Как найти мощность в цепи переменного тока

Как рассчитать мощность трехфазной сети: формулы для расчета показателей — Искра Газ

Как найти мощность в цепи переменного тока

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или  А, В, С.

Схема соединения звезда:

Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжение

  • Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:
  • Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:
  • Или:
  • Соответственно  для активной:
  • Для реактивной:

Схема соединения в треугольник

Схема соединения обмоток в треугольник

  1. Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:
  2. И соответственно:

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметр
Аналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

Векторная диаграмма включения двух ваттметров при различных видах нагрузки

  • Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.
  • Из диаграммы следует, что мы можем определить показание приборов аналитически:

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L)  показания W1 меньше чем W2 (W1600 показания W1 вообще отрицательные (W1W2, а при φ

Источник: https://istra-gaz.ru/osveshhenie/kak-rasschitat-moshhnost-trehfaznoj-seti-formuly-dlya-rascheta-pokazatelej.html

Как рассчитать мощность по току и напряжению?

Как найти мощность в цепи переменного тока

Любой из элементов электрической сети является материальным объектом определенной конструкции. Но его особенность состоит в двойственном состоянии. Он может быть как под электрической нагрузкой, так и обесточен.

Если электрического подключения нет, целостности объекта ничто не угрожает.

Но при присоединении к источнику электропитания, то есть при появлении напряжения (U) и электротока, неправильная конструкция элемента электросети может стать для него фатальной, если напряжение и электроток приведут к выделению тепла.

Далее из статьи наши читатели получат информацию о том, как правильно сделать расчет мощности по току и напряжению, чтобы электрические цепи работали исправно и продолжительно.

Отличия мощности при постоянном и переменном напряжении

Наиболее простым получается расчет мощности электрических цепей на постоянном электротоке. Для их участков справедлив закон Ома, в котором задействовано только приложенное U, и сопротивление. Чтобы рассчитать силу тока I, U делится на сопротивление R:

I=U/R ,

причем искомая сила тока именуется амперами.

А поскольку электрическая мощность Р для такого случая — это произведение U и силы электротока, она так же легко, как и электроток, вычисляется по формуле:

P=U*I ,

причем искомая мощность нагрузки именуется ваттами.

Все компоненты этих двух формул характерны для постоянного электротока и называются активными. Напоминаем нашим читателям, что закон Ома, позволяющий выполнить расчет силы тока, весьма многообразен по своему отображению.

Его формулы учитывают особенности физических процессов, соответствующих природе электричества. А при постоянном и переменном U они протекают существенно отличаясь. Трансформатор на постоянном U — это абсолютно бесполезное устройство.

Также как синхронные и асинхронные движки.

Принцип их функционирования заключен в изменяющемся магнитном поле, создаваемом элементами электрических цепей, обладающими индуктивностью. А такое поле появляется только как следствие переменного U и соответствующего ему переменного тока. Но электричеству свойственно также и накопление зарядов в элементах электрических цепей. Это явление называется электрической емкостью и лежит в основе конструкции конденсаторов. Параметры, связанные с индуктивностью и емкостью, называют реактивными.

Расчет мощности в цепях переменного электротока

Поэтому, чтобы определить ток по мощности и напряжению как в обычной электросети 220 В, так и в любой другой, где используется переменное U, потребуется учесть несколько активных и реактивных параметров. Для этого применяется векторное исчисление. В результате отображение рассчитываемой мощности и U имеет вид треугольника. Две стороны его — это активная и реактивная составляющие, а третья — их сумма. Например, полная мощность нагрузки S, именуемая вольт-амперами.

Реактивная составляющая называется варами. Зная величины сторон для треугольников мощности и U, можно выполнить расчет тока по мощности и напряжению. Как это сделать, поясняет изображение двух треугольников, показанное далее.

Треугольники мощности и напряжения

Для измерения мощности применяются специальные приборы. Причем их многофункциональных моделей совсем мало. Это связано с тем, что для постоянного электротока, а также в зависимости от частоты используется соответствующий конструктивный принцип измерителя мощности. По этой причине прибор, предназначенный для измерения мощности в цепях переменного электротока промышленной частоты, на постоянном электротоке или на повышенной частоте будет показывать результат с неприемлемой погрешностью.

Лабораторный ваттметр Щитовой ваттметр

У большинства наших читателей выполнение того или иного вычисления с использованием величины мощности скорее всего происходит не с измеренным значением, а по паспортным данным соответствующего электроприбора.

При этом можно легко рассчитать ток для определения, например, параметров электропроводки или соединительного шнура. Если U известно, а оно в основном соответствует параметрам электросети, расчет тока по мощности сводится к получению частного от деления мощности и U.

Полученный таким способом расчетный ток определит сечение проводов и тепловые процессы в электрической цепи с электроприбором.  

Но вполне закономерен вопрос, как рассчитать ток нагрузки при отсутствии каких-либо сведений о ней? Ответ следующий. Правильный и полный расчет тока нагрузки, запитанной переменным U, возможен на основании измеренных данных.

Они должны быть получены с применением прибора, который замеряет фазовый сдвиг между U и электротоком в цепи. Это фазометр. Полный расчет мощности тока даст активную и реактивную составляющие.

Они обусловлены углом φ, который показан выше на изображениях треугольников.

Лабораторный фазометр Щитовой фазометр

Используем формулы

Этот угол и характеризует фазовый сдвиг в цепях переменного U, содержащих индуктивные и емкостные элементы. Чтобы рассчитывать активные и реактивные составляющие, используются тригонометрические функции, применяющиеся в формулах. Перед тем как посчитать результат по этим формулам, надо, используя калькуляторы или таблицы Брадиса, определить sin φ и cos φ. После этого по формулам

я вычислю искомый параметр электрической цепи.

Но следует учесть то, что каждый из параметров, рассчитанный по этим формулам, из-за U, постоянно изменяющегося по законам гармонических колебаний, может принимать либо мгновенное, либо среднеквадратичное, либо промежуточное значение.

Три формулы, показанные выше, справедливы при среднеквадратичных значениях силы электротока и U. Каждое из двух остальных значений является результатом расчетной процедуры с использованием другой формулы, учитывающей ход времени t:

Но и это еще не все нюансы. Например, для линий электропередачи применяются формулы, в которых фигурируют волновые процессы. И выглядят они по-другому. Но это уже совсем другая история  

Источник: https://domelectrik.ru/elektrosnabzhenie/bezopasnost/raschet-moshchnosti

Как рассчитать мощность, силу тока и напряжение: принципы и примеры расчета для бытовых условий — Электромонтаж

Как найти мощность в цепи переменного тока

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока.

Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети.

Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя.

Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление.

В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше.

Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое.

Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки.

Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину.

А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия.

Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А.

ЭТО ИНТЕРЕСНО:  Что такое электрическое напряжение в физике

И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.

Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Онлайн расчет мощности тока для однофазной и трехфазной сети

Источник: https://elektroservis-rostov.ru/drugoe/kak-rasschitat-moshhnost-silu-toka-i-napryazhenie-printsipy-i-primery-rascheta-dlya-bytovyh-uslovij.html

Переменный ток, мощность переменного тока — формула. Мощность постоянного и переменного тока

В свое время Эдисон и Тесла были противниками в вопросе использования электрического тока в энергетике. Тесла считал, что необходимо использовать переменный ток, а Эдисон – что нужно применять постоянный ток. У второго ученого было больше возможностей, так как он занимался бизнесом, однако Тесла в конечном итоге удалось победить, так как он был попросту прав.

Вступление

Переменный ток значительно эффективнее использовать для передачи энергии. Обсудим, как вычисляется мощность переменного тока, ведь переменный ток — это мощность, которая передается на расстоянии.

Вычисление мощности

Допустим, у нас имеется генератор переменного напряжения, который подключен к нагрузке. На выходе генератора, между двумя точками на клеммах, напряжение меняется по гармоническому закону, а нагрузка взята произвольная: катушки, активное сопротивление, конденсаторы, электромотор.

В цепи нагрузки течет ток, который меняется по гармоническому закону. Наша задача – установить, чему равна мощность потребляемой нагрузки от генератора. В распоряжении имеем генератор. В качестве исходных данных представлено направление на входе, которое будет меняться по гармоничному правилу:

(U(t) = U(m) cos w t)

Нагрузка – самое произвольное понятие.

Сила тока в нагрузке и, соответственно, в проводах, которые подводят мощность к нагрузке, будет меняться. Частота колебаний тока выйдет такая же, как частота колебаний напряжения, но существует также понятие сдвига фазы в промежутках колебаний тока и напряжения:

(I (t) = I (m) cos w t)

Дальнейшие вычисления

Показатели мощность будут равны произведению:

P (t) = I (t) U (t)

Этот закон остаётся справедливым как для переменного тока с мощностью, которую необходимо было вычислить, так и для постоянного.

(I (t) = I (m) cos (wt + J)

Мощность переменного тока при переменном токе вычисляется при помощи трех формул. Представленные выше расчеты относятся к основной формуле, которая вытекает из определения силы тока и напряжения.

Если участок цепи однородный и можно пользоваться законом Ома для этого участка цепи, здесь такие вычисления использовать нельзя, так как нам неизвестен характер нагрузки.

Определяем результат

Подставим показатели силы тока и напряжения в данную формулу, и тут нам на помощь придет знание тригонометрических формул:

cosa cosb = cos(a +b) + cos(a — b) / 2

Воспользуемся этой формулой и получим вычисления:

P(t) = I(m) U (m) cos (wt + J) cos wt

После упрощения результатов получим:

P(t) = I(m) U (m)/2 cos (wt + J) + I(m) U (m) cosJ

Посмотрим на эту формулу. Здесь первое слагаемое зависит от времени, меняясь по гармоническому закону, а второе является величиной постоянной. Мощность переменного тока при переменном токе складывается из постоянной и переменной составляющей.

Если мощность положительна, значит, нагрузка потребляет энергию от генератора. При отрицательной мощности, наоборот, нагрузка раскручивает генератор.

Найдем среднее значение мощности за период времени. Для этого работу, совершенную электрическим током, поделим на величину этого периода.

Мощность трехфазной цепи переменного тока– это сумма переменной и постоянной составляющих.

Активная и реактивная мощность

Многие физические процессы можно представить аналогиями друг друга. На этой базе постараемся раскрыть суть понятий активной мощности цепи переменного тока и реактивной мощности цепи переменного тока.

Стакан представляет собой электростанцию, вода – электроэнергию, трубочка – кабель или провод. Чем выше поднимается стакан, тем больше напряжение или давление.

Параметры мощности в сети переменного тока активного или реактивного типа зависят от тех элементов, которые потребляют такую энергию. Активная – энергия индуктивности и ёмкости.

Покажем это на конденсаторе, ёмкости и стакане. Активными называются те элементы, которые способны преобразовывать энергию в другой вид. К примеру, в тепло (утюг), свет (лампочка), движение (мотор).

Реактивная энергия

При имитации реактивной энергии напряжение увеличивается, и ёмкость заполняется. При уменьшении напряжения накопленная энергия возвращается по проводу обратно в электростанцию. Так повторяется циклически.

Сам смысл реактивных элементов заключается в накоплении энергии, которая потом обратно возвращается или используется для других функций. Но никуда не тратится. Основной минус этой производной в том, что виртуальный трубопровод, по которому как-бы идет энергия, имеет сопротивление, и на нем тратится процент экономии.

Полной мощности цепи переменного тока требуются затраты определенного процента усилий. По этой причине на крупных предприятиях идет борьба с реактивной составляющей полной мощности.

Активная мощность – это та энергия, которая потребляется или преобразуется в другие виды – свет, тепло, движение, то есть в какую-либо работу.

Опыт

Для опыта возьмем стакан, которые служит активной составляющей мощности. Он представляет часть энергии, которую необходимо потребить или преобразовать в другой вид.

Часть энергии воды можно выпить. Полная мощность переменного тока коэффициент мощности — это показатель, который складывается из реактивной и активной составляющих: энергии, текущей по водопроводу и той, которая преобразуется.

Как выглядит полная мощность в нашей аналогии? Часть воды выпиваем, а оставшаяся будет продолжать бежать по трубке. Так как у нас есть реактивный ёмкостной элемент – конденсатор или ёмкость, воду опускаем и начинаем имитировать увеличение и уменьшение напряжения. При этом видно, как вода перетекает в двух направлениях. Следовательно, в этом процессе применяется и активная, и реактивная составляющая. Вместе это – полная мощность.

Преобразование мощности

Активная мощность преобразовывается в другой вид энергии, к примеру, в механическое движение или нагрев. Реактивная мощность, которая накапливается в реактивном элементе, позднее возвращается назад.

Полная мощность – это геометрическая сумма активной и реактивной мощности.

Для произведения вычислений используем тригонометрические функции. Физический смысл расчетов такой. Возьмем прямоугольный треугольник, в котором одна из сторон равна 90 градусов. Одна из сторон – это его гипотенуза. Есть прилежащий и противолежащий относительно прямого угла катеты.

Косинус представлен отношением, которое предопределяет длина прилегающего катета относительно длины гипотенузы.

Синусом угла является вид отношения, которое составляет длина противолежащего катета относительно гипотенузы. Зная угол и длину любой из сторон, можно вычислить все остальные углы и длину.

В данном треугольнике можно взять длину гипотенузы и прилежащего катета и вычислить этот угол с помощью тригонометрической функции косинусов. Мощность постоянного и переменного тока вычисляется с применением таких знаний.

Для вычисления угла можно применять обратную функцию от косинуса. Получим необходимый результат вычислений. Чтобы вычислить длину противолежащего катета, можно вычислить синус и получить соотношение противолежащего катета к гипотенузе.

Вычисление мощности цепи переменного тока по формуле предложено в этом описании.

В цепях постоянного тока мощность равна произведению напряжения на ток. В цепях переменного тока также работает это правило, но его трактовка будет не совсем правильной.

Индуктивность

Помимо активных элементов, действуют реактивные элементы – индуктивность и ёмкость. В цепях постоянного тока, где амплитудное значение напряжения токов не меняется во времени, работа данного сопротивления будет происходить только во времени. Индуктивность и ёмкость могут негативным образом влиять на сеть.

Активная мощность, которую имеет трехфазная цепь переменного тока, может выполнять полезную работу, а реактивная не выполняет никакой полезной работы, а только расходуется на преодоление реактивных сопротивлений индуктивности и ёмкости.

Попытаемся выполнить опыт. Возьмем источник переменного напряжения на 220 Вт с частотой 50Гц, датчик напряжения и тока источника, нагрузка, которая составляет активное 1Ом и индуктивное 1ОМ сопротивление.

Также есть выключатель, который подключится в определенный момент, активно-ёмкостная нагрузка. Запустим такую систему. Для удобства рассмотрения введем коэффициенты поправки напряжения.

Запускаем устройство

При запуске устройства видно, что напряжение и ток сети не совпадают по фазе. Наблюдается переход через 0, при котором существует угол – коэффициент мощности сети. Чем меньше этот угол, тем выше коэффициент мощности, который указывается на всех устройствах переменного тока, к примеру, электрических машинах или сварочных трансформаторах.

Угол зависит от величины индуктивного сопротивления нагрузки. Когда сдвиг уменьшается, увеличивается ток сети. Представим, что сопротивление катушки уменьшить нельзя, но надо улучшить косинус сети. Для этого и нужны конденсаторы, которые, в отличие от индуктивности, опережают напряжение и могут взаимно компенсировать реактивную мощность.

В момент подключения конденсаторной батареи за 0,05 с происходит резкое снижение косинуса, практически до 0. Также идет резкое снижение тока, который без конденсаторной батареи имел амплитудное значение намного ниже, чем при включении конденсаторной батареи.

Фактически подключением конденсаторной батареи удалось снизить мощность тока, потребляемого из сети. Это является положительным моментом и позволяет снижать ток сети и экономить на сечение кабелей, трансформаторах, силовом оборудовании.

Если произойдет отключение индуктивной нагрузки и останется активное сопротивление, произойдет процесс, когда косинус сети после подключения конденсаторной батареи приведет к фазовому сдвигу и большому скачку тока, который идёт в сеть, а не потребляется из неё, что происходит в генераторном режиме реактивной мощности.

Итоги

Активная мощность опять остается постоянной и равна нулю, так как нет индуктивного сопротивления. Начался процесс генерации реактивной мощности в сеть.

Следовательно, компенсировать реактивную мощность на крупных предприятий, потребляемых колоссальные её объёмы из энергосистем, — это приоритетная задача, так как это позволяет экономить не только на электрооборудовании, но и на затратах по оплате самой реактивной мощности.

Такое понятие регламентируется, и предприятие оплачивает и потребляемую, и генерируемую мощность. Здесь устанавливаются автоматические компенсаторы, обеспечивающие поддержку баланса мощности на заданном уровне.

При отключении мощной нагрузки, если не выключить из сети компенсирующее устройство, будет происходить генерация реактивной мощности в сеть, что создаст проблемы в энергосистеме.

В быту компенсация реактивной мощности не имеет смысла, так как потребление мощности здесь значительно ниже.

Активная и реактивная мощность – понятия школьного курса физики.

Источник: https://FB.ru/article/343385/peremennyiy-tok-moschnost-peremennogo-toka---formula-moschnost-postoyannogo-i-peremennogo-toka

Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока.

Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Referat. Переменный ток

Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.

Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.

Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника

или

Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

\(~u = U_m \cdot \sin \omega t\) или \(~u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

\(~i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п.

Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира.

В США частота промышленного тока 60 Гц.

Резистор в цепи переменного тока

Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода.

Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости.

Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.

Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).

ЭТО ИНТЕРЕСНО:  Как работает реле напряжения

Рис. 1

Пусть напряжение на концах цепи меняется по гармоническому закону

\(~u = U_m \cdot \sin \omega t\) .

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:

\(~i = \frac{U}{R} = \frac{U_m \cdot \sin \omega t}{R} = I_m \cdot \sin \omega t\) .

Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:

Рис. 2

При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.

Катушка в цепи переменного тока

Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3).

С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы.

Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.

Рис. 3

Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения.

Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.

Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4). При изменениях силы тока по гармоническому закону

\(~i = I_m \cdot \cos \omega t\) .

в катушке возникает ЭДС самоиндукции

Источник: http://www.physbook.ru/index.php/Referat._%D0%9F%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D1%82%D0%BE%D0%BA

Электрическая мощность, как рассчитать по формуле

По школьным учебникам многим знакомы задачи, где требуется найти мощность электрического тока. В них редко раскрывается практический смысл этой физической величины, хотя она критически важна как в промышленной эксплуатации электроприборов, так и в быту. Это напрямую связано с техникой безопасности. Ошибка в измерениях и неподходящее сечение кабеля способны привести к короткому замыканию. При этом проводка может загореться и стать причиной пожара.

Что такое мощность электрического тока

При описании электрической мощности в широком смысле чаще всего речь идет об энергии или силе, которой наделен некоторый объект либо действие. Например, ее можно определить для взрыва или же механизма, например двигателя. Этот параметр связан с силой и зависит от нее, потому эти явления нередко путают.

Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.

В случае с электричеством она бывает двух видов:

  1. Активная — превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
  2. Реактивная — нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения — вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.

На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.

По какой формуле вычисляется мощность электрического тока

Данная величина привязана одновременно к нескольким физическим параметрам. Напряжение — это работа, необходимая для перемещения 1 кулона. Сила означает число кулонов, которые проходят за 1 секунду. Если умножить ток на напряжение, он будет равен количеству работы в секунду. Для вычисления мощности электрического тока формулу вывести нетрудно.

Она выглядит как P = A / t = I x U, обозначения следующие:

  • P — мощность тока в ваттах (Вт);
  • A — его работа на данном участке цепи в джоулях (Дж);
  • t — время, за которое совершена работа (в секундах);
  • U — напряжение электричества для участка цепи в вольтах (В);
  • I — сила в амперах (А).

Указанная формула показывает, что зависимость мощности от напряжения и силы тока одинакова в этой связке. Один показатель может быть выше и тем самым скомпенсировать другой для обеспечения мощного электротока. Эта особенность обеспечивает передачу электроэнергии на дальние расстояния. Ее преобразование происходит через регулирующие трансформаторы на подстанциях.

Верное определение мощности критически важно для соблюдения правил техники безопасности при эксплуатации электросети и исключения возгораний. Это может произойти, если проводка выбрана неправильно. Для измерения необходимо использовать специальные приборы, но это возможно не всегда.

Определение мощности для переменного тока:

  • с помощью амперметра;
  • по формуле P= U х I с использованием значений в указанный момент времени;
  • по формуле P= U х I x сos φ, если есть сдвиг фаз.

Символ φ обозначает коэффициент мощности. Когда к сети подключен только свет или приборы для нагревания, он равен 1, для более сложного и мощного оборудования промышленного типа цифра составляет 0,8. Формула для расчета мощности через сопротивление в сети постоянного тока — P = IU.

От чего зависит мощность тока

Сила электротока и напряжение — две главные составляющие, из которых складывается этот показатель. Практически это легко можно объяснить на примере маленькой лампочки, получающей ток в 1 А при напряжении 1 В. Ее мощность будет составлять 1 Вт.

Более жизненный пример — учет затраченной электроэнергии по формуле W=IUt, где t — время работы. Чем оно выше, тем больше объем электроэнергии и выше счет за ее оплату в квитанции коммунальных служб.

Источник: https://vodatyt.ru/elektrika/moschnost-toka.html

мощность переменного тока

Единица реактивной мощности — воль-ампер реактивный (вар).
Таким образом, становится ясно, что полный ток состоит из двух составляющих — активного тока и реактивного. Казалось бы, нет ничего проще — сложи их вместе и узнаешь полный ток. Однако, полный ток не является простой суммой двух составляющих.

Активный ток имеет одинаковое направление с действующим напряжением, а вот реактивный сдвиинут по фазе на 90° по отношению к активному. Графически полный ток представляют как диагональ прямоугольника, одна из сторон которого представляет собой активную часть тока, а вторая — реактивную (см. рис.3).

Полный ток, следовательно, получается как геометрическая сумма активной и реактивной составляющих.

Численное значение вычисляется как гипотенуза в прямоугольном треугольнике. И если активную часть обозначить как Ia, реактивную как Iр, то получим для полного тока:

I²=I²a + I²p

Из рассмотрения треугольника видно, что реактивная составляющая тем больше, чем больше угол сдвига. Два крайних случая при фазовом угле φ, равном 0 или 90°, практически могут реализоваться толькр в приближении. При φ = 0 отсутствует реактивная составляющая тока. Активная составляющая и действующий ток равны.

Это случай, когда в цепи нет емкостных и индуктивных сопротивлений. При сдвиге φ=90° (т.е. при чисто индуктивном или емкостном сопротивлении) вовсе нет активной составляющей тока и активной мощности.

Можно легко рассчитать активную Ia и реактивную Iр составляющие тока по действующему значению тока с помощью угла сдвига фаз φ:

cos φ = Ia/I; sin φ = Iр/I; Ia = I*cos φ; Iр = I*sin φ

Для активной мощности записываем: Pa = U*I*cos φ, т.е. чтобы получить активную мощность, необходимо полную мощность S, определяемую как произведение действующих значений U и I, умножть еще на косинус угла сдвига фаз. cos φ называют также «коэффициентом мощности».
Конкретные примеры нахождения мощности переменного тока можно встретить в разделе «Решение задач».

Источник: http://slavapril.narod.ru/moshnost_peremen.html

Активное сопротивление. Действующие значения силы тока и напряжения — Класс!ная физика

Подробности 377

«Физика — 11 класс»

Активное сопротивление

Сила тока в цепи с резистором

Есть цепь, состоящая из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R.

Сопротивление R называется активным сопротивлением, т.к. при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Напряжение на зажимах цепи меняется по гармоническому закону:

u = Um cos ωt

Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения.
По закону Ома мгновенное значение силы тока:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения, а амплитуда силы тока определяется равенством

Мощность в цепи с резистором

В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение меняются.
При прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет меняться во времени.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

Р = I2R

Мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Р = i2R

Cреднее значение мощности за период (используем формулу для мгновенного значения силы тока и выражение ):

График зависимости мгновенной мощности от времени (рис.а):

Согласно графику (рис.б) среднее за период значение cos 2ωt равно нулю, а значит равно нулю второе слагаемое в формуле для среднего значения мощности за период.

Тогда средняя мощность равна:

Действующие значения силы тока и напряжения

Среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока.
Действующее значение силы переменного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично:

Закон Ома для участка цепи переменного тока с резистором в действующих значениях:

В случае электрических колебаний важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность.
Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Действующие значения непосредственно определяют среднее значение мощности Р переменного тока:

р = I2R = UI.

Итак:
Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Источник: http://class-fizika.ru/11_27.html

Мощность переменного тока

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания

Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.

Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .

Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу

Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:

(1)

Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.

Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.

1. Мощность положительна: . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).

2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.

Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).

Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.

Мощность тока через резистор

Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:

Поэтому для мгновенной мощности получаем:

(2)

График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Рис. 1. Мощность переменного тока через резистор

Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

ЭТО ИНТЕРЕСНО:  Для чего нужен диод Шоттки

среднее значение квадрата синуса (или косинуса) за период равно .

Этот факт иллюстрируется рисунком 2.

Рис. 2. Среднее значение квадрата синуса равно

Итак, для среднего значения мощности тока на резисторе имеем:

(3)

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

(4)

Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени представлен на рис. 3.

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Мощность тока через катушку

Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :

Для мгновенной мощности получаем:

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Рис. 5. Напряжение на катушке и сила тока через неё

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

Мощность тока на произвольном участке

Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушкиНа этот участок подано переменное напряжение .

Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:

Тогда для мгновенной мощности имеем:

(5)

Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:

В результате получим:

(6)

Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:

(7)

Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:

Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем , и мы приходим к формуле (3). Для конденсатора и катушки , и средняя мощность равна нулю.

Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.

С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/moshhnost-peremennogo-toka/

Формула мощности

> Теория > Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

1Вт=1Дж/1с.

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

1Вт=1А*1В.

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

P=U*I=I*I*R=(U*U)/R, где:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Формула механической мощности

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

P=U*I.

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

I=P/U.

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

P=U*I

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Ракт=Робщ*cosφ=U*I*cosφ.

Соответственно, Робщ=Ракт/cosφ.

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Uлин=Uф√3.

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

P=U*I*√3.

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

P=U*I*√3*cosφ.

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

I=P/(U*√3*cosφ).

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

I=3000/(380*√3*0,7)=5,8А.

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Расчет мощности трехфазной сети

Источник: https://elquanta.ru/teoriya/formula-moshhnosti.html

Задачи на цепи переменного тока

В электротехнике большое количество задач посвящено цепям переменного тока. Рассмотрим примеры решения некоторых из них.

Задача 1

 В сеть переменного тока включены последовательно катушка индуктивностью 3 мГн и активным сопротивлением 20 Ом и конденсатор емкостью 30 мкФ. Напряжение Uc на конденсаторе 50 В. Определите напряжение на зажимах цепи, ток в цепи, напряжение на катушке, активную и реактивную мощность.

Решение задачи начнём с определения тока в цепи, но для этого нужно сначала определить реактивное сопротивление конденсатора.

Как известно, реактивное сопротивление конденсатора зависит от частоты переменного тока (при её увеличении уменьшается, а при её уменьшении увеличивается), следовательно 

Ток в цепи находим из соображения, что элементы в цепи соединены последовательно, а значит, ток на конденсаторе и катушке будет одним и тем же. 

Следующим шагом мы определяем индуктивное сопротивление и напряжение катушки 

Зная активное сопротивление обмотки катушки, можем определить падение напряжения на нем 

Теперь, когда мы знаем напряжение на каждом из элементов, мы можем определить напряжение на зажимах цепи, которое будет равно

Активную мощность в данном случае можно определить как мощность, выделяемую на обмотке катушки 

Для определения реактивной мощности необходимо для начала определить угол сдвига ϕ 

Так как реактивная мощность имеет отрицательное значение, то цепь имеет емкостной характер. 

Задача 2

В цепи как показано на схеме, подключены катушка, конденсатор и резисторы. Индуктивность катушки – 15 мГн, емкость конденсатора 20 мкФ, R1=10 Ом, R2=30 Ом. Напряжение источника 100 В, частота 100 Гц. Определить токи в цепи, активную, реактивную и полную мощность в цепи. 

Данную задачу удобнее решать с помощью проводимостей, так как катушка и конденсатор соединены параллельно.

Тогда активная проводимость первой ветви равна 

Реактивная проводимость первой ветви равна

Полная проводимость первой ветви

Аналогичный расчет произведем для второй ветви содержащей конденсатор 

Полная проводимость цепи

Токи в цепи определим зная напряжение и проводимости 

Коэффициент мощности определим по формуле

Активная мощность

Реактивная мощность 

Полная мощность 

— расчет простых цепей постоянного тока 

1 1 1 1 1 1 1 1 1 1 4.31 (8 Голоса)

Источник: https://electroandi.ru/toe/ac/zadachi-na-tsepi-peremennogo-toka.html

Активная мощность: формула, как определить — Asutpp

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Прибор Мощность бытовых приборов, Вт/час
Зарядное устройство 2
Люминесцентная лампа ДРЛ От 50
Акустическая система 30
Электрический чайник 1500
Стиральной машины 2500
Полуавтоматический инвертор 3500
Мойка высокого давления 3500

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

Источник: https://www.asutpp.ru/aktivnaya-moshhnost-cepi-peremennogo-toka.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Когда проводится инструктаж по электробезопасности

Закрыть