Как найти мощность в цепи

Как найти мощность: формула

Как найти мощность в цепи

При создании новой проводки часто возникает необходимость рассчитать мощность электроприборов, находящихся в одной комнате или на одной линии. У многих людей с этим возникают проблемы. В этой статье мы разберем, какая формула мощности электрического тока используется для подсчета и как правильно ей пользоваться.

Введение

Подсчет мощности силы тока потребления необходим для того, чтобы правильно рассчитать сечение проводов, купить автоматы и защитить систему от перегрузок и возгорания. Расчет общей суммы также поможет владельцу правильно выбрать стабилизатор на вход в квартиру. Неверные расчеты могут привести к серьезным последствиям, поэтому внимательно отнеситесь к информации, описанной в нашей статье.

Основные правила и понятия

Рассчитываем силу тока

В работающей сети силу тока можно легко узнать при помощи мультиметра, переключив его в режим амперметра. Но этот вариант подходит только в том случае, если все уже работает. Мы же пытаемся сделать расчет согласно проекту, поэтому хитрость с амперметром нам не подходит.

Для чего нужно знать силу тока? Для правильного выбора сечения кабеля и автомата. Считается она по формуле I=P/(U×cosφ), где I – это сила тока, P – мощность прибора, U – напряжение в сети. Представленная выше формула справедлива для однофазной сети. Для трехфазной используется I=P/(1,73×U×cosφ). Косинус Фи в нашем случае показывает коэффициент мощности.

Пример: на одной линии висит холодильник мощностью 150 Вт, микроволновка (800 Вт), электрочайник (1300 Вт) и блендер (1500 Вт). Все это включено одновременно. Находим действующую силу тока: I=(150+800+1300+1500)/220*0.95=17.94 Ампера. Для подобной нагрузки необходим кабель на 2.5 мм2 и автомат на 25 Ампер.

Как найти мощность устройств, работающих на одной линии? Нужно сложить все паспортные данные на этих потребителей. Косинус Фи принят за 0,95, что является наиболее приближенным к реальности, хотя в некоторых случаях его принимают за 1.

Если в сеть подключаются “жирные” потребители, такие как бойлер, духовой шкаф, электрокотел или электрический твердый пол, то разумнее использовать коэффициент фи на уровне 0,8. Соответственно, для одной фазы считается напряжение на 220 вольт, для трех фаз – 380 вольт.

Немного теории

Теперь давайте рассмотрим действующую формулу электрической мощности. Прежде всего разберем, что это вообще такое. Мощностью называют скорость, с которой энергия перетекает из одного вида в другой, преобразуется или потребляется. Она измеряется в ваттах. Ток силой в один ампер обладает мощностью в один ватт при имеющейся разности потенциалов в один ватт.

Силу тока можно замерить амперметром или мультиметром

Для подсчета используется формула P = I*U. Этот показатель показывает, сколько “кушает” прибор при работе.

Внимание: существуют различные виды мощности. Их необходимо отличать, чтобы правильно собрать проводку и рассчитать нормативы для закупки кабелей и автоматов.

Виды

Существует два основных типа показателей:

  1. Номинальная. Та, которую устройство потребялет за единицу времени. Для холодильника это 150 ватт, для микроволновки, в зависимости от настроек – 600-800 ватт, для лампочки 65 или 99 ватт и пр.
  2. Стартовая. Формула расчета мощности этого типа не отличается от классической, несмотря на то, что стартовая может превышать на порядок номинальную. К примеру, тот же холодильник в момент старта потребляет до 2 кВт энергии, необходимой на запуск двигателя и всех систем.

Главное, что нужно знать о стартовой мощности – она временная и краткосрочная, но ее нужно обязательно учитывать при создании проводки. Обычно для этого делается запас. К примеру, кабель на 2,5 квадрата выдерживает до 4,5 кВт и на него ставится автомат на 25А. Поэтому, если у вас суммарный коэффициент по линии доходит до 4 или 4.3, то лучше не рисковать и поставить дополнительную линию, чем в один прекрасный момент ваша проводка просто сгорит.

Зная, чему равна мощность электрического тока для каждого устройства, находящегося на линии, выделите те, которые вполне могут работать одновременно. Почитайте о технических характеристиках своих устройств, после чего сложите мощность всех подключенных. Затем добавьте к получившемуся числу 30% на всякие тяги и помехи – вот это и станет запасом для стартовых неприятностей.

Источник: https://knigaelektrika.ru/teoriya/kak-najti-moshhnost-formula.html

Как найти мощность — формулы для расчета

Как найти мощность в цепи

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства.

Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

Активное и реактивное сопротивление

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах.

Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток.

Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Опыт Эрстеда: магнитное поле тока

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Источник: https://electric-220.ru/news/kak_najti_moshhnost/2018-08-28-1554

Как найти силу тока в цепи

Как найти мощность в цепи

Формулы, с помощью которых вы можете рассчитать силу тока в цепи. Примеры решения популярных задач.

Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление. :

Если известна мощность и напряжение

Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

P=UI

После несложных мы получаем формулу для вычислений

I=P/U

Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

Р1 = Р2/η

Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

Находим полную мощность с учетом cosФ (он также указывается на шильдике):

S = P1/cosφ

Определяем потребляемый ток по формуле:

Iном = S/(1,73·U)

Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

Если известно напряжение или мощность и сопротивление

Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.

I=U/R

Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:

P=UI

При этом согласно тому же закону Ома:

U=IR

То:

 P=I2*R

Значит расчёт проводим по формуле:

I2=P/R

Или возьмем выражение в правой части выражения под корень:

I=(P/R)1/2

Если известно ЭДС, внутреннее сопротивление и нагрузка

Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:

I=E/(R+r)

Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.

Его формула выглядит так:

Q=I2Rt

Тогда расчет проводите так:

I2=QRt

Или внесите правую часть уравнения под корень:

I=(Q/Rt)1/2

Несколько примеров

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

R1+R2=1+2=3 Ома

Тогда рассчитать силу тока можно по закону Ома:

I=U/R=12/3=4 Ампера

При параллельном соединении двух элементов Rобщее можно рассчитать так:

Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67

Тогда дальнейшие вычисления можно проводить так:

I=12*0,67=18А

2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Rприв=(R2*R3)/(R2+R3)=(3*3)|(3+3)=9/6=3/2=1,5 Ома

Теперь схема примет вид:

Далее находим ток по тому же закону Ома:

I=U/(R1+Rприв)=24/(1+1,5)=24/2,5=9,6 Ампер

Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!

Наверняка вы не знаете:

  • Как рассчитать сечение кабеля
  • Как перевести амперы в киловатты
  • Как найти провод в стене

Нравится0)Не нравится0)

Источник: https://elektrik-sam.ru/baza-znanij/3481-kak-najti-silu-toka-v-cepi.html

Мощность переменного тока

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания

Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.

Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .

Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу

Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:

(1)

Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.

Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.

1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).

2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.

Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).

ЭТО ИНТЕРЕСНО:  Для чего нужно измерять сопротивление изоляции

Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.

Мощность тока через резистор

Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:

Поэтому для мгновенной мощности получаем:

(2)

График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Рис. 1. Мощность переменного тока через резистор

Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно .

Этот факт иллюстрируется рисунком 2.

Рис. 2. Среднее значение квадрата синуса равно

Итак, для среднего значения мощности тока на резисторе имеем:

(3)

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

(4)

Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени представлен на рис. 3.

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Мощность тока через катушку

Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :

Для мгновенной мощности получаем:

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Рис. 5. Напряжение на катушке и сила тока через неё

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

Мощность тока на произвольном участке

Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушкиНа этот участок подано переменное напряжение .

Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:

Тогда для мгновенной мощности имеем:

(5)

Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:

В результате получим:

(6)

Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:

(7)

Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:

Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем , и мы приходим к формуле (3). Для конденсатора и катушки , и средняя мощность равна нулю.

Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.

С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/moshhnost-peremennogo-toka/

Электрическая мощность, как рассчитать по формуле

По школьным учебникам многим знакомы задачи, где требуется найти мощность электрического тока. В них редко раскрывается практический смысл этой физической величины, хотя она критически важна как в промышленной эксплуатации электроприборов, так и в быту. Это напрямую связано с техникой безопасности. Ошибка в измерениях и неподходящее сечение кабеля способны привести к короткому замыканию. При этом проводка может загореться и стать причиной пожара.

Что такое мощность электрического тока

При описании электрической мощности в широком смысле чаще всего речь идет об энергии или силе, которой наделен некоторый объект либо действие. Например, ее можно определить для взрыва или же механизма, например двигателя. Этот параметр связан с силой и зависит от нее, потому эти явления нередко путают.

Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.

В случае с электричеством она бывает двух видов:

  1. Активная — превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
  2. Реактивная — нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения — вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.

На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.

По какой формуле вычисляется мощность электрического тока

Данная величина привязана одновременно к нескольким физическим параметрам. Напряжение — это работа, необходимая для перемещения 1 кулона. Сила означает число кулонов, которые проходят за 1 секунду. Если умножить ток на напряжение, он будет равен количеству работы в секунду. Для вычисления мощности электрического тока формулу вывести нетрудно.

Она выглядит как P = A / t = I x U, обозначения следующие:

  • P — мощность тока в ваттах (Вт);
  • A — его работа на данном участке цепи в джоулях (Дж);
  • t — время, за которое совершена работа (в секундах);
  • U — напряжение электричества для участка цепи в вольтах (В);
  • I — сила в амперах (А).

Указанная формула показывает, что зависимость мощности от напряжения и силы тока одинакова в этой связке. Один показатель может быть выше и тем самым скомпенсировать другой для обеспечения мощного электротока. Эта особенность обеспечивает передачу электроэнергии на дальние расстояния. Ее преобразование происходит через регулирующие трансформаторы на подстанциях.

Верное определение мощности критически важно для соблюдения правил техники безопасности при эксплуатации электросети и исключения возгораний. Это может произойти, если проводка выбрана неправильно. Для измерения необходимо использовать специальные приборы, но это возможно не всегда.

Определение мощности для переменного тока:

  • с помощью амперметра;
  • по формуле P= U х I с использованием значений в указанный момент времени;
  • по формуле P= U х I x сos φ, если есть сдвиг фаз.

Символ φ обозначает коэффициент мощности. Когда к сети подключен только свет или приборы для нагревания, он равен 1, для более сложного и мощного оборудования промышленного типа цифра составляет 0,8. Формула для расчета мощности через сопротивление в сети постоянного тока — P = IU.

От чего зависит мощность тока

Сила электротока и напряжение — две главные составляющие, из которых складывается этот показатель. Практически это легко можно объяснить на примере маленькой лампочки, получающей ток в 1 А при напряжении 1 В. Ее мощность будет составлять 1 Вт.

Более жизненный пример — учет затраченной электроэнергии по формуле W=IUt, где t — время работы. Чем оно выше, тем больше объем электроэнергии и выше счет за ее оплату в квитанции коммунальных служб.

Источник: https://vodatyt.ru/elektrika/moschnost-toka.html

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q.

Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I.

Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.

Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.

Мощность переменной сети

Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.

В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:

  1. Активная.
  2. Реактивная.
  3. Полная.

Активный компонент

Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.

В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.

Реверсивные потери

Для работы конденсаторов, катушек индуктивности, обмоток электродвигателей затрачивается сила сети. Из-за физических свойств таких устройств энергия, которая определяется реактивной мощностью, возвращается в цепь. Величина отдачи рассчитывается при помощи уравнения: V = U ∙ I ∙ sin ϕ.

ЭТО ИНТЕРЕСНО:  Что такое фазы в электрике

Единицей измерения принят ватт. Возможно использование внесистемной меры подсчёта var, название которой составлено из английских слов volt, amper, reaction. Перевод на русский язык соответственно означает «вольт», «ампер», «обратное действие».

Если напряжение опережает ток, то смещение фаз считается больше нуля. В противном случае сдвиг фаз отрицательный. В зависимости от значения sin ϕ реактивная составляющая носит положительный или отрицательный характер. Присутствие в цепи индуктивной нагрузки позволяет говорить о реверсивной части больше нуля, а подключённый прибор потребляет энергию. Использование конденсаторов делает реактивную производительность минусовой, и устройство добавляет энергию в сеть.

Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.

В полную силу

Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).

С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.

Критерий полезности

Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.

В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.

Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/kak-nayti-elektricheskuyu-moschnost-formula-rascheta.html

Как найти мощность, зная напряжение, ток и сопротивление

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы.

Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи.

Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи.

Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования.

Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации.

Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто.

Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно.

Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними.

Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

Источник: https://www.asutpp.ru/kak-nayti-moschnost.html

Формула мощности электрического тока, расчет по мощности и напряжению

Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

Расчет силы тока по мощности и напряжению в сети постоянного тока

Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.

Расчет силы тока по мощности и напряжению:

I = U ÷ R

Измеряется в амперах.

Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.

Формула расчета мощности по току и напряжению:

P = U × I

Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.

Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:

P = I2 × R

P = U2 ÷ R

Однофазные нагрузки

В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.

В скалярном виде это будет выглядеть так:

Источник: https://vdome.club/materialy/raschety/formula-moschnosti.html

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Онлайн расчет:

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

I=P/U=2000/220В = 9А

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

 — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ

 — ЗАЩИТНОЕ ЗАНУЛЕНИЕ

 — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!

 — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ

 Автор — Антон Писарев

Источник: http://moydomik.info/load/sistemy/ehlektrosnabzhenie/raschet_ehlektricheskikh_cepej_onlajn_opredelenie_naprjazhenija_toka_moshhnosti_i_sechenija_provodnika/26-1-0-132

Полная мощность: единица измерения, как определить, формула

Полная мощность электроцепи состоит из двух составляющих — активная и реактивная. Как правило, данная величина равна произведению действующих значений, вычисляется по следующей формуле: P=UхI. Подробнее о полной мощности в статье.

Что это такое

Полная мощность (ВА, кВА) характеризуется потребляемой нагрузкой (например, ИБП) двух составляющих, а также отклонением формы электрического тока и напряжения от гармонической. С мощностью электротока человеку приходится сталкиваться и в быту и на производстве, где применяются электрические приборы. Каждый из них потребляет электроток, поэтому при их использовании всегда необходимо учитывать возможности этих приборов, в том числе заложенные в них технические характеристики.

Значение полной мощности — вычисление формулы

Чтобы определить работу мощности за одну секунду, на практике применяется формула для производительности постоянного тока. Следует отметить, что данная физическая величина меняется во времени и для выполнения практического расчета совершенно бесполезна. Для вычисления среднего значения производительности требуется интегрирование по времени.

Обратите внимание! С целью определения данного показателя в электрической цепи, где периодически происходит смена напряжения и тока, средняя ёмкость вычисляется по передаче мгновенной мощности в течение определённого времени.

Как вычисляется ёмкость по другой формуле

Есть определенная категория людей, которая интересуется вопросом, какая бывает мощность. Активная производительность делится на следующие категории: фактическую, настоящую, полезную, реальную.

Ёмкость, преобладающая в электрических цепях постоянного тока, которая при этом получает нагрузку постоянного тока, определяется простым произведением напряжения по показателям нагрузки и потребляемого тока. Данная величина вычисляется по формуле: P = U х I. Данный результат показывает, что фазовый угол между током и напряжением отсутствует в электрических цепях постоянного тока. То есть отсутствует коэффициент производительности.

Синусоидальный сигнал намного усложняет процесс. Так как фазовый угол между током и напряжением может значительно отличаться друг от друга. Поэтому среднее значение определяется по следующей формуле:

P = U I Cosθ

Важно! Если в соединениях переменного тока фиксируется активная (резистивная) производительность, тогда для вычисления данного показателя применяется формула следующего характера: P = U х I.

Мощность трёхфазной цепи

Чему равна полная мощность

Теория комплексных чисел позволит тщательно разобраться в понятии полных, активных, реактивных мощностей. Соответственно, можно легко определить коэффициент. Данная теория представляет собой целый треугольник мощностей активная, реактивная и полная.

ЭТО ИНТЕРЕСНО:  Как работает статическое электричество

Вычисление активной производительности трёхфазной цепи

Активная производительность

Единица измерения активной мощности электрической трёхфазной цепи — ватт (русское обозначение: Вт, киловатт — кВт; международное: ватт -W, киловатт — kW).

Там, где преобладает несинусоидальный ток, равенство электрической ёмкости соответствует средним мощностям отдельных элементов. Активная величина — это прежде всего скорость необратимого преобразования электрической энергии в другие виды энергии. К ним относится тепловая и электромагнитная. Как правило, активная производительность выражается через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g.

Определяя любую электрическую цепь (синусоидальный или несинусоидальный ток) активная отдача всей цепи будет равна сумме активных мощностей отдельных элементов. Важно отметить, что для трёхфазных цепей электрическая производительность определяется как сумма производительности отдельных фаз. С полной ёмкостью S, активная связана соотношением полной и активной отдачи.

К сожалению, потребителю электроэнергии приходится платить не за активную (полезную) мощность, а за полную мощность. Разница в мощности на входе и на выходе системы бесперебойного питания составила 58 кВА! Необходимо учесть, что тариф за потребление электроэнергии с низким cosj (Pf) существенно выше. Таким образом, применение системы бесперебойного питания позволило не только защитить оборудование от исчезновения и провалов напряжения, но и получить существенную экономию электроэнергии.

Рассматривая длинные линии (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая производительность, которая определяется как разность между падающей и отраженной пропускной способностью.

Определение реактивной величины на примере

Реактивная емкость

Часто возникает вопрос о том, что такое реактивная мощность — величина, характеризующая нагрузку, которая создаётся в электросистемах колебаниями энергии электромагнитного поля в цепи, где преобладает синусоидальный переменный ток.

Реактивная ёмкость представляет собой энергию, которая переносится от источника на реактивные элементы прибора. К ним можно отнести: индуктивность, конденсатор, обмотки двигателей. После чего данная емкость вместе с элементами перемещается в источник в течение одного периода колебаний.

Важно подчеркнуть, что показатель sin φ для значения φ от 0 до плюс 90° представляет собой положительную величину. Данное значение, которое обозначается как sin φ для φ от 0 до минус 90° является — это отрицательная величина.

Учитывая формулу, по которой происходит определение реактивной производительности, можно получить как положительную величину (при нагрузке с активно-индуктивным характером), так и отрицательную (при нагрузке с активно-ёмкостным характером).

Всё это характеризуется тем, что реактивная отдача не происходит когда поступает электрический ток.

Некоторые электросистемы обладают положительной реактивной емкостью. Здесь уже говорится о том, что происходит нагрузка активно-индуктивного характера. Когда определяется отрицательная производительность то здесь производится нагрузка с активно-ёмкостным характером. Этот фактор характеризуется тем, что многие электропотребляющие устройства, подключение которых происходит при помощи трансформатора, являются активно-индуктивными.

Вам это будет интересно  Как соединять конденсаторы

Электрические станции оснащены синхронными генераторами. Они могут потреблять и производить реактивную ёмкость. Кроме того происходит определение величины электрического тока возбуждения, который поступает в обмотки ротора генератора.

Благодаря отличительным особенностям синхронной электрической машины можно свободно регулировать заданный уровень напряжения сети.

Чтобы снизить нагрузки, а также повысить коэффициент производительности электросистем, специалисты производят компенсацию реактивной ёмкости.

Обратите внимание! Если использовать современные электрические измерительные преобразователи на микропроцессорной технике, тогда производится точная оценка показателя энергии от индуктивной и нагрузки ёмкости в источник переменного напряжения.

Определение полной производительности

Полная емкость

Для того чтобы определить какие системы обладают полной производительностью, необходимо изучить особенности данной величины. Полная мощность — это физическая величина, равная произведению действующих элементов периодического электрического тока I в цепи и напряжения U на её зажимах.

Для определения соотношения полной отдачи с активной и реактивной емкостями нужно расшифровать значения, которые вычисляются по формуле.

Например, соотношение производительности, где P — активная, Q — представляет собой реактивную пропускную способность (если нагрузка индуктивного характера Q»0, а при ёмкостной обозначается — Q»0).

Важно! Полная производительность описывает нагрузку, налагается на элементы подводящей электросети (проводам, распределительным щитам, трансформаторам, линиям электропередач). Ведь вся эта нагрузка зависит от потребляемой энергии, а не от расходующей пользователем энергии. Исходя из этих результатов полная мощность трансформатора или распределительного щита измеряют в вольт-амперах, а не в ваттах.

По какой единице измеряется ёмкость

Единица измерения мощностей

Единица измерения производительности — это Джоули, деленные на секунду (Вольты, умноженные на Амперы), или Ватты. Последнее название дали в честь инженера Джеймса Уатта, создавшего паровую машину. Именно Ватт является единицей ёмкости в системе СИ.

Для электроприборов, а также на промышленных предприятиях зачастую используют более крупные единицы — киловатты, мегаватты и др. Они получаются добавлением стандартных десятичных приставок. Соответственно, 1 кВт = 1000 Вт, 1 МВт = 1 000 000 Вт.

Расчёт полной мощности

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Вам это будет интересно  Какова единица измерения силы тока

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.

Реактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Обозначение реактивной величины

Как обозначается мощность

Р — мощность электрического тока обозначается (Вт).

В завершение следует отметить, что полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому данная величина трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Источник: https://rusenergetics.ru/polezno-znat/polnaya-moschnost

Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?

Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.

Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства. Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.

Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.

Что такое мощность в электричестве: просто о сложном

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.

Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.

Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Как рассчитать электрическую мощность в быту

Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.

Отсюда получим формулы для расчета мощности (P):

В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.

Как измерить электрическую мощность дома

Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.

Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.

Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.

Ваттметр

Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.

Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.

Формулы расчета мощности для однофазной и трехфазной схемы питания

Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).

Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).

Как работает схема трехфазного электроснабжения

Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.

Как узнать ток, зная мощность и напряжение

Для вычисления тока электросети по мощности и напряжению используют формулы:

  • I=P/U – постоянный ток;
  • I=P/(U*cos(фи)) — однофазная сеть;
  • I=P/(1,73*U*cos(фи)) — трехфазная сеть.

Для простоты расчетов значение фи принимают равной 0,95.

Как узнать напряжение, зная силу тока

Для расчета напряжения используют формулы:

U=P/I – постоянный ток;

U=P/(I*cos(фи)) — однофазная сеть;

U=P/(1,73*I*cos(фи)) — трехфазная сеть.

Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.

Как рассчитать мощность, зная силу тока и напряжение

Силовую характеристику электроустановок рассчитывают по формуле:

P=U*I – постоянный ток;

P=U*I*cos(фи) – переменный ток однофазной сети.

P=1,73*U*I*cos(фи) — трехфазная сеть.

В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.

Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.

Интересная инфа по теме

Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам.

Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке.

Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.

Заключение

Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.

Источник: https://remont220.ru/osnovy-elektrotehniki/1090-formula-moshchnosti/

Как найти мощность тока — формулы с примерами расчетов

В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел.

В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач.

Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U2/R

Также можно выполнить расчет, зная ток и сопротивление:

P=I2*R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Источник: https://samelectrik.ru/kak-najti-moshhnost-toka.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Какой газ используется для сварки полуавтоматом

Закрыть