, каким будет настоящее направление тока?

По общему соглашению было принято решение считать направление движения частиц с положительными зарядами, за направление электрического тока.

В этом случае возникает некоторое противоречие, затрагивающее металлические проводники, в которых перенос зарядов осуществляется свободными электронами. Хорошо известно, что они двигаются от минуса к плюсу.

Тем не менее, приходится считать направление тока в этом случае, противоположным движению свободных электронов. Однако, несмотря на некоторые неудобства, данное правило четко определяет, в каком направлении движется электрический ток.

Источник: https://electric-220.ru/news/napravlenie_ehlektricheskogo_toka/2017-12-20-1411

Правило буравчика кратко и понятно

Как определить направление тока

Далеко не все явления в нашей жизни мы можем увидеть, хотя используем их постоянно. Например, электрический ток и магнитное поле. Если к току, как к явлению, мы более-менее привыкли, с магнитными полями не очень легко разобраться. О том, что это такое и как правило буравчика позволяет определить его направление и поговорим.

Что такое магнитное поле

Все, наверное, знают что такое постоянные магниты — они «липнут» к железу и некоторым другим материалам. Если приблизить два магнита, то они будут притягиваться или отталкиваться — в зависимости от того, как мы их повернем друг относительно друга.

Почему и за счет чего так происходит? За счет того, что вокруг магнитов создается магнитное поле. Оно возникает при движении заряженных частиц. Например, вокруг провода, по которому протекает электрический ток, есть магнитное поле. Оно слабое, но оно есть.

Магнитное поле нельзя увидеть, но можно ощутить

Постоянные магниты

Как же тогда с магнитами? Откуда в них магнитное поле, ведь в них нет направленного движения частиц? Все просто. В них магнитное поле создается зарядами частиц. Как известно, любой материал состоит из положительно и отрицательно заряженных частиц.

В некоторых материалах частицы можно расположить так, чтобы положительные были сконцентрированы с одной стороны, отрицательные — с другой. Эти «две стороны» называют полюсами магнита.

Отрицательный — северный, обозначается латинской буквой N и закрашивается обычно синим цветом, положительный называют «южный» и обозначается S, закрашивается в красный цвет.

Постоянные магниты и их виды

Причем, стоит помнить, что однополюсных магнитов не бывает. Всегда есть два полюса. Если есть у вас большой магнит, его можно распилить пополам. И вы получите два магнита меньшего размера с двумя полюсами. Если распилите их — получите еще более мелкие двухполюсные магнитики.

Постоянные магниты можно сделать далеко не из всех материалов. Для этих целей подходят всего три вещества: железо (Fe), никель (Ni) и кобальт (Co). Если их выдержать в магнитном поле, частицы «рассортируются» по полюсам, материал станет магнитом. Но не все будут долго сохранять эти свойства.

По способности удерживать магнитные свойства, материалы разделают на магнитомягкие и магнитотвердые материалы. Первые быстро намагничиваются, но и быстро теряют свои свойства. К таким относится железо (не обработанное). Магнитотвердый материал — например, сталь — в магнитном поле надо выдерживать долго.

Зато после «выдержки» он становится магнитом на значительный промежуток времени. Можете поэкспериментировать со стальными скрепками.

Правило буравчика для магнитных полей

Речь шла о постоянных магнитах. У них все всегда понятно: где какой полюс и куда направлены линии магнитного поля — от северного полюса к южному. Но магнитное поле возникает и вокруг проводников, по которым течет ток.

Просто оно слабое, так что даже если поднести два участка, по которым течет ток, особого притяжения или отталкивания мы не ощутим. Чтобы создать сильное электромагнитное поле, проводник накручивают вокруг какого-то сердечника. Это изделие называют соленоидом. Когда по нему течет ток, создается ощутимое магнитное поле.

Но как направлены линии магнитного поля в электромагнитах? Где у них северный, где южный полюс? Вот это и выясняют с помощью правила буравчика.

Буравчик можно себе представить как обычный штопор с ручкой-перекладиной и витками, накрученными вправо. Чтобы закручивать такой штопор, ручку надо вращать вправо — по часовой стрелке. При этом острие штопора/буравчика продвигается вниз. Чтобы выкручивать его, надо рукоятку вращать влево — против часовой стрелки. Острие при этом движется вверх.

Правило буравчика для магнитного поля

С движением острия буравчика и направлением вращения рукоятки и связано определение направление магнитного поля. Вот как звучит правило буравчика (еще называют правило винта):

Если направление движения острия буравчика (винта) совпадает с направлением движения тока, то движение рукоятки буравчика укажет направление линий магнитного поля.

С ровными проводниками все просто. Представляете, вкручивать или выкручивать надо буравчик, получаете направление силовых линий. Если по условиям задачи есть только направление линий магнитного поля, при помощи правила буравчика можно установить направление тока. Для этого мысленно представляем, что ручка штопора крутится в указанном направлении. В зависимости от этого, определяем куда движется острие, а, значит, и куда течет ток.

Правило правой руки

Не всегда и не у всех с буравчиком «складывается». Некоторым людям сложно представить, как будет двигаться винт. В этом случае можно попробовать одну из его вариаций: правило правой руки. Для кого-то оно проще и наглядней. Вот как определять направление магнитного поля по правилу правой руки.

Если отогнуть большой палец правой руки и направить его в сторону течения тока, согнутые вокруг проводника пальцы, покажут направление движения магнитного поля.

Правило буравчика в другой интерпретации: правой руки для проводника (иллюстрация)

Внимание! Во время применения правила прикасаться к проводнику не надо. Все операции надо проделывать в собственном воображении, или на солидном расстоянии от реального проводника тока.

Правило правой руки для соленоида

Чем хорош этот вариант, так это тем что его легко применить и для соленоида. Направляем большой палец в том направлении, куда течет ток, и по остальным определяем направление магнитного поля. Все просто. С буравчиком так не получится.

По правилу правой руки определять также можно направление тока по имеющимся линиям магнитного поля. Пальцы располагаем вдоль этих линий, повернув их по движению. Отогнутый на 90° большой палец покажет направление тока.

Источник: https://elektroznatok.ru/info/teoriya/pravilo-buravchika

Магнитное поле прямолинейного проводника с током

Как определить направление тока

09 августа 2013.
Категория: Электротехника.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами.

Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д.

с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Рисунок 1. Магнитное поле вокруг проводника с током
Рисунок 2. Направление магнитных индукционных линий

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по «правилу буравчика» Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по «правилу буравчика»

Магнитная индукция

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6).

Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µ0 – магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ0 = 4 × π × 10-7 (генри/метр);

генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

ЭТО ИНТЕРЕСНО:  Какой длины должна быть скрутка

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ0 называется напряженностью магнитного поля и обозначается буквой H:

или

B = H × µ × µ0 .

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H:

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр):

1 эр = 79,6 а/м ≈ 80 а/м ≈ 0,8 а/см .

Напряженность магнитного поля H, как и магнитная индукция B, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Ф = B × S .

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс):

1 вб = 108 мкс.
1 мкс = 1 гс × 1 см2.

1. Гипотеза Ампера

1. Гипотеза Ампера

2. Магнетизм и электромагнетизм

Источник: https://www.electromechanics.ru/electrical-engineering/537-the-magnetic-field-of-a-straight-current-carrying-conductor.html

Правило буравчика правой и левой руки простым языком

Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.

Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).

Главное правило позволяет определить направление впространстве аксиальных векторов, важных для вычислений:

  • угловой скорости;
  • параметров индукционного тока;
  • магнитной индукции.

Хотяориентация аксиального вектора является условной, она важна для расчётов: придерживаясьпринятого алгоритма выбора, легче производить вычисления, без риска перепутатьзнаки. 

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

  • механического вращения (определение угловой скорости);
  • момента приложенных сил;
  • момента импульса.

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Правило левой руки

Вэлектротехнике довольно часто возникают вопросы, связанные с определением силыАмпера. Для решения задач подобного рода применяется алгоритм, называемый правиломлевой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способопределения направленности Амперовой силы, выталкивающей точечный заряд либо проводник,по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

Рис. 4. Сила Ампера

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма.

    Возможно, такие модели существуют до сегодняшнего дня.

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы.

Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Источник: https://www.asutpp.ru/pravilo-buravchika-prostym-yazykom.html

Правило правой и левой руки в физике: применение в повседневной жизни

Вступив во взрослую жизнь, мало кто вспоминает школьный курс физики. Однако иногда необходимо покопаться в памяти, ведь некоторые знания, полученные в юности, могут существенно облегчить запоминание сложных законов. Одним из таких является правило правой и левой руки в физике.

Применение его в жизни позволяет понять сложные понятия (к примеру, определить направление аксиального вектора при известном базисном).

Сегодня попробуем объяснить эти понятия, и как они действуют языком, доступным простому обывателю, закончившему учёбу давно и забывшему ненужную (как ему казалось) информацию.

Правило правой руки (буравчика) легко понять, глядя на обычный штопор

Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.

Простое и понятное объяснение с наглядным примером

Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.

Главное – не забыть, в каком направлении течёт ток

Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.

Правило правой и левой руки: применение на практике

Рассматривая применение этого закона, начнём с правила правой руки. Если известно направление вектора магнитного поля, при помощи буравчика можно обойтись без знания закона электромагнитной индукции. Представим, что винт передвигается вдоль магнитного поля. Тогда направление течения тока будет «по резьбе», то есть вправо.

Ещё одно чёткое и понятное объяснение

Применение правила правой руки для соленоида

Обратим внимание на постоянный управляемый магнит, аналогом которого является соленоид. По своей сути он является катушкой с двумя контактами. Известно, что ток движется от «+» к «-». Опираясь на эту информацию, берём в правую руку соленоид в таком положении, чтобы 4 пальца указывали направление течения тока. Тогда вытянутый большой палец укажет вектор магнитного поля.

Применение правила правой руки для соленоида

Правило левой руки: что можно определить, воспользовавшись им

Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:

  • сила Лоренца;
  • сила Ампера.

Попробуем разобраться, как это работает.

Применение для силы Ампера

Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.

Применение для силы Лоренца

Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Заключение

Разобравшись один раз с правилами правой и левой руки, уважаемый читатель поймёт, насколько легко ими пользоваться. Ведь они заменяют знание многих законов физики, в частности, электротехники. Главное здесь – не забыть направление течения тока.

При помощи рук можно определить множество различных параметров

Надеемся, что сегодняшняя статья была полезна нашим уважаемым читателям. При возникновении вопросов их можно оставить в обсуждениях ниже. Редакция Seti.guru с удовольствием на них ответит в максимально сжатые сроки. Пишите, общайтесь, спрашивайте. А мы, в свою очередь, предлагаем вам посмотреть короткое видео, которое поможет более полно понять тему нашего сегодняшнего разговора.

Источник: https://seti.guru/pravilo-pravoy-i-levoy-ruki-v-fizike-primenenie

Направление тока и направление линий его магнитного поля

Вы знаете правило правого винта? Если вы когда-нибудь закручивали винт или шуруп, то вы наверняка знаете, в какую сторону он закручивается, а в какую выкручивается. Люди унифицировали направление закручивая винтов и шурупов. Это значит, что все шурупы и винты во всем мире закручиваются в одну сторону.

То есть, если вы купите некий прибор в другой стране, то в случае его ремонта или сборки вам не потребуются винты с нарезкой в иную сторону, такие, каких не купишь в вашей стране. Нарезка всех винтов в мире совпадает. Это правило нарушают лишь в некоторых особых случаях, когда от нарезки зависит вращение некой части устройства. Но для таких случаев делают специальные детали. Это простое, но гениальное решение избавило от множества потенциальных проблем.

«Правило буравчика», направление тока и линий его магнитного поля

Оказывается, что это правило применимо не только в механике к закручиванию винтов. Если мы имеем проводник с током, то это правило помогает нам определить направление линий магнитного поля, образованного этим током. Только это правило в данном случае носит название «правила буравчика». Правило буравчика звучит следующим образом:

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Понять сразу немного сложновато, поэтому разберемся. Буравчик это винт или шуруп, который мы ввинчиваем. Направление ручки буравчика это направление вращения нашей руки. Если ток движется от нас, то и шуруп движется от нас, то есть мы его ввинчиваем, так как мы условились считать их направления совпадающими.

Тогда направление вращения нашей руки в процессе ввинчивания это направление магнитных линий. Они будут направлены по часовой стрелке.

В случае противоположного направления электрического тока, линии магнитного поля будут направлены, соответственно, против часовой стрелки. Таким же было бы направление руки в процессе выкручивая винта или направление ручки буравчика в случае его движения к нам.

А как определить направление тока, если мы знаем направление магнитных линий? Очень просто. По тому же правилу. Только изначально бы берем за известный факт не направление движения буравчика, а направление вращения его ручки.

Нужна помощь в учебе?

Предыдущая тема: Графическое изображение магнитного поля: неоднородное и однородное
Следующая тема:   Обнаружение магнитного поля по его действию на электрический ток

Источник: http://www.nado5.ru/e-book/napravlenie-toka-i-napravlenie-linii-ego-magnitnoyu-polya

Как определить направление тока в проводнике в магнитном поле — Права россиян

  • Магнитное поле. Линии – материалы для подготовки к ЕГЭ по Физике
  • III. Основы электродинамики
  • Направление магнитного поля
  • Конспект
    • Опыт Эрстэда. Магнитное поле тока
    • Сила, действующая в магнитном поле на проводник с током
    • (Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)
  • Правило буравчика правой и левой руки простым языком
  • Магнитное поле прямолинейного проводника с током

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными.

Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим.

Об этом свидетельствуют следующие опытные факты.

• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока.

Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма.

Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.

Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Источник: https://pravoup.ru/kak-opredelit-napravlenie-toka-v-provodnike-v-magnitnom-pole.html

Самостоятельная работа по физике Магнитное поле прямого тока. Магнитные линии 8 класс

Самостоятельная работа по физике Магнитное поле прямого тока. Магнитные линии 8 класс с ответами. Самостоятельная работа представлена в двух вариантах, в каждом по 3 задания.

Вариант 1

1. Что принято за направление магнитной линии магнитного поля?

2. На полу лаборатории под слоем линолеума проложен прямой изолированный провод. Как определить местонахождение провода и направление тока в нем, не вскрывая линолеум?

3. Определите направление тока в проводнике, сечение которого изображено на рисунке 94.­

Вариант 2

1. Что представляют собой магнитные линии магнитного поля?

2. Каким полюсом повернется к наблюдателю магнитная стрелка, если замкнуть электрическую цепь (рис. 95)?

3. У зажимов аккумулятора не оказалось пометок о том, какой из них положительный, а какой — отрицательный. Можно ли это узнать, имея в своем распоряжении только компас и моток проволоки?

Ответы на самостоятельную работу по физике Магнитное поле прямого тока. Магнитные линии 8 класс
Вариант 11. За направление магнитной линии магнитного поля принято направление, которое указывает северный полюс магнитной стрелки.2.

Определить местонахождение провода и направление тока в нем можно при помощи магнитной стрелки, так как вокруг проводника с током образуется магнитное поле, которое взаимодействует с полем магнитной стрелки.3.

В проводнике на рисунке ток направлен от нас по правилу правой руки.

Вариант 2

1. Магнитные линии представляют собой замкнутые кривые, охватывающие проводник.2. По правилу правой руки стрелка повернется против часовой стрелки.

3. Узнать, есть ли ток в проводнике, не пользуясь амперметром, можно по поведению магнитной стрелки вблизи проводника. Ток всегда обладает магнитным действием. поэтому если происходит отклонение стрелки, значит ток есть.

Источник: https://fizikaedu.ru/2019/12/18/samostoyatelnaya-rabota-po-fizike-magnitnoe-pole-pryamogo-toka-magnitnye-linii-8-klass/

Направление электрического тока ⋆ diodov.net

Направление электрического тока принято считать от плюса к минусу генератора или источника питания, и принимается, что он протекает в металлических проводниках. Однако I образуется не только в проводниках, но и в газах и жидкостях.

Атомы металлов связаны в прочную кристаллическую решетку, поэтому свободно перемещаться могут только свободные электроны; ионы остаться неподвижными. Атомы газов и жидкостей могут свободно перемещаться, поскольку не имеют прочных связей.

Следовательно, носителями зарядов служат ионы и эл-ны.

Поэтому при определении силы тока I в газах и жидкостях, необходимо учитывать сумму положительных и отрицательных зарядов, прошедших через площадь поперечного сечения за единицу времени. Например, в металлическом проводнике I = 1 А, если через проводник за одну секунду проходят 6,2818 эл-нов (1 Кл).

Один ампер в газе или жидкости могут образовать 3,1418 эл-нов (0,5 Кл) и столько же положительных ионов (еще 0,5 Кл). Если заряд иона вдвое превышает заряд эл-на, то  потребуется в два раза меньше ионов для создания одного ампера.

Направление электрического тока в проводниках

Исторически сложилось так, что направление протекание электрического тока принято от «плюса» к «минусу», то есть от положительного к отрицательному электроду источника питания. На самом деле, если рассматривать металлический проводник, то электроны, являющиеся единственными носителями заряда, движутся от отрицательного электрода к положительном. Следовательно действительное направления тока противоположно принятому.

Такое направление предложил Бенджамин Франклин ввиду отсутствия знаний того времени о природе носителей электрического заряда в проводниках. Портрет Бенджамина Франклина изображен на сто долларовой купюре.

Направление электрического тока в газах и жидкостях

В газах и жидкостях электрический ток может протекать от плюса к минусу, согласно традиционному представлению, поскольку в них может преобладать количество положительных ионов. Направление не стали изменять на «правильное», поскольку оно слишком плотно вошло в обиход.

Источник: https://diodov.net/napravlenie-elektricheskogo-toka/

Как течет ток

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна.

Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой.

В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.

Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц –  электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Электрический ток и поток электронов

Единица измерения силы тока

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням).

При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах.

Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях.

Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов.

При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

Закон Ома для неоднородного участка

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.

Параллельная электрическая цепь

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.

Основные характеристики переменного тока

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).

Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Источник: https://amperof.ru/teoriya/kak-techet-tok.html

 Правило буравчика. Правило правой руки

Для опре­де­ле­ния на­прав­ле­ния маг­нит­ных линий возле про­вод­ни­ка с током су­ще­ству­ет пра­ви­ло бу­рав­чи­ка (пра­ви­ло пра­во­го винта) – если вкру­чи­вать бу­рав­чик по на­прав­ле­нию тока в про­вод­ни­ке, то на­прав­ле­ние вра­ще­ния ручки бу­рав­чи­ка ука­жет на­прав­ле­ние линий маг­нит­но­го поля тока (см. Рис. 4).

Рис. 4. Пра­ви­ло бу­рав­чи­ка

Также можно ис­поль­зо­вать пра­ви­ло пра­вой руки – если на­пра­вить боль­шой палец пра­вой руки по на­прав­ле­нию тока в про­вод­ни­ке, то че­ты­ре со­гну­тых паль­ца ука­жут на­прав­ле­ние линий маг­нит­но­го поля тока (см. Рис. 5).

Рис. 5. Пра­ви­ло пра­вой руки

Оба ука­зан­ных пра­ви­ла дают один и тот же ре­зуль­тат и могут быть ис­поль­зо­ва­ны для опре­де­ле­ния на­прав­ле­ния тока по на­прав­ле­нию маг­нит­ных линий поля.

 Разветвление: Взаимодействие проводников с током в опытах Ампера

После от­кры­тия яв­ле­ния воз­ник­но­ве­ния маг­нит­но­го поля вб­ли­зи про­вод­ни­ка с током Эр­стед разо­слал ре­зуль­та­ты своих ис­сле­до­ва­ний боль­шин­ству ве­ду­щих учё­ных Ев­ро­пы.

По­лу­чив эти дан­ные, фран­цуз­ский ма­те­ма­тик и физик Ампер при­сту­пил к своей серии экс­пе­ри­мен­тов и через неко­то­рое время про­де­мон­стри­ро­вал пуб­ли­ке опыт по вза­и­мо­дей­ствию двух па­рал­лель­ных про­вод­ни­ков с током.

Ампер уста­но­вил, что если по двум рас­по­ло­жен­ным па­рал­лель­но про­вод­ни­кам течёт элек­три­че­ский ток в одну сто­ро­ну, то такие про­вод­ни­ки при­тя­ги­ва­ют­ся (см. Рис. 6 б) если ток течёт в про­ти­во­по­лож­ные сто­ро­ны – про­вод­ни­ки от­тал­ки­ва­ют­ся (см. Рис. 6 а).

Рис. 6. Опыт Ам­пе­ра

Из своих опы­тов Ампер сде­лал сле­ду­ю­щие вы­во­ды:

1. Во­круг маг­ни­та, или про­вод­ни­ка, или элек­три­че­ски за­ря­жен­ной дви­жу­щей­ся ча­сти­цы су­ще­ству­ет маг­нит­ное поле.

2. Маг­нит­ное поле дей­ству­ет с неко­то­рой силой на за­ря­жен­ную ча­сти­цу, дви­жу­щу­ю­ся в этом поле.

3. Элек­три­че­ский ток пред­став­ля­ет собой на­прав­лен­ное дви­же­ние за­ря­жен­ных ча­стиц, по­это­му маг­нит­ное поле дей­ству­ет на про­вод­ник с током.

 Разветвление: Задача на применение правила буравчика для прямого проводника с током

На ри­сун­ке 7 изоб­ра­жён про­во­лоч­ный пря­мо­уголь­ник, на­прав­ле­ние тока в ко­то­ром по­ка­за­но стрел­ка­ми. Ис­поль­зуя пра­ви­ло бу­рав­чи­ка, на­чер­тить возле сто­рон пря­мо­уголь­ни­ка по одной маг­нит­ной линии, ука­зав стрел­кой её на­прав­ле­ние.

Рис. 7. Ил­лю­стра­ция к за­да­че

Ре­ше­ние

Вдоль сто­рон пря­мо­уголь­ни­ка (про­во­дя­щей рамки) вкру­чи­ва­ем мни­мый бу­рав­чик по на­прав­ле­нию тока.

Вб­ли­зи пра­вой бо­ко­вой сто­ро­ны рамки маг­нит­ные линии будут вы­хо­дить из ри­сун­ка слева от про­вод­ни­ка и вхо­дить в плос­кость ри­сун­ка спра­ва от него. Это обо­зна­ча­ет­ся с по­мо­щью пра­ви­ла стре­лы в виде точки слева от про­вод­ни­ка и кре­сти­ка спра­ва от него (см. Рис. 8).

Ана­ло­гич­но опре­де­ля­ем на­прав­ле­ние маг­нит­ных линий возле дру­гих сто­рон рамки.

Рис. 8. Ил­лю­стра­ция к за­да­че

 Образование магнитного поля вблизи катушки с током (соленоида)

Опыт Ам­пе­ра, в ко­то­ром во­круг ка­туш­ки уста­нав­ли­ва­лись маг­нит­ные стрел­ки, по­ка­зал, что при про­те­ка­нии по ка­туш­ке тока стрел­ки к тор­цам со­ле­но­и­да уста­нав­ли­ва­лись раз­ны­ми по­лю­са­ми вдоль мни­мых линий (см. Рис. 9). Это яв­ле­ние по­ка­за­ло, что вб­ли­зи ка­туш­ки с током есть маг­нит­ное поле, а также что у со­ле­но­и­да есть маг­нит­ные по­лю­са. Если из­ме­нить на­прав­ле­ние тока в ка­туш­ке, маг­нит­ные стрел­ки раз­вер­нут­ся.

Рис. 9. Опыт Ам­пе­ра. Об­ра­зо­ва­ние маг­нит­но­го поля вб­ли­зи ка­туш­ки с током

Для опре­де­ле­ния маг­нит­ных по­лю­сов ка­туш­ки с током ис­поль­зу­ет­ся пра­ви­ло пра­вой руки для со­ле­но­и­да (см. Рис.

10) – если об­хва­тить со­ле­но­ид ла­до­нью пра­вой руки, на­пра­вив че­ты­ре паль­ца по на­прав­ле­нию тока в вит­ках, то боль­шой палец по­ка­жет на­прав­ле­ние линий маг­нит­но­го поля внут­ри со­ле­но­и­да, то есть на его се­вер­ный полюс.

Это пра­ви­ло поз­во­ля­ет опре­де­лять на­прав­ле­ние тока в вит­ках ка­туш­ки по рас­по­ло­же­нию её маг­нит­ных по­лю­сов.

Рис. 10. Пра­ви­ло пра­вой руки для со­ле­но­и­да с током

 Разветвление: Задача на применение правила правой руки для соленоида с током

Опре­де­ли­те на­прав­ле­ние тока в ка­туш­ке и по­лю­сы у ис­точ­ни­ка тока, если при про­хож­де­нии тока в ка­туш­ке воз­ни­ка­ют ука­зан­ные на ри­сун­ке 11 маг­нит­ные по­лю­сы.

Рис. 11. Ил­лю­стра­ция к за­да­че

Ре­ше­ние

Со­глас­но пра­ви­лу пра­вой руки для со­ле­но­и­да, об­хва­тим ка­туш­ку таким об­ра­зом, чтобы боль­шой палец по­ка­зы­вал на её се­вер­ный полюс. Че­ты­ре со­гну­тых паль­ца ука­жут на на­прав­ле­ние тока вниз по про­вод­ни­ку, сле­до­ва­тель­но, пра­вый полюс ис­точ­ни­ка тока по­ло­жи­тель­ный (см. Рис. 12).

Рис. 12. Ил­лю­стра­ция к за­да­че

Источник: https://100ballov.kz/mod/page/view.php?id=2609

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

https://www.youtube.com/watch?v=LzqkLKOyid8

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  – на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии – они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

Если же приблизить одноименными полюсами, то произойдет их отталкивание

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке “а” или на рисунке “б”?

Видим, что на рисунке “а” мало силовых магнитных линий, а на рисунке “б” их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке “б” больше, чем на рисунке “а”.

В физике формула магнитного потока записывается как

где

Ф – магнитный поток, Вебер

В – плотность магнитного потока, Тесла

а – угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

Источник: https://www.RusElectronic.com/magnetic-field/

Правило буравчика правой и левой руки простым языком — Электрик

Вступив во взрослую жизнь, мало кто вспоминает школьный курс физики. Однако иногда необходимо покопаться в памяти, ведь некоторые знания, полученные в юности, могут существенно облегчить запоминание сложных законов. Одним из таких является правило правой и левой руки в физике.

Применение его в жизни позволяет понять сложные понятия (к примеру, определить направление аксиального вектора при известном базисном).

Сегодня попробуем объяснить эти понятия, и как они действуют языком, доступным простому обывателю, закончившему учёбу давно и забывшему ненужную (как ему казалось) информацию.

Правило правой руки (буравчика) легко понять, глядя на обычный штопор

Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.

Простое и понятное объяснение с наглядным примером

Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.

Главное – не забыть, в каком направлении течёт ток

Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.

ЭТО ИНТЕРЕСНО:  Как перевести милливольт в вольт
Понравилась статья? Поделиться с друзьями:
Электрогенератор
Когда была изобретена первая лампа

Закрыть