Как найти мощность через энергию

Как найти мощность тока — формулы с примерами расчетов

Как найти мощность через энергию
В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел.

В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач.

Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U2/R

Также можно выполнить расчет, зная ток и сопротивление:

P=I2*R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Источник: https://samelectrik.ru/kak-najti-moshhnost-toka.html

Формула мощности

Как найти мощность через энергию

> Теория > Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

1Вт=1Дж/1с.

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

1Вт=1А*1В.

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

P=U*I=I*I*R=(U*U)/R, где:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Формула механической мощности

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

P=U*I.

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

I=P/U.

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

P=U*I

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Ракт=Робщ*cosφ=U*I*cosφ.

Соответственно, Робщ=Ракт/cosφ.

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Uлин=Uф√3.

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

P=U*I*√3.

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

P=U*I*√3*cosφ.

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

I=P/(U*√3*cosφ).

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

I=3000/(380*√3*0,7)=5,8А.

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Расчет мощности трехфазной сети

Источник: https://elquanta.ru/teoriya/formula-moshhnosti.html

Как найти мощность — формулы для расчета

Как найти мощность через энергию

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства.

Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

Активное и реактивное сопротивление

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах.

Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток.

Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Опыт Эрстеда: магнитное поле тока

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Источник: https://electric-220.ru/news/kak_najti_moshhnost/2018-08-28-1554

Потребляемая мощность: расчет мощности в ваттах, в чем измеряется, формула

Любой бытовой прибор работает при помощи электроэнергии. Электричество может поступать из электросети через розетку, от батарейки или аккумулятора. При этом важной характеристикой техники становится его мощность. Как определить потребляемую мощность электроприбора и рассчитать ее?

Что это такое

Мощность — это физическая величина, которая равна скорости передачи или потребления энергии системой. Второе значение — отношение работы к промежутку времени, за который она была выполнена.

Большая часть бытовых приборов работает от электросети

Потребляемая бытовым прибором мощность — это количество электроэнергии, которая необходимо прибору для функционирования. Если устройство статично (неподвижно, например, телефон, лампа, плита), энергия преобразуется в тепло или свет, если устройство двигается (например, двигатель), ток преобразуется в механическую энергию.

Правильное определение мощности необходимо при планировании электросети, количества разветвлений и розеток (нужны ли дополнительные розетки, можно ли запитать несколько приборов от одной), при выборе защитных автоматов, при определении затрат на электричество (сколько тока будут потреблять все приборы).

Излишек приборов, подключенных к одной розетке, может привести к пожару.

В чем измеряется потребляемая мощность

Количество потраченного тока измеряется в Ваттах (Вт) или Вольт-Амперах (ВА). Измерение в Вольт-Амперах часто встречается у зарубежных производителей, в Ваттах — у российских.

Важно! Часто указывают не Ватты (Вт) или Вольт-Амперы (ВА), а килоВатты (кВт) и килоВольт-Амперы (кВА) — тысяча Ватт и тысяча Вольт-Ампер.

Многие считают, что Вт и ВА — это равные величины, но это не так. В Ваттах измеряется активная мощность (количество потребляемой энергии, обозначается буквой «Р»), в Вольт-Амперах — полная (сумма активной и пассивной мощностей, обозначается «S»). То есть эти величины не равны, приравнивать Ватты к Вальт-Амперам нельзя.

Необходимы значения могут быть указаны прямо на технике

Для перевода необходимо воспользоваться формулой:

Р = S*коэффициент мощности.

Если коэффициент неизвестен, его принимают за 0,8 (0,8-0,95 — хорошее значение, 0,65-0,8 — удовлетворительное).

При подсчете также можно воспользоваться онлайн-калькуляторами. Если использовать формулу не получится, можно приблизительно приравнять: 1 кВА = 0,7 кВт.

Особенности определения мощности сети

Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.

Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:

  • В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
  • Мощность подключаемых приборов измеряется в Ваттах.

Информация на электроприборе может быть обозначена по-разному

Как высчитать мощность электричества? Для вычисления потребуется формула:

Р = U*I, где:

P — мощность,

U — напряжение в Вольтах,

I — сила тока в Амперах.

Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.

Для определения силы тока в розетке стоит использовать мультиметр

Как узнать мощность прибора

Сделать это можно несколькими способами:

  • Посмотреть в техническом паспорте или на специальной наклейке (шильдике) на устройстве. Последний обычно располагается на задней стенке или основании.
  • Посмотреть по модели прибора характеристики в интернете.
  • При помощи счетчика электроэнергии. Необходимо выключить все прочие потребители тока, замерить показатель, затем включить нужное устройство и подождать 15 минут. Затем вновь замерить показатель и полученную разницу умножить на 4. В итоге получится потребление тока за час.

При помощи счетчика можно измерять примерную мощность

  • При помощи закона Ома: P = U2 /R, где U — напряжение в 230 В, а R — сопротивление, которое необходимо измерить тестером.
  • Ваттметром: это измеритель, который представляет собой «переходник» между розеткой и прибором. При включении на индикаторе появится точное значение.

Производитель обычно указывает максимальную мощность — больше этого значения оборудование потреблять не будет. В обычном состоянии устройству требуется меньше энергии, при расчете стоит брать максимальное значение.

При самостоятельном определении получится среднее число — столько в среднем потребляет техника. Это число стоит немного увеличить, чтобы остался небольшой запас.

При определении при помощи ваттметра цифра получается крайне точной — столько тока в конкретный момент потребляет прибор. Значение также стоит немного увеличить.

Ваттметр позволяет точно определить количество электричества

Потребляемая мощность техники — это важная величина, которая показывает, сколько электроэнергии потребляется. Эта величина необходима для правильной и безопасной эксплуатации электросети: при несовпадении мощности прибора и розетки возможно короткое замыкание или пожар.

Вам это будет интересно  Особенности статического электричества

Источник: https://rusenergetics.ru/polezno-znat/potreblyaemaya-moschnost

Расчет мощности потребляемой энергии: определение, формула и варианты

Наверняка каждый человек хотя бы раз в жизни слышал о таком понятии, как мощность. Однако далеко не все люди знают, что это такое, и довольно часто путают это понятие со словом мощь. Сегодня речь пойдёт об этом понятии. Вы узнаете, в чём заключается смысл этой физической величины, и научитесь её рассчитывать. А главное — для чего нужно её рассчитывать. Поехали!

Начнём с определения мощности: это работа, выполненная за единицу времени. Причём неважно о какой работе идёт речь, электрической или механической. Эта физическая величина является показателем эффективности работы, а также количества энергии, потребляемой электрическим прибором.

В счета коммунальных услуг входят расходы за потребление электроэнергии. Её потребляют следующие бытовые приборы:

  1. Пылесос.
  2. Холодильник.
  3. Компьютер.
  4. Телевизор.
  5. Чайник.
  6. Плита.

Количество этих приборов гораздо больше. И каждый из них вносит свой вклад в формирование суммы за ваши коммунальные услуги.

Например, потребляемая мощность вашего пылесоса составляет 1 тыс. Ватт в час. Соответственно, если вы пылесосите 30 минут, он потребляет 500 ватт. Одна тысяча ватт в час равняется одному киловатту в час. Это общепринятая единица расчёта потребляемой энергии в коммунальных службах.

Например, за этот месяц вы пылесосили вашу квартиру 6 раз по полчаса. Соответственно, пылесос работал 3 часа и потребил из электросети 3 киловатта в час. Стоимость одного киловатта в час составляет 3 рубля. Это значит, что вам необходимо заплатить 9 рублей за энергию, которую потребил ваш пылесос во время уборки квартиры. По такому же принципу подсчитываются ваши траты с другими электроприборами.

Считать мощность необходимо для следующих целей:

  1. Оптимизация расходов за потребляемую электроэнергию.
  2. Обеспечения вашей безопасности.
  3. Оценки эффективности ваших работ.

Конечно, все эти расчёты производятся для разных видов этой физической величины. Всего их два:

  1. Электрическая.
  2. Механическая.

Давайте более подробно поговорим о каждом из них.

Электрическая мощность

Для подсчёта мощности нам понадобятся формулы закона Ома и знание трёх важнейших параметров.

Сила тока — электрический заряд, проходящий через поперечное сечение проводника в единицу времени. Эта величина является очень важной при расчёте мощности, так как в основе её расчёта лежит работа, совершенная в единицу времени.

Например, за 10 секунд через поперечное сечение проводника прошёл электрический заряд, равный 100 кулон. Для нахождения этой величины необходимо разделить заряд на время. Результат будет равен 10 ампер.

Сопротивление — величина, которая характеризует свойства проводника по препятствию прохождению электрического тока. Для управления напряжением в электрические цепи вводят элементы сопротивления — резисторы. Эта величина измеряется в Омах.

Напряжение — физическая величина, характеризующая работу по перемещению электрического заряда. Напряжение в цепи равно произведению тока и сопротивления в этой цепи.

Например, ток в цепи равен 10 ампер, а сопротивление равно 20 Ом. Соответственно, для нахождения напряжения перемножим эти показатели. В результате мы получаем 200 вольт.

Закон Ома связывает между собой три этих параметра, которые необходимы нам для расчёта электрической мощности. Давайте разберём три возможных варианта расчёта:

  1. Известны ток и напряжение.
  2. Известны ток и сопротивление.
  3. Известны сопротивление и напряжение.

Мощность равняется произведению напряжения и силы тока. Соответственно, если нам известны эти две величины, необходимо просто их перемножить. Например, ток в цепи 10 ампер, а напряжение равно 200 вольт. Соответственно, мощность равна 2 тыс. Ватт.

Если нам известно сопротивление и сила тока, то формула будет немного другой. Сначала найдём напряжение. Для этого необходимо перемножить силу тока и сопротивление. После этого полученный результат необходимо умножить на ток.

Соответственно, в этом случае напряжение равняется произведению сопротивления и силы тока в квадрате. Например, сопротивление равно 50 Ом, а сила тока равна 10 ампер. Нам необходимо умножить 50 на 10, а потом ещё раз на 10.

Получаем результат, равный 5 тыс. Ватт.

В случае с известными напряжением и сопротивлением нам придётся прибегнуть к делению. Согласно закону Ома, сила тока равна частному напряжения и сопротивления. Соответственно, в этом случае мощность равна напряжению в квадрате, делённому на сопротивление. Например, напряжение в цепи равно 100 вольт, а сопротивление равно 50 Ом. Нам необходимо возвести 100 во вторую степень, после чего разделить полученное число на 50. Получаем результат, равный 200 Ватт.

Механическая мощность

Механическая мощность не имеет отношения к электричеству. Здесь суть заключается в том, что работа выполняется под действием определённой силы. В основном это сила внешнего воздействия. Так, механическая мощность — это работа, выполняемая в единицу времени.

Например, кран поднимает тяжёлый груз. Для этого он прикладывает силу, которая по модулю больше, чем гравитационная сила. Давайте разберём два возможных случая расчёта:

  1. Груз поднимается с одинаковой скоростью.
  2. Груз поднимается с ускорением, равным 1 метру, делённым на секунду в квадрате.

Работа — это произведение силы и расстояния, на которое был перемещён объект под действием этой силы.

Предположим, что масса груза равна 50 килограмм. Так как груз движется с постоянной скоростью, его сила тяжести равна 500 ньютон. Кран поднял груз на высоту 100 метров. Соответственно, работа, которую совершил кран, равна произведению пятисот ньютон и ста метров. Получаем результат, равный 50 тыс. Джоулей.

Предположим, что кран осуществлял работу по подъёму груза в течение 50 секунд. Для расчёта его мощности разделим 50 тыс. джоулей на время, равное пятидесяти секундам, и получим 1 тыс. Джоулей. Так, за одну секунду кран тратил 1 тыс. джоулей энергии для совершения работы, а значит, его мощность равна 1 тыс. Ватт.

Давайте теперь рассмотрим случай, в котором груз поднимается с ускорением 1 метр, делённый на секунду в квадрате. В таком случае груз будет доставлен в точку назначения примерно за 13 секунд.

Для перемещения груза с таким ускорением, крану необходимо прикладывать силу, равную 550 ньютон. Перемножим значение этой силы на 100 метров. Получим 55 тыс. Джоулей. Это энергия, которую израсходовал кран для поднятия этого груза с ускорением на высоту 100 метров. Далее, разделим 55 тыс. Джоулей на 13 секунд и получим примерно 4200 Джоулей секунду. В случае с ускорением мощность работы крана составила 4200 Ватт.

При движении с ускорением кран выполняет работу гораздо быстрее. Соответственно, эффективность труда становится гораздо выше. Именно механическая мощность и является показателем этой эффективности.

От мощности зависит довольно много вещей в нашей жизни. Поэтому мы хотим дать вам несколько советов, которые помогут обезопасить и приукрасить её.

Для сокращения расходов необходимо их оптимизировать. Например, когда вы выходите из комнаты, можно выключать в ней свет. Это сократит потребление энергии, и в конце месяца вам придут счета с более приятными цифрами. Помимо выключения света, есть много других способов сократить количество потребляемой энергии.

Можно использовать электрические приборы, которые потребляют меньше мощности. Например, чистота в вашей квартире не станет хуже, если пользоваться пылесосом средней мощности. Это относится и к другим бытовым приборам. Главное, чтобы качество вашей жизни не ухудшилось. А это можно осуществить, пользуясь приборами средней мощности. Ведь они делают все необходимое и потребляют не так много энергии.

Если вы так и не поняли все детали расчёта мощности, не мучайте себя. Лучше воспользуйтесь онлайн-калькулятором или установите на ваш смартфон специальное приложения для её расчёта. Помните, в жизни важно экономить не только энергию, но и время.

Расчётами электрической мощности занимаются инженеры, которые разрабатывают бытовую технику. Они делают это для избежания короткого замыкания и пожаров. Помните, это нужно прежде всего для вашей безопасности.

Теперь вы знаете, как посчитать мощность, и в чём заключается суть этой физической величины. Выбирая бытовой прибор, вы будете иметь представление о том, какая мощность вам нужна для достижения той или иной цели. Успехов вам!

Источник: https://tokar.guru/hochu-vse-znat/raschet-moschnosti-potreblyaemoy-energii.html

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

Энергия и человек. Ряд случайных сравнений

Энергия и человек. Ряд случайных сравнений

Энергия и человек. Ряд случайных сравнений

В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами. В чем измеряется, энергия?

Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Как найти мощность, зная напряжение, ток и сопротивление

Как найти мощность, зная напряжение, ток и сопротивление

Как найти мощность, зная напряжение, ток и сопротивление

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы.

Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи.

Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

Расчет электрических цепей онлайн и основная формула расчета

Расчет электрических цепей онлайн и основная формула расчета

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q.

Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I.

Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

IndustrialCraft 2/Энергия

IndustrialCraft 2/Энергия

IndustrialCraft 2/Энергия

Энергия — новый элемент геймплея, добавляемый модификацией IndustrialCraft². Энергия вырабатывается несколькими видами генераторов, на ней работают многие устройства и инструменты.

Энергия[править | править код]

Как найти мощность тока — формулы с примерами расчетов

Как найти мощность через энергию
В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел.

В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач.

Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Формула мощности

Как найти мощность через энергию

> Теория > Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

Как найти мощность — формулы для расчета

Как найти мощность через энергию

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Потребляемая мощность: расчет мощности в ваттах, в чем измеряется, формула

Любой бытовой прибор работает при помощи электроэнергии. Электричество может поступать из электросети через розетку, от батарейки или аккумулятора. При этом важной характеристикой техники становится его мощность. Как определить потребляемую мощность электроприбора и рассчитать ее?

Что это такое

Расчет мощности потребляемой энергии: определение, формула и варианты

Наверняка каждый человек хотя бы раз в жизни слышал о таком понятии, как мощность. Однако далеко не все люди знают, что это такое, и довольно часто путают это понятие со словом мощь. Сегодня речь пойдёт об этом понятии. Вы узнаете, в чём заключается смысл этой физической величины, и научитесь её рассчитывать. А главное — для чего нужно её рассчитывать. Поехали!

Начнём с определения мощности: это работа, выполненная за единицу времени. Причём неважно о какой работе идёт речь, электрической или механической. Эта физическая величина является показателем эффективности работы, а также количества энергии, потребляемой электрическим прибором.

В счета коммунальных услуг входят расходы за потребление электроэнергии. Её потребляют следующие бытовые приборы:

  1. Пылесос.
  2. Холодильник.
  3. Компьютер.
  4. Телевизор.
  5. Чайник.
  6. Плита.

Количество этих приборов гораздо больше. И каждый из них вносит свой вклад в формирование суммы за ваши коммунальные услуги.

Например, потребляемая мощность вашего пылесоса составляет 1 тыс. Ватт в час. Соответственно, если вы пылесосите 30 минут, он потребляет 500 ватт. Одна тысяча ватт в час равняется одному киловатту в час. Это общепринятая единица расчёта потребляемой энергии в коммунальных службах.

Например, за этот месяц вы пылесосили вашу квартиру 6 раз по полчаса. Соответственно, пылесос работал 3 часа и потребил из электросети 3 киловатта в час. Стоимость одного киловатта в час составляет 3 рубля. Это значит, что вам необходимо заплатить 9 рублей за энергию, которую потребил ваш пылесос во время уборки квартиры. По такому же принципу подсчитываются ваши траты с другими электроприборами.

Считать мощность необходимо для следующих целей:

  1. Оптимизация расходов за потребляемую электроэнергию.
  2. Обеспечения вашей безопасности.
  3. Оценки эффективности ваших работ.

Конечно, все эти расчёты производятся для разных видов этой физической величины. Всего их два:

  1. Электрическая.
  2. Механическая.

Давайте более подробно поговорим о каждом из них.

Электрическая мощность

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Однофазная сеть напряжением 220 В

Энергия и человек. Ряд случайных сравнений

В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами. В чем измеряется, энергия?

Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Человек в среднем потребляет около 2000 ккалорий в день, что дает около 2 кВт*ч или около 100 Ватт, средней мощности. Можно представить, что человек ест, как одна большая лампочка на накаливания на 100 Ватт.

Энергопотребление человека сравнительно небольшое по сравнению с приборами, которые нас окружают. Можно сказать, что человек произвел техническую революцию.

Человек принимает «в себя» меньше энергии, чем он использует «для себя» даже только в домашних условиях (средний расчет больше 100 кВт*ч в месяц).

Человек — вычислительная машина. 30 Вт

Как найти мощность, зная напряжение, ток и сопротивление

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы.

Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи.

Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи.

Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования.

Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q.

Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I.

Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.

Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.

Мощность переменной сети

IndustrialCraft 2/Энергия

Энергия — новый элемент геймплея, добавляемый модификацией IndustrialCraft². Энергия вырабатывается несколькими видами генераторов, на ней работают многие устройства и инструменты.

Энергия[править | править код]

Изначально, энергия запасена тем или иным образом в окружающем мире. Генераторы превращают эту энергию в электричество. Энергия, в том числе электрическая, измеряется в еЭ, единицах Энергии (англ. EU, Energy Unit).

Близкой по смыслу единицей из жизни является джоуль (Дж).

Энергия извлекается из топлива или окружающей среды генераторами и может накапливаться в устройствах и инструментах, некоторые из которых могут отдавать её снова, некоторые — расходуют на работу.

Мощность и пакеты[править | править код]

Как найти мощность тока — формулы с примерами расчетов

Как найти мощность через энергию
В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел.

В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач.

Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U2/R

Также можно выполнить расчет, зная ток и сопротивление:

P=I2*R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Источник: https://samelectrik.ru/kak-najti-moshhnost-toka.html

Формула мощности

Как найти мощность через энергию

> Теория > Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

1Вт=1Дж/1с.

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

1Вт=1А*1В.

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

P=U*I=I*I*R=(U*U)/R, где:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Формула механической мощности

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

P=U*I.

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

I=P/U.

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

P=U*I

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Ракт=Робщ*cosφ=U*I*cosφ.

Соответственно, Робщ=Ракт/cosφ.

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Uлин=Uф√3.

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

P=U*I*√3.

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

P=U*I*√3*cosφ.

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

I=P/(U*√3*cosφ).

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

I=3000/(380*√3*0,7)=5,8А.

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Расчет мощности трехфазной сети

Источник: https://elquanta.ru/teoriya/formula-moshhnosti.html

Как найти мощность — формулы для расчета

Как найти мощность через энергию

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства.

Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

Активное и реактивное сопротивление

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах.

Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток.

Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Опыт Эрстеда: магнитное поле тока

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Источник: https://electric-220.ru/news/kak_najti_moshhnost/2018-08-28-1554

Потребляемая мощность: расчет мощности в ваттах, в чем измеряется, формула

Любой бытовой прибор работает при помощи электроэнергии. Электричество может поступать из электросети через розетку, от батарейки или аккумулятора. При этом важной характеристикой техники становится его мощность. Как определить потребляемую мощность электроприбора и рассчитать ее?

Что это такое

Мощность — это физическая величина, которая равна скорости передачи или потребления энергии системой. Второе значение — отношение работы к промежутку времени, за который она была выполнена.

Большая часть бытовых приборов работает от электросети

Потребляемая бытовым прибором мощность — это количество электроэнергии, которая необходимо прибору для функционирования. Если устройство статично (неподвижно, например, телефон, лампа, плита), энергия преобразуется в тепло или свет, если устройство двигается (например, двигатель), ток преобразуется в механическую энергию.

Правильное определение мощности необходимо при планировании электросети, количества разветвлений и розеток (нужны ли дополнительные розетки, можно ли запитать несколько приборов от одной), при выборе защитных автоматов, при определении затрат на электричество (сколько тока будут потреблять все приборы).

Излишек приборов, подключенных к одной розетке, может привести к пожару.

В чем измеряется потребляемая мощность

Количество потраченного тока измеряется в Ваттах (Вт) или Вольт-Амперах (ВА). Измерение в Вольт-Амперах часто встречается у зарубежных производителей, в Ваттах — у российских.

Важно! Часто указывают не Ватты (Вт) или Вольт-Амперы (ВА), а килоВатты (кВт) и килоВольт-Амперы (кВА) — тысяча Ватт и тысяча Вольт-Ампер.

Многие считают, что Вт и ВА — это равные величины, но это не так. В Ваттах измеряется активная мощность (количество потребляемой энергии, обозначается буквой «Р»), в Вольт-Амперах — полная (сумма активной и пассивной мощностей, обозначается «S»). То есть эти величины не равны, приравнивать Ватты к Вальт-Амперам нельзя.

Необходимы значения могут быть указаны прямо на технике

Для перевода необходимо воспользоваться формулой:

Р = S*коэффициент мощности.

Если коэффициент неизвестен, его принимают за 0,8 (0,8-0,95 — хорошее значение, 0,65-0,8 — удовлетворительное).

При подсчете также можно воспользоваться онлайн-калькуляторами. Если использовать формулу не получится, можно приблизительно приравнять: 1 кВА = 0,7 кВт.

Особенности определения мощности сети

Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.

Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:

  • В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
  • Мощность подключаемых приборов измеряется в Ваттах.

Информация на электроприборе может быть обозначена по-разному

Как высчитать мощность электричества? Для вычисления потребуется формула:

Р = U*I, где:

P — мощность,

U — напряжение в Вольтах,

I — сила тока в Амперах.

Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.

Для определения силы тока в розетке стоит использовать мультиметр

Как узнать мощность прибора

Сделать это можно несколькими способами:

  • Посмотреть в техническом паспорте или на специальной наклейке (шильдике) на устройстве. Последний обычно располагается на задней стенке или основании.
  • Посмотреть по модели прибора характеристики в интернете.
  • При помощи счетчика электроэнергии. Необходимо выключить все прочие потребители тока, замерить показатель, затем включить нужное устройство и подождать 15 минут. Затем вновь замерить показатель и полученную разницу умножить на 4. В итоге получится потребление тока за час.

При помощи счетчика можно измерять примерную мощность

  • При помощи закона Ома: P = U2 /R, где U — напряжение в 230 В, а R — сопротивление, которое необходимо измерить тестером.
  • Ваттметром: это измеритель, который представляет собой «переходник» между розеткой и прибором. При включении на индикаторе появится точное значение.

Производитель обычно указывает максимальную мощность — больше этого значения оборудование потреблять не будет. В обычном состоянии устройству требуется меньше энергии, при расчете стоит брать максимальное значение.

При самостоятельном определении получится среднее число — столько в среднем потребляет техника. Это число стоит немного увеличить, чтобы остался небольшой запас.

При определении при помощи ваттметра цифра получается крайне точной — столько тока в конкретный момент потребляет прибор. Значение также стоит немного увеличить.

Ваттметр позволяет точно определить количество электричества

Потребляемая мощность техники — это важная величина, которая показывает, сколько электроэнергии потребляется. Эта величина необходима для правильной и безопасной эксплуатации электросети: при несовпадении мощности прибора и розетки возможно короткое замыкание или пожар.

Вам это будет интересно  Особенности статического электричества

Источник: https://rusenergetics.ru/polezno-znat/potreblyaemaya-moschnost

Расчет мощности потребляемой энергии: определение, формула и варианты

Наверняка каждый человек хотя бы раз в жизни слышал о таком понятии, как мощность. Однако далеко не все люди знают, что это такое, и довольно часто путают это понятие со словом мощь. Сегодня речь пойдёт об этом понятии. Вы узнаете, в чём заключается смысл этой физической величины, и научитесь её рассчитывать. А главное — для чего нужно её рассчитывать. Поехали!

Начнём с определения мощности: это работа, выполненная за единицу времени. Причём неважно о какой работе идёт речь, электрической или механической. Эта физическая величина является показателем эффективности работы, а также количества энергии, потребляемой электрическим прибором.

В счета коммунальных услуг входят расходы за потребление электроэнергии. Её потребляют следующие бытовые приборы:

  1. Пылесос.
  2. Холодильник.
  3. Компьютер.
  4. Телевизор.
  5. Чайник.
  6. Плита.

Количество этих приборов гораздо больше. И каждый из них вносит свой вклад в формирование суммы за ваши коммунальные услуги.

Например, потребляемая мощность вашего пылесоса составляет 1 тыс. Ватт в час. Соответственно, если вы пылесосите 30 минут, он потребляет 500 ватт. Одна тысяча ватт в час равняется одному киловатту в час. Это общепринятая единица расчёта потребляемой энергии в коммунальных службах.

Например, за этот месяц вы пылесосили вашу квартиру 6 раз по полчаса. Соответственно, пылесос работал 3 часа и потребил из электросети 3 киловатта в час. Стоимость одного киловатта в час составляет 3 рубля. Это значит, что вам необходимо заплатить 9 рублей за энергию, которую потребил ваш пылесос во время уборки квартиры. По такому же принципу подсчитываются ваши траты с другими электроприборами.

Считать мощность необходимо для следующих целей:

  1. Оптимизация расходов за потребляемую электроэнергию.
  2. Обеспечения вашей безопасности.
  3. Оценки эффективности ваших работ.

Конечно, все эти расчёты производятся для разных видов этой физической величины. Всего их два:

  1. Электрическая.
  2. Механическая.

Давайте более подробно поговорим о каждом из них.

Электрическая мощность

Для подсчёта мощности нам понадобятся формулы закона Ома и знание трёх важнейших параметров.

Сила тока — электрический заряд, проходящий через поперечное сечение проводника в единицу времени. Эта величина является очень важной при расчёте мощности, так как в основе её расчёта лежит работа, совершенная в единицу времени.

Например, за 10 секунд через поперечное сечение проводника прошёл электрический заряд, равный 100 кулон. Для нахождения этой величины необходимо разделить заряд на время. Результат будет равен 10 ампер.

Сопротивление — величина, которая характеризует свойства проводника по препятствию прохождению электрического тока. Для управления напряжением в электрические цепи вводят элементы сопротивления — резисторы. Эта величина измеряется в Омах.

Напряжение — физическая величина, характеризующая работу по перемещению электрического заряда. Напряжение в цепи равно произведению тока и сопротивления в этой цепи.

Например, ток в цепи равен 10 ампер, а сопротивление равно 20 Ом. Соответственно, для нахождения напряжения перемножим эти показатели. В результате мы получаем 200 вольт.

Закон Ома связывает между собой три этих параметра, которые необходимы нам для расчёта электрической мощности. Давайте разберём три возможных варианта расчёта:

  1. Известны ток и напряжение.
  2. Известны ток и сопротивление.
  3. Известны сопротивление и напряжение.

Мощность равняется произведению напряжения и силы тока. Соответственно, если нам известны эти две величины, необходимо просто их перемножить. Например, ток в цепи 10 ампер, а напряжение равно 200 вольт. Соответственно, мощность равна 2 тыс. Ватт.

Если нам известно сопротивление и сила тока, то формула будет немного другой. Сначала найдём напряжение. Для этого необходимо перемножить силу тока и сопротивление. После этого полученный результат необходимо умножить на ток.

Соответственно, в этом случае напряжение равняется произведению сопротивления и силы тока в квадрате. Например, сопротивление равно 50 Ом, а сила тока равна 10 ампер. Нам необходимо умножить 50 на 10, а потом ещё раз на 10.

Получаем результат, равный 5 тыс. Ватт.

В случае с известными напряжением и сопротивлением нам придётся прибегнуть к делению. Согласно закону Ома, сила тока равна частному напряжения и сопротивления. Соответственно, в этом случае мощность равна напряжению в квадрате, делённому на сопротивление. Например, напряжение в цепи равно 100 вольт, а сопротивление равно 50 Ом. Нам необходимо возвести 100 во вторую степень, после чего разделить полученное число на 50. Получаем результат, равный 200 Ватт.

Механическая мощность

Механическая мощность не имеет отношения к электричеству. Здесь суть заключается в том, что работа выполняется под действием определённой силы. В основном это сила внешнего воздействия. Так, механическая мощность — это работа, выполняемая в единицу времени.

Например, кран поднимает тяжёлый груз. Для этого он прикладывает силу, которая по модулю больше, чем гравитационная сила. Давайте разберём два возможных случая расчёта:

  1. Груз поднимается с одинаковой скоростью.
  2. Груз поднимается с ускорением, равным 1 метру, делённым на секунду в квадрате.

Работа — это произведение силы и расстояния, на которое был перемещён объект под действием этой силы.

Предположим, что масса груза равна 50 килограмм. Так как груз движется с постоянной скоростью, его сила тяжести равна 500 ньютон. Кран поднял груз на высоту 100 метров. Соответственно, работа, которую совершил кран, равна произведению пятисот ньютон и ста метров. Получаем результат, равный 50 тыс. Джоулей.

Предположим, что кран осуществлял работу по подъёму груза в течение 50 секунд. Для расчёта его мощности разделим 50 тыс. джоулей на время, равное пятидесяти секундам, и получим 1 тыс. Джоулей. Так, за одну секунду кран тратил 1 тыс. джоулей энергии для совершения работы, а значит, его мощность равна 1 тыс. Ватт.

Давайте теперь рассмотрим случай, в котором груз поднимается с ускорением 1 метр, делённый на секунду в квадрате. В таком случае груз будет доставлен в точку назначения примерно за 13 секунд.

Для перемещения груза с таким ускорением, крану необходимо прикладывать силу, равную 550 ньютон. Перемножим значение этой силы на 100 метров. Получим 55 тыс. Джоулей. Это энергия, которую израсходовал кран для поднятия этого груза с ускорением на высоту 100 метров. Далее, разделим 55 тыс. Джоулей на 13 секунд и получим примерно 4200 Джоулей секунду. В случае с ускорением мощность работы крана составила 4200 Ватт.

При движении с ускорением кран выполняет работу гораздо быстрее. Соответственно, эффективность труда становится гораздо выше. Именно механическая мощность и является показателем этой эффективности.

От мощности зависит довольно много вещей в нашей жизни. Поэтому мы хотим дать вам несколько советов, которые помогут обезопасить и приукрасить её.

Для сокращения расходов необходимо их оптимизировать. Например, когда вы выходите из комнаты, можно выключать в ней свет. Это сократит потребление энергии, и в конце месяца вам придут счета с более приятными цифрами. Помимо выключения света, есть много других способов сократить количество потребляемой энергии.

Можно использовать электрические приборы, которые потребляют меньше мощности. Например, чистота в вашей квартире не станет хуже, если пользоваться пылесосом средней мощности. Это относится и к другим бытовым приборам. Главное, чтобы качество вашей жизни не ухудшилось. А это можно осуществить, пользуясь приборами средней мощности. Ведь они делают все необходимое и потребляют не так много энергии.

Если вы так и не поняли все детали расчёта мощности, не мучайте себя. Лучше воспользуйтесь онлайн-калькулятором или установите на ваш смартфон специальное приложения для её расчёта. Помните, в жизни важно экономить не только энергию, но и время.

Расчётами электрической мощности занимаются инженеры, которые разрабатывают бытовую технику. Они делают это для избежания короткого замыкания и пожаров. Помните, это нужно прежде всего для вашей безопасности.

Теперь вы знаете, как посчитать мощность, и в чём заключается суть этой физической величины. Выбирая бытовой прибор, вы будете иметь представление о том, какая мощность вам нужна для достижения той или иной цели. Успехов вам!

Источник: https://tokar.guru/hochu-vse-znat/raschet-moschnosti-potreblyaemoy-energii.html

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

Расчет тока

Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Однофазная сеть напряжением 220 В

Однофазная сеть напряжением 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

I = P / U,

где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);

U – напряжение электрической сети, В (вольт).

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В.

Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Трёхфазная сеть напряжением 380 В

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

При расчётах необходимо учитывать это явление. В мощных приборах и оборудовании доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Источник: https://elektro.guru/osnovy-elektrotehniki/raschet-velichiny-toka-po-moschnosti-i-napryazheniyu.html

Энергия и человек. Ряд случайных сравнений

Энергия и человек. Ряд случайных сравнений

В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами. В чем измеряется, энергия?

Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Человек в среднем потребляет около 2000 ккалорий в день, что дает около 2 кВт*ч или около 100 Ватт, средней мощности. Можно представить, что человек ест, как одна большая лампочка на накаливания на 100 Ватт.

Энергопотребление человека сравнительно небольшое по сравнению с приборами, которые нас окружают. Можно сказать, что человек произвел техническую революцию.

Человек принимает «в себя» меньше энергии, чем он использует «для себя» даже только в домашних условиях (средний расчет больше 100 кВт*ч в месяц).

Человек — вычислительная машина. 30 Вт

Человек — вычислительная машина. 30 Вт

Распространены оценки, что мозг съедает от 200 до 1000 Ккал (стрессовые ситуации), то есть от 20%-40% энергии, что дает оценку средней мощности 30 Вт. Мозг — крайне эффективная система.

Да современные ноутбуки производят операции гораздо лучше нас и средняя мощность находится около 30 Вт, а телефоны вообще 0.5-1 Вт.

Зато современные видеокарты потребляют в среднем от 250 Вт и все равно не могут сравниться с мозгом по скорости и точности обработки визуальной информации. Так что, человек очень неплохой процессор, правда только для специфических задач.

Человек — аккумулятор. 10 кВт*ч

Человек — аккумулятор. 10 кВт*ч

Говорят, человек может не есть 3-7 дней. Понятно, что не питаясь, человек начнет потреблять меньше энергии на внутренние и на внешние нужды. Можно положить, что съев двойную суточную норму, человек будет активен 2 дня (при наличии воды), что дает грубую оценку 10 кВт*ч.

Если посчитать, энергоемкость человека, то мы можем получить крайне разные цифры, вес людей, которые могут прожить N-е количество дней и произвести какую-то полезную работу, крайне разнится от 50 кг — 150 кг. Скорее всего, средняя энергоемкость равна 0.1 кВт*ч/кг, что не так и хорошо и не так плохо.

Мы находимся между бензином (10 кВт*ч/кг) и Liion (0.1 кВт*ч/кг), ближе к аккумуляторам.

Человек — потребитель солнечной энергии. 1-2 солнечные панели

Человек — потребитель солнечной энергии. 1-2 солнечные панели

Сегодняшняя солнечная панель дает около 300 Ватт в пике, в умеренных широтах средний КИУМ до 20% (солнце светит только днем и слабо).

Мы знаем, что человек недолговечный, но все-таки аккумулятор, поэтому в среднем 2 панелей достаточно, чтобы человек питался только солнцем.

Если отбросить условности и сделать небольшие прорывы в технологиях (использование дорогих элементов позволяет достигать до 40% КПД в панелях), человеку будет достаточно носить «солнечную одежду» для того, чтобы получать всю необходимую энергию.

Человек — обогреватель

Человек — обогреватель

Процитирую статью про одежду: в покое человеческое тело вырабатывает 80 ватт тепла, а теряет при этом за счет дыхания 10 ватт, теплового излучения — 30 ватт, теплопроводности и конвекции — 20 ватта, испарения влаги — 20 ватт. Получается человек крайне «слабый» обогреватель. Домашние обогреватели потребляют по 1 кВт и они покрывают нужды на обогрев только частично.

Подогрев воды и обогрев помещений в принципе является самым большим энергопотреблением домашнего хозяйства. Приведу свой годовой расклад: — Перемещение (транспорт, топливо): 8 000 кВт*ч за год. — Электричество: 2 500 кВт*ч за год. — Подогрев воды и обогрев: 30 000 кВт*ч за год.

Получается на средний ежедневный подогрев воды и обогрев уходит до 100 кВт*ч в день, что в 50 раз больше, чем человек в принципе потребляет.

Человек — средство передвижения (автомобиль, пешеход, велосипед)

Человек — средство передвижения (автомобиль, пешеход, велосипед)

Человек как активное живое существо может перемещаться в пространстве. Допустим человек может переместиться на 30 км за день пешком и на 120 км за день на велосипеде. Это не максимальные значения, конечно, спортсмены пробегают до 100 км и проезжают до 1000 км за день. Попробуем сравнить человека как эффективную систему передвижения человека.

— Автомобиль с ДВС тратит в среднем 5 л на 100 км, 1 литр = 10 кВт*ч, что дает 500 Втч на км

— Электромобиль — 150-200 Вт*ч на км
— Пешеход — 2 кВт*ч разделить на 10-50 км, 50-200 Вт*ч на км
— Медленный/маленький электромобиль — 50-100 Вт*ч на км
— Электровелосипед — 10 Вт*ч/км (средняя скорость 10-15 кмч)
— Велосипедист — 2 кВт*ч разделить на 100-1000 км, 2-20 Вт*ч на км Знаете еще интересные совпадения — пишите в комментариях.

Спасибо за внимание.

Источник: https://habr.com/post/373741/

Как найти мощность, зная напряжение, ток и сопротивление

Как найти мощность, зная напряжение, ток и сопротивление

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы.

Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи.

Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи.

Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования.

Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации.

Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто.

Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно.

Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними.

Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

Источник: https://www.asutpp.ru/kak-nayti-moschnost.html

Расчет электрических цепей онлайн и основная формула расчета

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

https://www.youtube.com/watch?v=rPVKb_leXus\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Онлайн расчет:

Формула расчета сечения провода и как определяется сечение провода

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

I=P/U=2000/220В = 9А

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

 — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ

 — ЗАЩИТНОЕ ЗАНУЛЕНИЕ

 — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!

 — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ

 Автор — Антон Писарев

Источник: http://moydomik.info/load/sistemy/ehlektrosnabzhenie/raschet_ehlektricheskikh_cepej_onlajn_opredelenie_naprjazhenija_toka_moshhnosti_i_sechenija_provodnika/26-1-0-132

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q.

Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I.

Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

Производительность постоянного тока

В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.

Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.

Мощность переменной сети

Мощность переменной сети

Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.

В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:

  1. Активная.
  2. Реактивная.
  3. Полная.

Активный компонент

Активный компонент

Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.

В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.

Реверсивные потери

Реверсивные потери

Для работы конденсаторов, катушек индуктивности, обмоток электродвигателей затрачивается сила сети. Из-за физических свойств таких устройств энергия, которая определяется реактивной мощностью, возвращается в цепь. Величина отдачи рассчитывается при помощи уравнения: V = U ∙ I ∙ sin ϕ.

Единицей измерения принят ватт. Возможно использование внесистемной меры подсчёта var, название которой составлено из английских слов volt, amper, reaction. Перевод на русский язык соответственно означает «вольт», «ампер», «обратное действие».

Если напряжение опережает ток, то смещение фаз считается больше нуля. В противном случае сдвиг фаз отрицательный. В зависимости от значения sin ϕ реактивная составляющая носит положительный или отрицательный характер. Присутствие в цепи индуктивной нагрузки позволяет говорить о реверсивной части больше нуля, а подключённый прибор потребляет энергию. Использование конденсаторов делает реактивную производительность минусовой, и устройство добавляет энергию в сеть.

Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.

В полную силу

В полную силу

Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).

С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.

Критерий полезности

Критерий полезности

Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.

В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.

Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/kak-nayti-elektricheskuyu-moschnost-formula-rascheta.html

IndustrialCraft 2/Энергия

IndustrialCraft 2/Энергия

Энергия — новый элемент геймплея, добавляемый модификацией IndustrialCraft². Энергия вырабатывается несколькими видами генераторов, на ней работают многие устройства и инструменты.

Энергия[править | править код]

Энергия[править | править код]

Изначально, энергия запасена тем или иным образом в окружающем мире. Генераторы превращают эту энергию в электричество. Энергия, в том числе электрическая, измеряется в еЭ, единицах Энергии (англ. EU, Energy Unit).

Близкой по смыслу единицей из жизни является джоуль (Дж).

Энергия извлекается из топлива или окружающей среды генераторами и может накапливаться в устройствах и инструментах, некоторые из которых могут отдавать её снова, некоторые — расходуют на работу.

Мощность и пакеты[править | править код]

Мощность и пакеты[править | править код]

Мощность, производная энергии по времени, характеризует количество энергии, производимой, передаваемой или потребляемой за определённое время.

https://www.youtube.com/watch?v=kRH0v9_wT-M\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Измеряется в еЭ/т, единицах Энергии за такт (англ. EU/t, Energy Unit per tick), где такт — внутриигровая единица времени, равная 1/20 секунды (50 мс). Аналог еЭ/т в реальной жизни — Ватт (Вт). В игре энергия вырабатывается и передаётся пакетами, имеющими определённый размер в еЭ.

Каждый такт происходит следующее:

  • Генераторы и энергохранилища посылают пакеты, равные их выходной мощности;
  • Провода проверяют пакеты на предмет возможности их провести, и взрываются, если хотя бы один из пакетов превышает допустимый размер;
  • Понижающие трансформаторы получают пакет, делят его на пакеты меньшего размера и отправляют все меньшие пакеты сразу;
  • Повышающие трансформаторы получают пакет и, если накоплено достаточно еЭ, передают дальше большой пакет, иначе продолжают копить;
  • Устройства и энергохранилища получают пакеты и отправляют их на совершение работы или во внутреннее хранилище, если размер пакета входит в рабочий диапазон, если пакет больше — взрываются.

Количество пакетов и их суммарный размер никак не ограничиваются. Таким образом, общее количество передаваемой и принимаемой энергии может быть много больше максимально допустимого размера пакета. Так, например, три энергохранителя, питающие через один медный провод дробитель, передают в сумме 96 еЭ/т, но ни провод, ни дробитель не взорвутся, поскольку энергия будет передана тремя пакетами по 32 еЭ каждый, по одному с каждого энергохранителя.

Зачастую, размер пакетов, особенно максимально допустимый, называют напряжением, однако с физической точки зрения это название некорректно.

Практическое применение проводов[править | править код]

Практическое применение проводов[править | править код]

Задача: минимизировать потери энергии, минимизировать расход ценных ресурсов (в первую очередь, алмазов). Резина, несмотря на хлопотность её получения, к ценным ресурсам не относится, поэтому неизолированные провода из рассмотрения исключены.

Вам понадобится много резины, так что заведите себе рощу из десятка гевей, поставьте рядом сундук, в него — инструмент и собирайте урожай каждый раз, когда проходите мимо, либо выведите путём селекции резиновый тростник и, желательно, установите сборщик урожая, не забыв при этом положить в него агроанализатор, в противном случае он не даст вырасти резиновому тростнику и будет собирать в ранней стадии, не дающей латекс.

НазваниеОписаниемакс. напряжение, еЭ на пакетпотери за каждый блок, еЭ на пакетбез потерь, блоковпотери при передаче на N блоков при максимальном напряжении, %103550100500Оловянный провод Изолированный медный провод Золотой провод с двойной изоляцией Высоковольтный провод с тройной изоляцией Высоковольтный провод с тройной изоляцией в режиме 512 еЭ Стекловолоконный провод
Самый дешёвый вид проводов, и предназначены они для передачи малого количества энергии на средние расстояния без потерь. 32 0.025 39 20 % 40 %
Применяется для запитывания мастерских до тех пор, пока вы не захотите использовать больше 5 ускорителей.[1] 128 0,2 4 6,3 % 21,9 % 31,3 % 62,5 %
Применяется для запитывания мастерских (индукционная печь + все остальные машины с 1 улучшением «Трансформатор» и 6-7 ускорителями) если только вы не купаетесь в алмазах. 512 0,4 2 3,1 % 10,9 % 15,6 % 31,3 %
Если вам нужно передать энергию за горизонт и у вас нет лишней стопки алмазов — высоковольтный провод с тройной изоляцией ваш друг. Не забудьте принести резину. Если у вас вообще нет алмазов — вам придётся применять его в режиме пакетов по 512 еЭ, см следующую строчку. Если у вас есть очень много алмазов — лучше сделайте стекловолокно. Если у вас есть два алмаза — сделайте пару трансформаторов высокого напряжения поставьте их на концах своей линии электропередач. 2048 0,8 1 0,4 % 1,4 % 2,0 % 3,9 % 19,5 %
Параметры при неиспользовании трансформаторов высокого напряжения 512 0,8 1 1,6 % 5,5 % 7,8 % 14,6 % 78,1 %
Лучший выбор, если вы хороший шахтер или у вас есть раскапывающее устройство (карьер или черепашка с киркой из ComputerCraft) 8192 0,025 39 0,2 % 0,4 % 2,3 %

Примечания[править | править код]

Как найти мощность тока — формулы с примерами расчетов

Как найти мощность через энергию
В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел.

В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач.

Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U2/R

Также можно выполнить расчет, зная ток и сопротивление:

P=I2*R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Источник: https://samelectrik.ru/kak-najti-moshhnost-toka.html

Формула мощности

Как найти мощность через энергию

> Теория > Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

1Вт=1Дж/1с.

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

1Вт=1А*1В.

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

P=U*I=I*I*R=(U*U)/R, где:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Формула механической мощности

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

P=U*I.

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

I=P/U.

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

P=U*I

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Ракт=Робщ*cosφ=U*I*cosφ.

Соответственно, Робщ=Ракт/cosφ.

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Uлин=Uф√3.

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

P=U*I*√3.

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

P=U*I*√3*cosφ.

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

I=P/(U*√3*cosφ).

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

I=3000/(380*√3*0,7)=5,8А.

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Расчет мощности трехфазной сети

Источник: https://elquanta.ru/teoriya/formula-moshhnosti.html

Как найти мощность — формулы для расчета

Как найти мощность через энергию

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства.

Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

Активное и реактивное сопротивление

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах.

Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток.

Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Опыт Эрстеда: магнитное поле тока

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Источник: https://electric-220.ru/news/kak_najti_moshhnost/2018-08-28-1554

Потребляемая мощность: расчет мощности в ваттах, в чем измеряется, формула

Любой бытовой прибор работает при помощи электроэнергии. Электричество может поступать из электросети через розетку, от батарейки или аккумулятора. При этом важной характеристикой техники становится его мощность. Как определить потребляемую мощность электроприбора и рассчитать ее?

Что это такое

Мощность — это физическая величина, которая равна скорости передачи или потребления энергии системой. Второе значение — отношение работы к промежутку времени, за который она была выполнена.

Большая часть бытовых приборов работает от электросети

Потребляемая бытовым прибором мощность — это количество электроэнергии, которая необходимо прибору для функционирования. Если устройство статично (неподвижно, например, телефон, лампа, плита), энергия преобразуется в тепло или свет, если устройство двигается (например, двигатель), ток преобразуется в механическую энергию.

Правильное определение мощности необходимо при планировании электросети, количества разветвлений и розеток (нужны ли дополнительные розетки, можно ли запитать несколько приборов от одной), при выборе защитных автоматов, при определении затрат на электричество (сколько тока будут потреблять все приборы).

Излишек приборов, подключенных к одной розетке, может привести к пожару.

В чем измеряется потребляемая мощность

Количество потраченного тока измеряется в Ваттах (Вт) или Вольт-Амперах (ВА). Измерение в Вольт-Амперах часто встречается у зарубежных производителей, в Ваттах — у российских.

Важно! Часто указывают не Ватты (Вт) или Вольт-Амперы (ВА), а килоВатты (кВт) и килоВольт-Амперы (кВА) — тысяча Ватт и тысяча Вольт-Ампер.

Многие считают, что Вт и ВА — это равные величины, но это не так. В Ваттах измеряется активная мощность (количество потребляемой энергии, обозначается буквой «Р»), в Вольт-Амперах — полная (сумма активной и пассивной мощностей, обозначается «S»). То есть эти величины не равны, приравнивать Ватты к Вальт-Амперам нельзя.

Необходимы значения могут быть указаны прямо на технике

Для перевода необходимо воспользоваться формулой:

Р = S*коэффициент мощности.

Если коэффициент неизвестен, его принимают за 0,8 (0,8-0,95 — хорошее значение, 0,65-0,8 — удовлетворительное).

При подсчете также можно воспользоваться онлайн-калькуляторами. Если использовать формулу не получится, можно приблизительно приравнять: 1 кВА = 0,7 кВт.

Особенности определения мощности сети

Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.

Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:

  • В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
  • Мощность подключаемых приборов измеряется в Ваттах.

Информация на электроприборе может быть обозначена по-разному

Как высчитать мощность электричества? Для вычисления потребуется формула:

Р = U*I, где:

P — мощность,

U — напряжение в Вольтах,

I — сила тока в Амперах.

Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.

Для определения силы тока в розетке стоит использовать мультиметр

Как узнать мощность прибора

Сделать это можно несколькими способами:

  • Посмотреть в техническом паспорте или на специальной наклейке (шильдике) на устройстве. Последний обычно располагается на задней стенке или основании.
  • Посмотреть по модели прибора характеристики в интернете.
  • При помощи счетчика электроэнергии. Необходимо выключить все прочие потребители тока, замерить показатель, затем включить нужное устройство и подождать 15 минут. Затем вновь замерить показатель и полученную разницу умножить на 4. В итоге получится потребление тока за час.

При помощи счетчика можно измерять примерную мощность

  • При помощи закона Ома: P = U2 /R, где U — напряжение в 230 В, а R — сопротивление, которое необходимо измерить тестером.
  • Ваттметром: это измеритель, который представляет собой «переходник» между розеткой и прибором. При включении на индикаторе появится точное значение.

Производитель обычно указывает максимальную мощность — больше этого значения оборудование потреблять не будет. В обычном состоянии устройству требуется меньше энергии, при расчете стоит брать максимальное значение.

При самостоятельном определении получится среднее число — столько в среднем потребляет техника. Это число стоит немного увеличить, чтобы остался небольшой запас.

При определении при помощи ваттметра цифра получается крайне точной — столько тока в конкретный момент потребляет прибор. Значение также стоит немного увеличить.

Ваттметр позволяет точно определить количество электричества

Потребляемая мощность техники — это важная величина, которая показывает, сколько электроэнергии потребляется. Эта величина необходима для правильной и безопасной эксплуатации электросети: при несовпадении мощности прибора и розетки возможно короткое замыкание или пожар.

Вам это будет интересно  Особенности статического электричества

Источник: https://rusenergetics.ru/polezno-znat/potreblyaemaya-moschnost

Расчет мощности потребляемой энергии: определение, формула и варианты

Наверняка каждый человек хотя бы раз в жизни слышал о таком понятии, как мощность. Однако далеко не все люди знают, что это такое, и довольно часто путают это понятие со словом мощь. Сегодня речь пойдёт об этом понятии. Вы узнаете, в чём заключается смысл этой физической величины, и научитесь её рассчитывать. А главное — для чего нужно её рассчитывать. Поехали!

Начнём с определения мощности: это работа, выполненная за единицу времени. Причём неважно о какой работе идёт речь, электрической или механической. Эта физическая величина является показателем эффективности работы, а также количества энергии, потребляемой электрическим прибором.

В счета коммунальных услуг входят расходы за потребление электроэнергии. Её потребляют следующие бытовые приборы:

  1. Пылесос.
  2. Холодильник.
  3. Компьютер.
  4. Телевизор.
  5. Чайник.
  6. Плита.

Количество этих приборов гораздо больше. И каждый из них вносит свой вклад в формирование суммы за ваши коммунальные услуги.

Например, потребляемая мощность вашего пылесоса составляет 1 тыс. Ватт в час. Соответственно, если вы пылесосите 30 минут, он потребляет 500 ватт. Одна тысяча ватт в час равняется одному киловатту в час. Это общепринятая единица расчёта потребляемой энергии в коммунальных службах.

Например, за этот месяц вы пылесосили вашу квартиру 6 раз по полчаса. Соответственно, пылесос работал 3 часа и потребил из электросети 3 киловатта в час. Стоимость одного киловатта в час составляет 3 рубля. Это значит, что вам необходимо заплатить 9 рублей за энергию, которую потребил ваш пылесос во время уборки квартиры. По такому же принципу подсчитываются ваши траты с другими электроприборами.

Считать мощность необходимо для следующих целей:

  1. Оптимизация расходов за потребляемую электроэнергию.
  2. Обеспечения вашей безопасности.
  3. Оценки эффективности ваших работ.

Конечно, все эти расчёты производятся для разных видов этой физической величины. Всего их два:

  1. Электрическая.
  2. Механическая.

Давайте более подробно поговорим о каждом из них.

Электрическая мощность

Для подсчёта мощности нам понадобятся формулы закона Ома и знание трёх важнейших параметров.

Сила тока — электрический заряд, проходящий через поперечное сечение проводника в единицу времени. Эта величина является очень важной при расчёте мощности, так как в основе её расчёта лежит работа, совершенная в единицу времени.

Например, за 10 секунд через поперечное сечение проводника прошёл электрический заряд, равный 100 кулон. Для нахождения этой величины необходимо разделить заряд на время. Результат будет равен 10 ампер.

Сопротивление — величина, которая характеризует свойства проводника по препятствию прохождению электрического тока. Для управления напряжением в электрические цепи вводят элементы сопротивления — резисторы. Эта величина измеряется в Омах.

Напряжение — физическая величина, характеризующая работу по перемещению электрического заряда. Напряжение в цепи равно произведению тока и сопротивления в этой цепи.

Например, ток в цепи равен 10 ампер, а сопротивление равно 20 Ом. Соответственно, для нахождения напряжения перемножим эти показатели. В результате мы получаем 200 вольт.

Закон Ома связывает между собой три этих параметра, которые необходимы нам для расчёта электрической мощности. Давайте разберём три возможных варианта расчёта:

  1. Известны ток и напряжение.
  2. Известны ток и сопротивление.
  3. Известны сопротивление и напряжение.

Мощность равняется произведению напряжения и силы тока. Соответственно, если нам известны эти две величины, необходимо просто их перемножить. Например, ток в цепи 10 ампер, а напряжение равно 200 вольт. Соответственно, мощность равна 2 тыс. Ватт.

Если нам известно сопротивление и сила тока, то формула будет немного другой. Сначала найдём напряжение. Для этого необходимо перемножить силу тока и сопротивление. После этого полученный результат необходимо умножить на ток.

Соответственно, в этом случае напряжение равняется произведению сопротивления и силы тока в квадрате. Например, сопротивление равно 50 Ом, а сила тока равна 10 ампер. Нам необходимо умножить 50 на 10, а потом ещё раз на 10.

Получаем результат, равный 5 тыс. Ватт.

В случае с известными напряжением и сопротивлением нам придётся прибегнуть к делению. Согласно закону Ома, сила тока равна частному напряжения и сопротивления. Соответственно, в этом случае мощность равна напряжению в квадрате, делённому на сопротивление. Например, напряжение в цепи равно 100 вольт, а сопротивление равно 50 Ом. Нам необходимо возвести 100 во вторую степень, после чего разделить полученное число на 50. Получаем результат, равный 200 Ватт.

Механическая мощность

Механическая мощность не имеет отношения к электричеству. Здесь суть заключается в том, что работа выполняется под действием определённой силы. В основном это сила внешнего воздействия. Так, механическая мощность — это работа, выполняемая в единицу времени.

Например, кран поднимает тяжёлый груз. Для этого он прикладывает силу, которая по модулю больше, чем гравитационная сила. Давайте разберём два возможных случая расчёта:

  1. Груз поднимается с одинаковой скоростью.
  2. Груз поднимается с ускорением, равным 1 метру, делённым на секунду в квадрате.

Работа — это произведение силы и расстояния, на которое был перемещён объект под действием этой силы.

Предположим, что масса груза равна 50 килограмм. Так как груз движется с постоянной скоростью, его сила тяжести равна 500 ньютон. Кран поднял груз на высоту 100 метров. Соответственно, работа, которую совершил кран, равна произведению пятисот ньютон и ста метров. Получаем результат, равный 50 тыс. Джоулей.

Предположим, что кран осуществлял работу по подъёму груза в течение 50 секунд. Для расчёта его мощности разделим 50 тыс. джоулей на время, равное пятидесяти секундам, и получим 1 тыс. Джоулей. Так, за одну секунду кран тратил 1 тыс. джоулей энергии для совершения работы, а значит, его мощность равна 1 тыс. Ватт.

Давайте теперь рассмотрим случай, в котором груз поднимается с ускорением 1 метр, делённый на секунду в квадрате. В таком случае груз будет доставлен в точку назначения примерно за 13 секунд.

Для перемещения груза с таким ускорением, крану необходимо прикладывать силу, равную 550 ньютон. Перемножим значение этой силы на 100 метров. Получим 55 тыс. Джоулей. Это энергия, которую израсходовал кран для поднятия этого груза с ускорением на высоту 100 метров. Далее, разделим 55 тыс. Джоулей на 13 секунд и получим примерно 4200 Джоулей секунду. В случае с ускорением мощность работы крана составила 4200 Ватт.

При движении с ускорением кран выполняет работу гораздо быстрее. Соответственно, эффективность труда становится гораздо выше. Именно механическая мощность и является показателем этой эффективности.

От мощности зависит довольно много вещей в нашей жизни. Поэтому мы хотим дать вам несколько советов, которые помогут обезопасить и приукрасить её.

Для сокращения расходов необходимо их оптимизировать. Например, когда вы выходите из комнаты, можно выключать в ней свет. Это сократит потребление энергии, и в конце месяца вам придут счета с более приятными цифрами. Помимо выключения света, есть много других способов сократить количество потребляемой энергии.

Можно использовать электрические приборы, которые потребляют меньше мощности. Например, чистота в вашей квартире не станет хуже, если пользоваться пылесосом средней мощности. Это относится и к другим бытовым приборам. Главное, чтобы качество вашей жизни не ухудшилось. А это можно осуществить, пользуясь приборами средней мощности. Ведь они делают все необходимое и потребляют не так много энергии.

Если вы так и не поняли все детали расчёта мощности, не мучайте себя. Лучше воспользуйтесь онлайн-калькулятором или установите на ваш смартфон специальное приложения для её расчёта. Помните, в жизни важно экономить не только энергию, но и время.

Расчётами электрической мощности занимаются инженеры, которые разрабатывают бытовую технику. Они делают это для избежания короткого замыкания и пожаров. Помните, это нужно прежде всего для вашей безопасности.

Теперь вы знаете, как посчитать мощность, и в чём заключается суть этой физической величины. Выбирая бытовой прибор, вы будете иметь представление о том, какая мощность вам нужна для достижения той или иной цели. Успехов вам!

Источник: https://tokar.guru/hochu-vse-znat/raschet-moschnosti-potreblyaemoy-energii.html

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Однофазная сеть напряжением 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

I = P / U,

где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);

U – напряжение электрической сети, В (вольт).

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В.

Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

При расчётах необходимо учитывать это явление. В мощных приборах и оборудовании доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Источник: https://elektro.guru/osnovy-elektrotehniki/raschet-velichiny-toka-po-moschnosti-i-napryazheniyu.html

Энергия и человек. Ряд случайных сравнений

В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами. В чем измеряется, энергия?

Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Человек в среднем потребляет около 2000 ккалорий в день, что дает около 2 кВт*ч или около 100 Ватт, средней мощности. Можно представить, что человек ест, как одна большая лампочка на накаливания на 100 Ватт.

Энергопотребление человека сравнительно небольшое по сравнению с приборами, которые нас окружают. Можно сказать, что человек произвел техническую революцию.

Человек принимает «в себя» меньше энергии, чем он использует «для себя» даже только в домашних условиях (средний расчет больше 100 кВт*ч в месяц).

Человек — вычислительная машина. 30 Вт

Распространены оценки, что мозг съедает от 200 до 1000 Ккал (стрессовые ситуации), то есть от 20%-40% энергии, что дает оценку средней мощности 30 Вт. Мозг — крайне эффективная система.

Да современные ноутбуки производят операции гораздо лучше нас и средняя мощность находится около 30 Вт, а телефоны вообще 0.5-1 Вт.

Зато современные видеокарты потребляют в среднем от 250 Вт и все равно не могут сравниться с мозгом по скорости и точности обработки визуальной информации. Так что, человек очень неплохой процессор, правда только для специфических задач.

Человек — аккумулятор. 10 кВт*ч

Говорят, человек может не есть 3-7 дней. Понятно, что не питаясь, человек начнет потреблять меньше энергии на внутренние и на внешние нужды. Можно положить, что съев двойную суточную норму, человек будет активен 2 дня (при наличии воды), что дает грубую оценку 10 кВт*ч.

Если посчитать, энергоемкость человека, то мы можем получить крайне разные цифры, вес людей, которые могут прожить N-е количество дней и произвести какую-то полезную работу, крайне разнится от 50 кг — 150 кг. Скорее всего, средняя энергоемкость равна 0.1 кВт*ч/кг, что не так и хорошо и не так плохо.

Мы находимся между бензином (10 кВт*ч/кг) и Liion (0.1 кВт*ч/кг), ближе к аккумуляторам.

Человек — потребитель солнечной энергии. 1-2 солнечные панели

Сегодняшняя солнечная панель дает около 300 Ватт в пике, в умеренных широтах средний КИУМ до 20% (солнце светит только днем и слабо).

Мы знаем, что человек недолговечный, но все-таки аккумулятор, поэтому в среднем 2 панелей достаточно, чтобы человек питался только солнцем.

Если отбросить условности и сделать небольшие прорывы в технологиях (использование дорогих элементов позволяет достигать до 40% КПД в панелях), человеку будет достаточно носить «солнечную одежду» для того, чтобы получать всю необходимую энергию.

Человек — обогреватель

Процитирую статью про одежду: в покое человеческое тело вырабатывает 80 ватт тепла, а теряет при этом за счет дыхания 10 ватт, теплового излучения — 30 ватт, теплопроводности и конвекции — 20 ватта, испарения влаги — 20 ватт. Получается человек крайне «слабый» обогреватель. Домашние обогреватели потребляют по 1 кВт и они покрывают нужды на обогрев только частично.

Подогрев воды и обогрев помещений в принципе является самым большим энергопотреблением домашнего хозяйства. Приведу свой годовой расклад: — Перемещение (транспорт, топливо): 8 000 кВт*ч за год. — Электричество: 2 500 кВт*ч за год. — Подогрев воды и обогрев: 30 000 кВт*ч за год.

Получается на средний ежедневный подогрев воды и обогрев уходит до 100 кВт*ч в день, что в 50 раз больше, чем человек в принципе потребляет.

Человек — средство передвижения (автомобиль, пешеход, велосипед)

Человек как активное живое существо может перемещаться в пространстве. Допустим человек может переместиться на 30 км за день пешком и на 120 км за день на велосипеде. Это не максимальные значения, конечно, спортсмены пробегают до 100 км и проезжают до 1000 км за день. Попробуем сравнить человека как эффективную систему передвижения человека.

— Автомобиль с ДВС тратит в среднем 5 л на 100 км, 1 литр = 10 кВт*ч, что дает 500 Втч на км

— Электромобиль — 150-200 Вт*ч на км
— Пешеход — 2 кВт*ч разделить на 10-50 км, 50-200 Вт*ч на км
— Медленный/маленький электромобиль — 50-100 Вт*ч на км
— Электровелосипед — 10 Вт*ч/км (средняя скорость 10-15 кмч)
— Велосипедист — 2 кВт*ч разделить на 100-1000 км, 2-20 Вт*ч на км Знаете еще интересные совпадения — пишите в комментариях.

Спасибо за внимание.

Источник: https://habr.com/post/373741/

Как найти мощность, зная напряжение, ток и сопротивление

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы.

Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи.

Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи.

Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования.

Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации.

Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто.

Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно.

Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними.

Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

Источник: https://www.asutpp.ru/kak-nayti-moschnost.html

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

https://www.youtube.com/watch?v=rPVKb_leXus\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Онлайн расчет:

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

I=P/U=2000/220В = 9А

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

 — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ

 — ЗАЩИТНОЕ ЗАНУЛЕНИЕ

 — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!

 — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ

 Автор — Антон Писарев

Источник: http://moydomik.info/load/sistemy/ehlektrosnabzhenie/raschet_ehlektricheskikh_cepej_onlajn_opredelenie_naprjazhenija_toka_moshhnosti_i_sechenija_provodnika/26-1-0-132

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q.

Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I.

Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.

Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.

Мощность переменной сети

Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.

В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:

  1. Активная.
  2. Реактивная.
  3. Полная.

Активный компонент

Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.

В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.

Реверсивные потери

Для работы конденсаторов, катушек индуктивности, обмоток электродвигателей затрачивается сила сети. Из-за физических свойств таких устройств энергия, которая определяется реактивной мощностью, возвращается в цепь. Величина отдачи рассчитывается при помощи уравнения: V = U ∙ I ∙ sin ϕ.

Единицей измерения принят ватт. Возможно использование внесистемной меры подсчёта var, название которой составлено из английских слов volt, amper, reaction. Перевод на русский язык соответственно означает «вольт», «ампер», «обратное действие».

Если напряжение опережает ток, то смещение фаз считается больше нуля. В противном случае сдвиг фаз отрицательный. В зависимости от значения sin ϕ реактивная составляющая носит положительный или отрицательный характер. Присутствие в цепи индуктивной нагрузки позволяет говорить о реверсивной части больше нуля, а подключённый прибор потребляет энергию. Использование конденсаторов делает реактивную производительность минусовой, и устройство добавляет энергию в сеть.

Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.

В полную силу

Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).

С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.

Критерий полезности

Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.

В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.

Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/kak-nayti-elektricheskuyu-moschnost-formula-rascheta.html

IndustrialCraft 2/Энергия

Энергия — новый элемент геймплея, добавляемый модификацией IndustrialCraft². Энергия вырабатывается несколькими видами генераторов, на ней работают многие устройства и инструменты.

Энергия[править | править код]

Изначально, энергия запасена тем или иным образом в окружающем мире. Генераторы превращают эту энергию в электричество. Энергия, в том числе электрическая, измеряется в еЭ, единицах Энергии (англ. EU, Energy Unit).

Близкой по смыслу единицей из жизни является джоуль (Дж).

Энергия извлекается из топлива или окружающей среды генераторами и может накапливаться в устройствах и инструментах, некоторые из которых могут отдавать её снова, некоторые — расходуют на работу.

Мощность и пакеты[править | править код]

Мощность, производная энергии по времени, характеризует количество энергии, производимой, передаваемой или потребляемой за определённое время.

https://www.youtube.com/watch?v=kRH0v9_wT-M\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Измеряется в еЭ/т, единицах Энергии за такт (англ. EU/t, Energy Unit per tick), где такт — внутриигровая единица времени, равная 1/20 секунды (50 мс). Аналог еЭ/т в реальной жизни — Ватт (Вт). В игре энергия вырабатывается и передаётся пакетами, имеющими определённый размер в еЭ.

Каждый такт происходит следующее:

  • Генераторы и энергохранилища посылают пакеты, равные их выходной мощности;
  • Провода проверяют пакеты на предмет возможности их провести, и взрываются, если хотя бы один из пакетов превышает допустимый размер;
  • Понижающие трансформаторы получают пакет, делят его на пакеты меньшего размера и отправляют все меньшие пакеты сразу;
  • Повышающие трансформаторы получают пакет и, если накоплено достаточно еЭ, передают дальше большой пакет, иначе продолжают копить;
  • Устройства и энергохранилища получают пакеты и отправляют их на совершение работы или во внутреннее хранилище, если размер пакета входит в рабочий диапазон, если пакет больше — взрываются.

Количество пакетов и их суммарный размер никак не ограничиваются. Таким образом, общее количество передаваемой и принимаемой энергии может быть много больше максимально допустимого размера пакета. Так, например, три энергохранителя, питающие через один медный провод дробитель, передают в сумме 96 еЭ/т, но ни провод, ни дробитель не взорвутся, поскольку энергия будет передана тремя пакетами по 32 еЭ каждый, по одному с каждого энергохранителя.

Зачастую, размер пакетов, особенно максимально допустимый, называют напряжением, однако с физической точки зрения это название некорректно.

Практическое применение проводов[править | править код]

Задача: минимизировать потери энергии, минимизировать расход ценных ресурсов (в первую очередь, алмазов). Резина, несмотря на хлопотность её получения, к ценным ресурсам не относится, поэтому неизолированные провода из рассмотрения исключены.

Вам понадобится много резины, так что заведите себе рощу из десятка гевей, поставьте рядом сундук, в него — инструмент и собирайте урожай каждый раз, когда проходите мимо, либо выведите путём селекции резиновый тростник и, желательно, установите сборщик урожая, не забыв при этом положить в него агроанализатор, в противном случае он не даст вырасти резиновому тростнику и будет собирать в ранней стадии, не дающей латекс.

НазваниеОписаниемакс. напряжение, еЭ на пакетпотери за каждый блок, еЭ на пакетбез потерь, блоковпотери при передаче на N блоков при максимальном напряжении, %103550100500Оловянный провод Изолированный медный провод Золотой провод с двойной изоляцией Высоковольтный провод с тройной изоляцией Высоковольтный провод с тройной изоляцией в режиме 512 еЭ Стекловолоконный провод
Самый дешёвый вид проводов, и предназначены они для передачи малого количества энергии на средние расстояния без потерь. 32 0.025 39 20 % 40 %
Применяется для запитывания мастерских до тех пор, пока вы не захотите использовать больше 5 ускорителей.[1] 128 0,2 4 6,3 % 21,9 % 31,3 % 62,5 %
Применяется для запитывания мастерских (индукционная печь + все остальные машины с 1 улучшением «Трансформатор» и 6-7 ускорителями) если только вы не купаетесь в алмазах. 512 0,4 2 3,1 % 10,9 % 15,6 % 31,3 %
Если вам нужно передать энергию за горизонт и у вас нет лишней стопки алмазов — высоковольтный провод с тройной изоляцией ваш друг. Не забудьте принести резину. Если у вас вообще нет алмазов — вам придётся применять его в режиме пакетов по 512 еЭ, см следующую строчку. Если у вас есть очень много алмазов — лучше сделайте стекловолокно. Если у вас есть два алмаза — сделайте пару трансформаторов высокого напряжения поставьте их на концах своей линии электропередач. 2048 0,8 1 0,4 % 1,4 % 2,0 % 3,9 % 19,5 %
Параметры при неиспользовании трансформаторов высокого напряжения 512 0,8 1 1,6 % 5,5 % 7,8 % 14,6 % 78,1 %
Лучший выбор, если вы хороший шахтер или у вас есть раскапывающее устройство (карьер или черепашка с киркой из ComputerCraft) 8192 0,025 39 0,2 % 0,4 % 2,3 %

Как найти мощность тока — формулы с примерами расчетов

Как найти мощность через энергию
В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел.

В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач.

Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U2/R

Также можно выполнить расчет, зная ток и сопротивление:

P=I2*R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Источник: https://samelectrik.ru/kak-najti-moshhnost-toka.html

Формула мощности

Как найти мощность через энергию

> Теория > Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

1Вт=1Дж/1с.

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

1Вт=1А*1В.

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

P=U*I=I*I*R=(U*U)/R, где:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Формула механической мощности

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

P=U*I.

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

I=P/U.

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

P=U*I

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Ракт=Робщ*cosφ=U*I*cosφ.

Соответственно, Робщ=Ракт/cosφ.

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Uлин=Uф√3.

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

P=U*I*√3.

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

P=U*I*√3*cosφ.

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

I=P/(U*√3*cosφ).

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

I=3000/(380*√3*0,7)=5,8А.

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Расчет мощности трехфазной сети

Источник: https://elquanta.ru/teoriya/formula-moshhnosti.html

Как найти мощность — формулы для расчета

Как найти мощность через энергию

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства.

Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

Активное и реактивное сопротивление

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах.

Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток.

Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Опыт Эрстеда: магнитное поле тока

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Источник: https://electric-220.ru/news/kak_najti_moshhnost/2018-08-28-1554

Потребляемая мощность: расчет мощности в ваттах, в чем измеряется, формула

Любой бытовой прибор работает при помощи электроэнергии. Электричество может поступать из электросети через розетку, от батарейки или аккумулятора. При этом важной характеристикой техники становится его мощность. Как определить потребляемую мощность электроприбора и рассчитать ее?

Что это такое

Мощность — это физическая величина, которая равна скорости передачи или потребления энергии системой. Второе значение — отношение работы к промежутку времени, за который она была выполнена.

Большая часть бытовых приборов работает от электросети

Потребляемая бытовым прибором мощность — это количество электроэнергии, которая необходимо прибору для функционирования. Если устройство статично (неподвижно, например, телефон, лампа, плита), энергия преобразуется в тепло или свет, если устройство двигается (например, двигатель), ток преобразуется в механическую энергию.

Правильное определение мощности необходимо при планировании электросети, количества разветвлений и розеток (нужны ли дополнительные розетки, можно ли запитать несколько приборов от одной), при выборе защитных автоматов, при определении затрат на электричество (сколько тока будут потреблять все приборы).

Излишек приборов, подключенных к одной розетке, может привести к пожару.

В чем измеряется потребляемая мощность

Количество потраченного тока измеряется в Ваттах (Вт) или Вольт-Амперах (ВА). Измерение в Вольт-Амперах часто встречается у зарубежных производителей, в Ваттах — у российских.

Важно! Часто указывают не Ватты (Вт) или Вольт-Амперы (ВА), а килоВатты (кВт) и килоВольт-Амперы (кВА) — тысяча Ватт и тысяча Вольт-Ампер.

Многие считают, что Вт и ВА — это равные величины, но это не так. В Ваттах измеряется активная мощность (количество потребляемой энергии, обозначается буквой «Р»), в Вольт-Амперах — полная (сумма активной и пассивной мощностей, обозначается «S»). То есть эти величины не равны, приравнивать Ватты к Вальт-Амперам нельзя.

Необходимы значения могут быть указаны прямо на технике

Для перевода необходимо воспользоваться формулой:

Р = S*коэффициент мощности.

Если коэффициент неизвестен, его принимают за 0,8 (0,8-0,95 — хорошее значение, 0,65-0,8 — удовлетворительное).

При подсчете также можно воспользоваться онлайн-калькуляторами. Если использовать формулу не получится, можно приблизительно приравнять: 1 кВА = 0,7 кВт.

Особенности определения мощности сети

Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.

Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:

  • В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
  • Мощность подключаемых приборов измеряется в Ваттах.

Информация на электроприборе может быть обозначена по-разному

Как высчитать мощность электричества? Для вычисления потребуется формула:

Р = U*I, где:

P — мощность,

U — напряжение в Вольтах,

I — сила тока в Амперах.

Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.

Для определения силы тока в розетке стоит использовать мультиметр

Как узнать мощность прибора

Сделать это можно несколькими способами:

  • Посмотреть в техническом паспорте или на специальной наклейке (шильдике) на устройстве. Последний обычно располагается на задней стенке или основании.
  • Посмотреть по модели прибора характеристики в интернете.
  • При помощи счетчика электроэнергии. Необходимо выключить все прочие потребители тока, замерить показатель, затем включить нужное устройство и подождать 15 минут. Затем вновь замерить показатель и полученную разницу умножить на 4. В итоге получится потребление тока за час.

При помощи счетчика можно измерять примерную мощность

  • При помощи закона Ома: P = U2 /R, где U — напряжение в 230 В, а R — сопротивление, которое необходимо измерить тестером.
  • Ваттметром: это измеритель, который представляет собой «переходник» между розеткой и прибором. При включении на индикаторе появится точное значение.

Производитель обычно указывает максимальную мощность — больше этого значения оборудование потреблять не будет. В обычном состоянии устройству требуется меньше энергии, при расчете стоит брать максимальное значение.

При самостоятельном определении получится среднее число — столько в среднем потребляет техника. Это число стоит немного увеличить, чтобы остался небольшой запас.

При определении при помощи ваттметра цифра получается крайне точной — столько тока в конкретный момент потребляет прибор. Значение также стоит немного увеличить.

Ваттметр позволяет точно определить количество электричества

Потребляемая мощность техники — это важная величина, которая показывает, сколько электроэнергии потребляется. Эта величина необходима для правильной и безопасной эксплуатации электросети: при несовпадении мощности прибора и розетки возможно короткое замыкание или пожар.

Вам это будет интересно  Особенности статического электричества

Источник: https://rusenergetics.ru/polezno-znat/potreblyaemaya-moschnost

Расчет мощности потребляемой энергии: определение, формула и варианты

Наверняка каждый человек хотя бы раз в жизни слышал о таком понятии, как мощность. Однако далеко не все люди знают, что это такое, и довольно часто путают это понятие со словом мощь. Сегодня речь пойдёт об этом понятии. Вы узнаете, в чём заключается смысл этой физической величины, и научитесь её рассчитывать. А главное — для чего нужно её рассчитывать. Поехали!

Начнём с определения мощности: это работа, выполненная за единицу времени. Причём неважно о какой работе идёт речь, электрической или механической. Эта физическая величина является показателем эффективности работы, а также количества энергии, потребляемой электрическим прибором.

В счета коммунальных услуг входят расходы за потребление электроэнергии. Её потребляют следующие бытовые приборы:

  1. Пылесос.
  2. Холодильник.
  3. Компьютер.
  4. Телевизор.
  5. Чайник.
  6. Плита.

Количество этих приборов гораздо больше. И каждый из них вносит свой вклад в формирование суммы за ваши коммунальные услуги.

Например, потребляемая мощность вашего пылесоса составляет 1 тыс. Ватт в час. Соответственно, если вы пылесосите 30 минут, он потребляет 500 ватт. Одна тысяча ватт в час равняется одному киловатту в час. Это общепринятая единица расчёта потребляемой энергии в коммунальных службах.

Например, за этот месяц вы пылесосили вашу квартиру 6 раз по полчаса. Соответственно, пылесос работал 3 часа и потребил из электросети 3 киловатта в час. Стоимость одного киловатта в час составляет 3 рубля. Это значит, что вам необходимо заплатить 9 рублей за энергию, которую потребил ваш пылесос во время уборки квартиры. По такому же принципу подсчитываются ваши траты с другими электроприборами.

Считать мощность необходимо для следующих целей:

  1. Оптимизация расходов за потребляемую электроэнергию.
  2. Обеспечения вашей безопасности.
  3. Оценки эффективности ваших работ.

Конечно, все эти расчёты производятся для разных видов этой физической величины. Всего их два:

  1. Электрическая.
  2. Механическая.

Давайте более подробно поговорим о каждом из них.

Электрическая мощность

Для подсчёта мощности нам понадобятся формулы закона Ома и знание трёх важнейших параметров.

Сила тока — электрический заряд, проходящий через поперечное сечение проводника в единицу времени. Эта величина является очень важной при расчёте мощности, так как в основе её расчёта лежит работа, совершенная в единицу времени.

Например, за 10 секунд через поперечное сечение проводника прошёл электрический заряд, равный 100 кулон. Для нахождения этой величины необходимо разделить заряд на время. Результат будет равен 10 ампер.

Сопротивление — величина, которая характеризует свойства проводника по препятствию прохождению электрического тока. Для управления напряжением в электрические цепи вводят элементы сопротивления — резисторы. Эта величина измеряется в Омах.

Напряжение — физическая величина, характеризующая работу по перемещению электрического заряда. Напряжение в цепи равно произведению тока и сопротивления в этой цепи.

Например, ток в цепи равен 10 ампер, а сопротивление равно 20 Ом. Соответственно, для нахождения напряжения перемножим эти показатели. В результате мы получаем 200 вольт.

Закон Ома связывает между собой три этих параметра, которые необходимы нам для расчёта электрической мощности. Давайте разберём три возможных варианта расчёта:

  1. Известны ток и напряжение.
  2. Известны ток и сопротивление.
  3. Известны сопротивление и напряжение.

Мощность равняется произведению напряжения и силы тока. Соответственно, если нам известны эти две величины, необходимо просто их перемножить. Например, ток в цепи 10 ампер, а напряжение равно 200 вольт. Соответственно, мощность равна 2 тыс. Ватт.

Если нам известно сопротивление и сила тока, то формула будет немного другой. Сначала найдём напряжение. Для этого необходимо перемножить силу тока и сопротивление. После этого полученный результат необходимо умножить на ток.

Соответственно, в этом случае напряжение равняется произведению сопротивления и силы тока в квадрате. Например, сопротивление равно 50 Ом, а сила тока равна 10 ампер. Нам необходимо умножить 50 на 10, а потом ещё раз на 10.

Получаем результат, равный 5 тыс. Ватт.

В случае с известными напряжением и сопротивлением нам придётся прибегнуть к делению. Согласно закону Ома, сила тока равна частному напряжения и сопротивления. Соответственно, в этом случае мощность равна напряжению в квадрате, делённому на сопротивление. Например, напряжение в цепи равно 100 вольт, а сопротивление равно 50 Ом. Нам необходимо возвести 100 во вторую степень, после чего разделить полученное число на 50. Получаем результат, равный 200 Ватт.

Механическая мощность

Механическая мощность не имеет отношения к электричеству. Здесь суть заключается в том, что работа выполняется под действием определённой силы. В основном это сила внешнего воздействия. Так, механическая мощность — это работа, выполняемая в единицу времени.

Например, кран поднимает тяжёлый груз. Для этого он прикладывает силу, которая по модулю больше, чем гравитационная сила. Давайте разберём два возможных случая расчёта:

  1. Груз поднимается с одинаковой скоростью.
  2. Груз поднимается с ускорением, равным 1 метру, делённым на секунду в квадрате.

Работа — это произведение силы и расстояния, на которое был перемещён объект под действием этой силы.

Предположим, что масса груза равна 50 килограмм. Так как груз движется с постоянной скоростью, его сила тяжести равна 500 ньютон. Кран поднял груз на высоту 100 метров. Соответственно, работа, которую совершил кран, равна произведению пятисот ньютон и ста метров. Получаем результат, равный 50 тыс. Джоулей.

Предположим, что кран осуществлял работу по подъёму груза в течение 50 секунд. Для расчёта его мощности разделим 50 тыс. джоулей на время, равное пятидесяти секундам, и получим 1 тыс. Джоулей. Так, за одну секунду кран тратил 1 тыс. джоулей энергии для совершения работы, а значит, его мощность равна 1 тыс. Ватт.

Давайте теперь рассмотрим случай, в котором груз поднимается с ускорением 1 метр, делённый на секунду в квадрате. В таком случае груз будет доставлен в точку назначения примерно за 13 секунд.

Для перемещения груза с таким ускорением, крану необходимо прикладывать силу, равную 550 ньютон. Перемножим значение этой силы на 100 метров. Получим 55 тыс. Джоулей. Это энергия, которую израсходовал кран для поднятия этого груза с ускорением на высоту 100 метров. Далее, разделим 55 тыс. Джоулей на 13 секунд и получим примерно 4200 Джоулей секунду. В случае с ускорением мощность работы крана составила 4200 Ватт.

При движении с ускорением кран выполняет работу гораздо быстрее. Соответственно, эффективность труда становится гораздо выше. Именно механическая мощность и является показателем этой эффективности.

От мощности зависит довольно много вещей в нашей жизни. Поэтому мы хотим дать вам несколько советов, которые помогут обезопасить и приукрасить её.

Для сокращения расходов необходимо их оптимизировать. Например, когда вы выходите из комнаты, можно выключать в ней свет. Это сократит потребление энергии, и в конце месяца вам придут счета с более приятными цифрами. Помимо выключения света, есть много других способов сократить количество потребляемой энергии.

Можно использовать электрические приборы, которые потребляют меньше мощности. Например, чистота в вашей квартире не станет хуже, если пользоваться пылесосом средней мощности. Это относится и к другим бытовым приборам. Главное, чтобы качество вашей жизни не ухудшилось. А это можно осуществить, пользуясь приборами средней мощности. Ведь они делают все необходимое и потребляют не так много энергии.

Если вы так и не поняли все детали расчёта мощности, не мучайте себя. Лучше воспользуйтесь онлайн-калькулятором или установите на ваш смартфон специальное приложения для её расчёта. Помните, в жизни важно экономить не только энергию, но и время.

Расчётами электрической мощности занимаются инженеры, которые разрабатывают бытовую технику. Они делают это для избежания короткого замыкания и пожаров. Помните, это нужно прежде всего для вашей безопасности.

Теперь вы знаете, как посчитать мощность, и в чём заключается суть этой физической величины. Выбирая бытовой прибор, вы будете иметь представление о том, какая мощность вам нужна для достижения той или иной цели. Успехов вам!

Источник: https://tokar.guru/hochu-vse-znat/raschet-moschnosti-potreblyaemoy-energii.html

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

Расчет тока

Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Однофазная сеть напряжением 220 В

Однофазная сеть напряжением 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

I = P / U,

где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);

U – напряжение электрической сети, В (вольт).

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В.

Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Трёхфазная сеть напряжением 380 В

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

При расчётах необходимо учитывать это явление. В мощных приборах и оборудовании доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Источник: https://elektro.guru/osnovy-elektrotehniki/raschet-velichiny-toka-po-moschnosti-i-napryazheniyu.html

Энергия и человек. Ряд случайных сравнений

Энергия и человек. Ряд случайных сравнений

В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами. В чем измеряется, энергия?

Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Человек в среднем потребляет около 2000 ккалорий в день, что дает около 2 кВт*ч или около 100 Ватт, средней мощности. Можно представить, что человек ест, как одна большая лампочка на накаливания на 100 Ватт.

Энергопотребление человека сравнительно небольшое по сравнению с приборами, которые нас окружают. Можно сказать, что человек произвел техническую революцию.

Человек принимает «в себя» меньше энергии, чем он использует «для себя» даже только в домашних условиях (средний расчет больше 100 кВт*ч в месяц).

Человек — вычислительная машина. 30 Вт

Человек — вычислительная машина. 30 Вт

Распространены оценки, что мозг съедает от 200 до 1000 Ккал (стрессовые ситуации), то есть от 20%-40% энергии, что дает оценку средней мощности 30 Вт. Мозг — крайне эффективная система.

Да современные ноутбуки производят операции гораздо лучше нас и средняя мощность находится около 30 Вт, а телефоны вообще 0.5-1 Вт.

Зато современные видеокарты потребляют в среднем от 250 Вт и все равно не могут сравниться с мозгом по скорости и точности обработки визуальной информации. Так что, человек очень неплохой процессор, правда только для специфических задач.

Человек — аккумулятор. 10 кВт*ч

Человек — аккумулятор. 10 кВт*ч

Говорят, человек может не есть 3-7 дней. Понятно, что не питаясь, человек начнет потреблять меньше энергии на внутренние и на внешние нужды. Можно положить, что съев двойную суточную норму, человек будет активен 2 дня (при наличии воды), что дает грубую оценку 10 кВт*ч.

Если посчитать, энергоемкость человека, то мы можем получить крайне разные цифры, вес людей, которые могут прожить N-е количество дней и произвести какую-то полезную работу, крайне разнится от 50 кг — 150 кг. Скорее всего, средняя энергоемкость равна 0.1 кВт*ч/кг, что не так и хорошо и не так плохо.

Мы находимся между бензином (10 кВт*ч/кг) и Liion (0.1 кВт*ч/кг), ближе к аккумуляторам.

Человек — потребитель солнечной энергии. 1-2 солнечные панели

Человек — потребитель солнечной энергии. 1-2 солнечные панели

Сегодняшняя солнечная панель дает около 300 Ватт в пике, в умеренных широтах средний КИУМ до 20% (солнце светит только днем и слабо).

Мы знаем, что человек недолговечный, но все-таки аккумулятор, поэтому в среднем 2 панелей достаточно, чтобы человек питался только солнцем.

Если отбросить условности и сделать небольшие прорывы в технологиях (использование дорогих элементов позволяет достигать до 40% КПД в панелях), человеку будет достаточно носить «солнечную одежду» для того, чтобы получать всю необходимую энергию.

Человек — обогреватель

Человек — обогреватель

Процитирую статью про одежду: в покое человеческое тело вырабатывает 80 ватт тепла, а теряет при этом за счет дыхания 10 ватт, теплового излучения — 30 ватт, теплопроводности и конвекции — 20 ватта, испарения влаги — 20 ватт. Получается человек крайне «слабый» обогреватель. Домашние обогреватели потребляют по 1 кВт и они покрывают нужды на обогрев только частично.

Подогрев воды и обогрев помещений в принципе является самым большим энергопотреблением домашнего хозяйства. Приведу свой годовой расклад: — Перемещение (транспорт, топливо): 8 000 кВт*ч за год. — Электричество: 2 500 кВт*ч за год. — Подогрев воды и обогрев: 30 000 кВт*ч за год.

Получается на средний ежедневный подогрев воды и обогрев уходит до 100 кВт*ч в день, что в 50 раз больше, чем человек в принципе потребляет.

Человек — средство передвижения (автомобиль, пешеход, велосипед)

Человек — средство передвижения (автомобиль, пешеход, велосипед)

Человек как активное живое существо может перемещаться в пространстве. Допустим человек может переместиться на 30 км за день пешком и на 120 км за день на велосипеде. Это не максимальные значения, конечно, спортсмены пробегают до 100 км и проезжают до 1000 км за день. Попробуем сравнить человека как эффективную систему передвижения человека.

— Автомобиль с ДВС тратит в среднем 5 л на 100 км, 1 литр = 10 кВт*ч, что дает 500 Втч на км

— Электромобиль — 150-200 Вт*ч на км
— Пешеход — 2 кВт*ч разделить на 10-50 км, 50-200 Вт*ч на км
— Медленный/маленький электромобиль — 50-100 Вт*ч на км
— Электровелосипед — 10 Вт*ч/км (средняя скорость 10-15 кмч)
— Велосипедист — 2 кВт*ч разделить на 100-1000 км, 2-20 Вт*ч на км Знаете еще интересные совпадения — пишите в комментариях.

Спасибо за внимание.

Источник: https://habr.com/post/373741/

Как найти мощность, зная напряжение, ток и сопротивление

Как найти мощность, зная напряжение, ток и сопротивление

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы.

Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи.

Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи.

Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования.

Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации.

Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто.

Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно.

Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними.

Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

Источник: https://www.asutpp.ru/kak-nayti-moschnost.html

Расчет электрических цепей онлайн и основная формула расчета

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

https://www.youtube.com/watch?v=rPVKb_leXus\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Онлайн расчет:

Формула расчета сечения провода и как определяется сечение провода

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

I=P/U=2000/220В = 9А

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

 — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ

 — ЗАЩИТНОЕ ЗАНУЛЕНИЕ

 — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!

 — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ

 Автор — Антон Писарев

Источник: http://moydomik.info/load/sistemy/ehlektrosnabzhenie/raschet_ehlektricheskikh_cepej_onlajn_opredelenie_naprjazhenija_toka_moshhnosti_i_sechenija_provodnika/26-1-0-132

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q.

Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I.

Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

Производительность постоянного тока

В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.

Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.

Мощность переменной сети

Мощность переменной сети

Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.

В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:

  1. Активная.
  2. Реактивная.
  3. Полная.

Активный компонент

Активный компонент

Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.

В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.

Реверсивные потери

Реверсивные потери

Для работы конденсаторов, катушек индуктивности, обмоток электродвигателей затрачивается сила сети. Из-за физических свойств таких устройств энергия, которая определяется реактивной мощностью, возвращается в цепь. Величина отдачи рассчитывается при помощи уравнения: V = U ∙ I ∙ sin ϕ.

Единицей измерения принят ватт. Возможно использование внесистемной меры подсчёта var, название которой составлено из английских слов volt, amper, reaction. Перевод на русский язык соответственно означает «вольт», «ампер», «обратное действие».

Если напряжение опережает ток, то смещение фаз считается больше нуля. В противном случае сдвиг фаз отрицательный. В зависимости от значения sin ϕ реактивная составляющая носит положительный или отрицательный характер. Присутствие в цепи индуктивной нагрузки позволяет говорить о реверсивной части больше нуля, а подключённый прибор потребляет энергию. Использование конденсаторов делает реактивную производительность минусовой, и устройство добавляет энергию в сеть.

Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.

В полную силу

В полную силу

Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).

С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.

Критерий полезности

Критерий полезности

Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.

В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.

Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/kak-nayti-elektricheskuyu-moschnost-formula-rascheta.html

IndustrialCraft 2/Энергия

IndustrialCraft 2/Энергия

Энергия — новый элемент геймплея, добавляемый модификацией IndustrialCraft². Энергия вырабатывается несколькими видами генераторов, на ней работают многие устройства и инструменты.

Энергия[править | править код]

Энергия[править | править код]

Изначально, энергия запасена тем или иным образом в окружающем мире. Генераторы превращают эту энергию в электричество. Энергия, в том числе электрическая, измеряется в еЭ, единицах Энергии (англ. EU, Energy Unit).

Близкой по смыслу единицей из жизни является джоуль (Дж).

Энергия извлекается из топлива или окружающей среды генераторами и может накапливаться в устройствах и инструментах, некоторые из которых могут отдавать её снова, некоторые — расходуют на работу.

Мощность и пакеты[править | править код]

Мощность и пакеты[править | править код]

Мощность, производная энергии по времени, характеризует количество энергии, производимой, передаваемой или потребляемой за определённое время.

https://www.youtube.com/watch?v=kRH0v9_wT-M\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Измеряется в еЭ/т, единицах Энергии за такт (англ. EU/t, Energy Unit per tick), где такт — внутриигровая единица времени, равная 1/20 секунды (50 мс). Аналог еЭ/т в реальной жизни — Ватт (Вт). В игре энергия вырабатывается и передаётся пакетами, имеющими определённый размер в еЭ.

Каждый такт происходит следующее:

  • Генераторы и энергохранилища посылают пакеты, равные их выходной мощности;
  • Провода проверяют пакеты на предмет возможности их провести, и взрываются, если хотя бы один из пакетов превышает допустимый размер;
  • Понижающие трансформаторы получают пакет, делят его на пакеты меньшего размера и отправляют все меньшие пакеты сразу;
  • Повышающие трансформаторы получают пакет и, если накоплено достаточно еЭ, передают дальше большой пакет, иначе продолжают копить;
  • Устройства и энергохранилища получают пакеты и отправляют их на совершение работы или во внутреннее хранилище, если размер пакета входит в рабочий диапазон, если пакет больше — взрываются.

Количество пакетов и их суммарный размер никак не ограничиваются. Таким образом, общее количество передаваемой и принимаемой энергии может быть много больше максимально допустимого размера пакета. Так, например, три энергохранителя, питающие через один медный провод дробитель, передают в сумме 96 еЭ/т, но ни провод, ни дробитель не взорвутся, поскольку энергия будет передана тремя пакетами по 32 еЭ каждый, по одному с каждого энергохранителя.

Зачастую, размер пакетов, особенно максимально допустимый, называют напряжением, однако с физической точки зрения это название некорректно.

Практическое применение проводов[править | править код]

Практическое применение проводов[править | править код]

Задача: минимизировать потери энергии, минимизировать расход ценных ресурсов (в первую очередь, алмазов). Резина, несмотря на хлопотность её получения, к ценным ресурсам не относится, поэтому неизолированные провода из рассмотрения исключены.

Вам понадобится много резины, так что заведите себе рощу из десятка гевей, поставьте рядом сундук, в него — инструмент и собирайте урожай каждый раз, когда проходите мимо, либо выведите путём селекции резиновый тростник и, желательно, установите сборщик урожая, не забыв при этом положить в него агроанализатор, в противном случае он не даст вырасти резиновому тростнику и будет собирать в ранней стадии, не дающей латекс.

НазваниеОписаниемакс. напряжение, еЭ на пакетпотери за каждый блок, еЭ на пакетбез потерь, блоковпотери при передаче на N блоков при максимальном напряжении, %103550100500Оловянный провод Изолированный медный провод Золотой провод с двойной изоляцией Высоковольтный провод с тройной изоляцией Высоковольтный провод с тройной изоляцией в режиме 512 еЭ Стекловолоконный провод
Самый дешёвый вид проводов, и предназначены они для передачи малого количества энергии на средние расстояния без потерь. 32 0.025 39 20 % 40 %
Применяется для запитывания мастерских до тех пор, пока вы не захотите использовать больше 5 ускорителей.[1] 128 0,2 4 6,3 % 21,9 % 31,3 % 62,5 %
Применяется для запитывания мастерских (индукционная печь + все остальные машины с 1 улучшением «Трансформатор» и 6-7 ускорителями) если только вы не купаетесь в алмазах. 512 0,4 2 3,1 % 10,9 % 15,6 % 31,3 %
Если вам нужно передать энергию за горизонт и у вас нет лишней стопки алмазов — высоковольтный провод с тройной изоляцией ваш друг. Не забудьте принести резину. Если у вас вообще нет алмазов — вам придётся применять его в режиме пакетов по 512 еЭ, см следующую строчку. Если у вас есть очень много алмазов — лучше сделайте стекловолокно. Если у вас есть два алмаза — сделайте пару трансформаторов высокого напряжения поставьте их на концах своей линии электропередач. 2048 0,8 1 0,4 % 1,4 % 2,0 % 3,9 % 19,5 %
Параметры при неиспользовании трансформаторов высокого напряжения 512 0,8 1 1,6 % 5,5 % 7,8 % 14,6 % 78,1 %
Лучший выбор, если вы хороший шахтер или у вас есть раскапывающее устройство (карьер или черепашка с киркой из ComputerCraft) 8192 0,025 39 0,2 % 0,4 % 2,3 %

Примечания[править | править код]

Как найти мощность тока — формулы с примерами расчетов

Как найти мощность через энергию
В физике достаточно много внимания уделено энергии и мощности устройств, веществ или тел.

В электротехнике эти понятия играют не менее важную роль чем в других разделах физики, ведь от них зависит насколько быстро установка выполнит свою работу и какую нагрузку понесут линии электропередач.

Исходя из этих сведений подбираются трансформаторы для подстанций, генераторы для электростанций и сечение проводников передающих линий. В этой статье мы расскажем, как найти мощность электрического прибора или установки, зная силу тока, напряжение и сопротивление.

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U2/R

Также можно выполнить расчет, зная ток и сопротивление:

P=I2*R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Источник: https://samelectrik.ru/kak-najti-moshhnost-toka.html

Формула мощности

Как найти мощность через энергию

> Теория > Формула мощности

При проектировании электрооборудования и расчёте кабелей и пусковой и защитной аппаратуры важно правильно рассчитать мощность и ток электроаппаратуры. В этой статье рассказывается о том, как найти эти параметры.

Формулы расчёта электрической мощности

Что такое мощность

При работе электронагревателя или электродвигателя они выделяют тепло или выполняют механическую работу, единица измерения которой – 1 джоуль (Дж).

Одна из основных характеристик электрооборудования – мощность, показывающая количество тепла или произведённой работы за 1 секунду и выражающаяся в ваттах (Вт):

1Вт=1Дж/1с.

В электротехнике 1Вт выделяется при прохождении тока в 1А при напряжении 1В:

1Вт=1А*1В.

Согласно закону Ома, найти мощность можно также, зная сопротивление нагрузки и ток или напряжение:

P=U*I=I*I*R=(U*U)/R, где:

  • P (Вт) – мощность электроприбора;
  • I (А) – ток, протекающий через устройство;
  • R (Ом) – сопротивление аппарата;
  • U (В) – напряжение.

Номинальной называют мощность при номинальных параметрах сети и номинальной нагрузке на валу электродвигателя.

Для того чтобы узнать количество электричества, потреблённого за весь период работы, её необходимо умножить на время, которое аппарат работал. Поучившаяся величина измеряется в кВт*ч.

Расчёт в сетях переменного и постоянного напряжения

Формула механической мощности

Электросеть, питающая электроприборы, может быть трёх видов:

  • постоянное напряжение;
  • переменное однофазное;
  • переменное трёхфазное.

Для каждого вида при расчётах используется своя формула мощности.

Расчёт в сети постоянного напряжения

Самые простые расчёты производятся в электросети постоянного тока. Мощность электроаппаратов, подключённых к ней, прямо пропорциональна току и напряжению и, чтобы найти её, используется формула:

P=U*I.

Например, в электродвигателе с номинальным током 4,55А, подключённом к электросети 220В, мощность равна 1000 Ватт, или 1кВт.

И, наоборот, при известных напряжении сети и мощности ток рассчитывается по формуле:

I=P/U.

Однофазные нагрузки

В сети, в которой отсутствуют электродвигатели, а также в бытовой электросети можно пользоваться формулами для сети постоянного напряжения.

Интересно. В бытовой электросети 220В ток можно вычислить по упрощённой формуле: 1кВт=5А.

Мощность переменного тока вычисляется сложнее. Эти аппараты, кроме активной, потребляют реактивную энергию, и формула:

P=U*I

показывает полную потребляемую энергию устройства. Для того чтобы узнать активную составляющую, нужно учесть cosφ – параметр, показывающий долю активной энергии в полной:

Ракт=Робщ*cosφ=U*I*cosφ.

Соответственно, Робщ=Ракт/cosφ.

Например, в электродвигателе с Ракт 1кВт и cosφ 0,7 полная энергия, потребляемая устройством, будет 1,43кВт, и ток – 6,5А.

Треугольник активной, реактивной и полной энергии

Расчет в трехфазной сети

Трёхфазную электросеть можно представить как три однофазных сети. Однако в однофазных сетях используется понятие «фазное напряжение» (Uф), измеряемое между нулевым и фазным проводами, в сети 0,4кВ, равное 220В. В трёхфазных электросетях вместо «фазного» применяется понятие «линейное напряжение» (Uлин), измеряемое между линейными проводами и в сети 0,4кВ, равное 380В:

Uлин=Uф√3.

Поэтому формула для активной нагрузки, например, электрокотла, выглядит так:

P=U*I*√3.

При определении мощности электродвигателя необходимо учитывать cosφ, выражение приобретает следующий вид:

P=U*I*√3*cosφ.

На практике этот параметр обычно известен, а узнать необходимо ток. Для этого используется следующее выражение:

I=P/(U*√3*cosφ).

Например, для электродвигателя 3кВт (3000Вт) и cosφ 0,7 расчёт получается таким:

I=3000/(380*√3*0,7)=5,8А.

Интересно. Вместо вычислений можно считать, что в трёхфазной сети 380В 1кВт соответствует 2А.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Расчет мощности трехфазной сети

Источник: https://elquanta.ru/teoriya/formula-moshhnosti.html

Как найти мощность — формулы для расчета

Как найти мощность через энергию

Работа электрической цепи определяется многими параметрами, в том числе и мощностью, играющей важную роль наряду с силой тока и напряжением. Данный показатель служит одной из характеристик электрических устройств и оборудования. Поэтому довольно часто возникает вопрос, как найти электрическую мощность того или иного прибора. Это необходимо для того, чтобы знать его энергопотребление и возможности совершения полезной работы.

Понятие мощности электрического тока

Понятие мощности тесно связано с количеством работы, которую может выполнить электрический ток в течение установленного периода времени. Работа тока заключается в преобразовании электричества в другие виды энергии – механическую, кинетическую, тепловую и другие. Следовательно, мощность, по своей сути, представляет собой скорость всех этих превращений.

Показатели – мощность и напряжение встречаются постоянно в повседневной жизни в тех областях, где используются электрические устройства.

Все они потребляют определенное количество электротока, поэтому перед началом эксплуатации должны учитываться их потенциальные возможности, параметры и технические характеристики.

Значение мощности используемых приборов требуется для того, чтобы рассчитать сечения кабелей и проводов, номиналов автоматических выключателей и другой защитной аппаратуры. Кроме того, становится возможным заранее подсчитать, за какой срок может быть выполнена та или иная работа.

Для выполнения расчетов используется формула, представляющая собой P = A/t, где А является работой, а t – установленным отрезком времени. Существует два вида мощности – активная и реактивная.

Активная и реактивная мощность

Понятие активной мощности заключается в непосредственном преобразовании электрического тока в механическую, тепловую и другие виды энергии. Этот процесс носит необратимый характер и не может быть выполнен в обратном направлении. Для измерения активной мощности существует специальная единица – ватт (Вт). Формула определяет 1 Вт = 1 вольт х 1 ампер. В быту и на производстве применяются более высокие величины – киловатты и мегаватты.

Активное и реактивное сопротивление

В отличие от активной, реактивная мощность создается за счет нагрузки, возникающей в емкостных или индуктивных устройствах.

Когда используется переменный ток для определения этого показателя существует формула Q = U x I x sin φ. В этом случае sin φ представляет собой сдвиг фаз, который образует сниженное напряжение и рабочий ток.

Сам угол имеет значение в диапазоне 0-90 градусов или от 0 до минус 90 градусов. Для измерения реактивной мощности применяются вольт-амперы.

Индуктивные и емкостные элементы способствуют возвращению электроэнергии обратно в сеть. В результате смещений по параметрам напряжения и тока, в электрической сети могут возникнуть некоторые перегрузки и другие негативные явления. Особенно ярко это проявляется у конденсаторов, отдающих обратно весь накопленный заряд. В такие моменты происходит обратное перемещение напряжения и тока, сдвинутых относительно друг друга.

Энергия емкости и индуктивности, смещенных по фазе относительно собственных характеристик сети как раз и представляет собой реактивную мощность. Она компенсируется за счет обратного эффекта, предотвращая потери в эффективности подачи электроэнергии.

Как вычислить электрическую мощность

Составляя проект любой электрической цепи, сначала надо найти мощность и уже по ее результатам определять значение допустимой нагрузки. Для постоянного тока используется всем известная формула P = U x I, выведенная по закону Ома.

Гораздо сложнее узнать мощность если используется переменный ток. Это связано с потреблением реактивной энергии все используемой аппаратурой. Следовательно, формула, приведенная выше, соответствует полному количеству энергии, потребляемой данным устройством. Ее активная составляющая определяется с помощью cosφ, зная которую можно установить, какова часть активной энергии заключена во всей полной мощности.

Это будет выглядеть следующим образом: Ракт = Робщ х cosφ = U x I x cosφ. Следовательно, полная мощность электроприбора определяется Робщ = Ракт/cosφ. Ее показатели будут всегда выше, нежели у активной мощности.

Опыт Эрстеда: магнитное поле тока

Примерно такая же схема расчетов используется и для трехфазных сетей, каждая из которых условно состоит из трех однофазных. Разница между ними заключается в фазном и линейном напряжении. Первое применяется в однофазном варианте и замеряется между фазой и нулем. Линейное напряжение при трех фазах измеряется между каждым линейным проводом.

Таким образом, зная, что Uлин = Uфаз х √3, найдём активную нагрузку, как P = U x I x √3. Мощность агрегата, например, электродвигателя, инженеры нашли в виде формулы P = U x I x √3 x cosφ. Как правило, мощность того или иного устройства известна заранее, а в большинстве случаев требуется вычислить ток. В этом случае сила тока определяется: I = P/(U x √3 x cosφ).

Источник: https://electric-220.ru/news/kak_najti_moshhnost/2018-08-28-1554

Потребляемая мощность: расчет мощности в ваттах, в чем измеряется, формула

Любой бытовой прибор работает при помощи электроэнергии. Электричество может поступать из электросети через розетку, от батарейки или аккумулятора. При этом важной характеристикой техники становится его мощность. Как определить потребляемую мощность электроприбора и рассчитать ее?

Что это такое

Мощность — это физическая величина, которая равна скорости передачи или потребления энергии системой. Второе значение — отношение работы к промежутку времени, за который она была выполнена.

Большая часть бытовых приборов работает от электросети

Потребляемая бытовым прибором мощность — это количество электроэнергии, которая необходимо прибору для функционирования. Если устройство статично (неподвижно, например, телефон, лампа, плита), энергия преобразуется в тепло или свет, если устройство двигается (например, двигатель), ток преобразуется в механическую энергию.

Правильное определение мощности необходимо при планировании электросети, количества разветвлений и розеток (нужны ли дополнительные розетки, можно ли запитать несколько приборов от одной), при выборе защитных автоматов, при определении затрат на электричество (сколько тока будут потреблять все приборы).

Излишек приборов, подключенных к одной розетке, может привести к пожару.

В чем измеряется потребляемая мощность

Количество потраченного тока измеряется в Ваттах (Вт) или Вольт-Амперах (ВА). Измерение в Вольт-Амперах часто встречается у зарубежных производителей, в Ваттах — у российских.

Важно! Часто указывают не Ватты (Вт) или Вольт-Амперы (ВА), а килоВатты (кВт) и килоВольт-Амперы (кВА) — тысяча Ватт и тысяча Вольт-Ампер.

Многие считают, что Вт и ВА — это равные величины, но это не так. В Ваттах измеряется активная мощность (количество потребляемой энергии, обозначается буквой «Р»), в Вольт-Амперах — полная (сумма активной и пассивной мощностей, обозначается «S»). То есть эти величины не равны, приравнивать Ватты к Вальт-Амперам нельзя.

Необходимы значения могут быть указаны прямо на технике

Для перевода необходимо воспользоваться формулой:

Р = S*коэффициент мощности.

Если коэффициент неизвестен, его принимают за 0,8 (0,8-0,95 — хорошее значение, 0,65-0,8 — удовлетворительное).

При подсчете также можно воспользоваться онлайн-калькуляторами. Если использовать формулу не получится, можно приблизительно приравнять: 1 кВА = 0,7 кВт.

Особенности определения мощности сети

Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.

Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:

  • В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
  • Мощность подключаемых приборов измеряется в Ваттах.

Информация на электроприборе может быть обозначена по-разному

Как высчитать мощность электричества? Для вычисления потребуется формула:

Р = U*I, где:

P — мощность,

U — напряжение в Вольтах,

I — сила тока в Амперах.

Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.

Для определения силы тока в розетке стоит использовать мультиметр

Как узнать мощность прибора

Сделать это можно несколькими способами:

  • Посмотреть в техническом паспорте или на специальной наклейке (шильдике) на устройстве. Последний обычно располагается на задней стенке или основании.
  • Посмотреть по модели прибора характеристики в интернете.
  • При помощи счетчика электроэнергии. Необходимо выключить все прочие потребители тока, замерить показатель, затем включить нужное устройство и подождать 15 минут. Затем вновь замерить показатель и полученную разницу умножить на 4. В итоге получится потребление тока за час.

При помощи счетчика можно измерять примерную мощность

  • При помощи закона Ома: P = U2 /R, где U — напряжение в 230 В, а R — сопротивление, которое необходимо измерить тестером.
  • Ваттметром: это измеритель, который представляет собой «переходник» между розеткой и прибором. При включении на индикаторе появится точное значение.

Производитель обычно указывает максимальную мощность — больше этого значения оборудование потреблять не будет. В обычном состоянии устройству требуется меньше энергии, при расчете стоит брать максимальное значение.

При самостоятельном определении получится среднее число — столько в среднем потребляет техника. Это число стоит немного увеличить, чтобы остался небольшой запас.

При определении при помощи ваттметра цифра получается крайне точной — столько тока в конкретный момент потребляет прибор. Значение также стоит немного увеличить.

Ваттметр позволяет точно определить количество электричества

Потребляемая мощность техники — это важная величина, которая показывает, сколько электроэнергии потребляется. Эта величина необходима для правильной и безопасной эксплуатации электросети: при несовпадении мощности прибора и розетки возможно короткое замыкание или пожар.

Вам это будет интересно  Особенности статического электричества

Источник: https://rusenergetics.ru/polezno-znat/potreblyaemaya-moschnost

Расчет мощности потребляемой энергии: определение, формула и варианты

Наверняка каждый человек хотя бы раз в жизни слышал о таком понятии, как мощность. Однако далеко не все люди знают, что это такое, и довольно часто путают это понятие со словом мощь. Сегодня речь пойдёт об этом понятии. Вы узнаете, в чём заключается смысл этой физической величины, и научитесь её рассчитывать. А главное — для чего нужно её рассчитывать. Поехали!

Начнём с определения мощности: это работа, выполненная за единицу времени. Причём неважно о какой работе идёт речь, электрической или механической. Эта физическая величина является показателем эффективности работы, а также количества энергии, потребляемой электрическим прибором.

В счета коммунальных услуг входят расходы за потребление электроэнергии. Её потребляют следующие бытовые приборы:

  1. Пылесос.
  2. Холодильник.
  3. Компьютер.
  4. Телевизор.
  5. Чайник.
  6. Плита.

Количество этих приборов гораздо больше. И каждый из них вносит свой вклад в формирование суммы за ваши коммунальные услуги.

Например, потребляемая мощность вашего пылесоса составляет 1 тыс. Ватт в час. Соответственно, если вы пылесосите 30 минут, он потребляет 500 ватт. Одна тысяча ватт в час равняется одному киловатту в час. Это общепринятая единица расчёта потребляемой энергии в коммунальных службах.

Например, за этот месяц вы пылесосили вашу квартиру 6 раз по полчаса. Соответственно, пылесос работал 3 часа и потребил из электросети 3 киловатта в час. Стоимость одного киловатта в час составляет 3 рубля. Это значит, что вам необходимо заплатить 9 рублей за энергию, которую потребил ваш пылесос во время уборки квартиры. По такому же принципу подсчитываются ваши траты с другими электроприборами.

Считать мощность необходимо для следующих целей:

  1. Оптимизация расходов за потребляемую электроэнергию.
  2. Обеспечения вашей безопасности.
  3. Оценки эффективности ваших работ.

Конечно, все эти расчёты производятся для разных видов этой физической величины. Всего их два:

  1. Электрическая.
  2. Механическая.

Давайте более подробно поговорим о каждом из них.

Электрическая мощность

Для подсчёта мощности нам понадобятся формулы закона Ома и знание трёх важнейших параметров.

Сила тока — электрический заряд, проходящий через поперечное сечение проводника в единицу времени. Эта величина является очень важной при расчёте мощности, так как в основе её расчёта лежит работа, совершенная в единицу времени.

Например, за 10 секунд через поперечное сечение проводника прошёл электрический заряд, равный 100 кулон. Для нахождения этой величины необходимо разделить заряд на время. Результат будет равен 10 ампер.

Сопротивление — величина, которая характеризует свойства проводника по препятствию прохождению электрического тока. Для управления напряжением в электрические цепи вводят элементы сопротивления — резисторы. Эта величина измеряется в Омах.

Напряжение — физическая величина, характеризующая работу по перемещению электрического заряда. Напряжение в цепи равно произведению тока и сопротивления в этой цепи.

Например, ток в цепи равен 10 ампер, а сопротивление равно 20 Ом. Соответственно, для нахождения напряжения перемножим эти показатели. В результате мы получаем 200 вольт.

Закон Ома связывает между собой три этих параметра, которые необходимы нам для расчёта электрической мощности. Давайте разберём три возможных варианта расчёта:

  1. Известны ток и напряжение.
  2. Известны ток и сопротивление.
  3. Известны сопротивление и напряжение.

Мощность равняется произведению напряжения и силы тока. Соответственно, если нам известны эти две величины, необходимо просто их перемножить. Например, ток в цепи 10 ампер, а напряжение равно 200 вольт. Соответственно, мощность равна 2 тыс. Ватт.

Если нам известно сопротивление и сила тока, то формула будет немного другой. Сначала найдём напряжение. Для этого необходимо перемножить силу тока и сопротивление. После этого полученный результат необходимо умножить на ток.

Соответственно, в этом случае напряжение равняется произведению сопротивления и силы тока в квадрате. Например, сопротивление равно 50 Ом, а сила тока равна 10 ампер. Нам необходимо умножить 50 на 10, а потом ещё раз на 10.

Получаем результат, равный 5 тыс. Ватт.

В случае с известными напряжением и сопротивлением нам придётся прибегнуть к делению. Согласно закону Ома, сила тока равна частному напряжения и сопротивления. Соответственно, в этом случае мощность равна напряжению в квадрате, делённому на сопротивление. Например, напряжение в цепи равно 100 вольт, а сопротивление равно 50 Ом. Нам необходимо возвести 100 во вторую степень, после чего разделить полученное число на 50. Получаем результат, равный 200 Ватт.

Механическая мощность

Механическая мощность не имеет отношения к электричеству. Здесь суть заключается в том, что работа выполняется под действием определённой силы. В основном это сила внешнего воздействия. Так, механическая мощность — это работа, выполняемая в единицу времени.

Например, кран поднимает тяжёлый груз. Для этого он прикладывает силу, которая по модулю больше, чем гравитационная сила. Давайте разберём два возможных случая расчёта:

  1. Груз поднимается с одинаковой скоростью.
  2. Груз поднимается с ускорением, равным 1 метру, делённым на секунду в квадрате.

Работа — это произведение силы и расстояния, на которое был перемещён объект под действием этой силы.

Предположим, что масса груза равна 50 килограмм. Так как груз движется с постоянной скоростью, его сила тяжести равна 500 ньютон. Кран поднял груз на высоту 100 метров. Соответственно, работа, которую совершил кран, равна произведению пятисот ньютон и ста метров. Получаем результат, равный 50 тыс. Джоулей.

Предположим, что кран осуществлял работу по подъёму груза в течение 50 секунд. Для расчёта его мощности разделим 50 тыс. джоулей на время, равное пятидесяти секундам, и получим 1 тыс. Джоулей. Так, за одну секунду кран тратил 1 тыс. джоулей энергии для совершения работы, а значит, его мощность равна 1 тыс. Ватт.

Давайте теперь рассмотрим случай, в котором груз поднимается с ускорением 1 метр, делённый на секунду в квадрате. В таком случае груз будет доставлен в точку назначения примерно за 13 секунд.

Для перемещения груза с таким ускорением, крану необходимо прикладывать силу, равную 550 ньютон. Перемножим значение этой силы на 100 метров. Получим 55 тыс. Джоулей. Это энергия, которую израсходовал кран для поднятия этого груза с ускорением на высоту 100 метров. Далее, разделим 55 тыс. Джоулей на 13 секунд и получим примерно 4200 Джоулей секунду. В случае с ускорением мощность работы крана составила 4200 Ватт.

При движении с ускорением кран выполняет работу гораздо быстрее. Соответственно, эффективность труда становится гораздо выше. Именно механическая мощность и является показателем этой эффективности.

От мощности зависит довольно много вещей в нашей жизни. Поэтому мы хотим дать вам несколько советов, которые помогут обезопасить и приукрасить её.

Для сокращения расходов необходимо их оптимизировать. Например, когда вы выходите из комнаты, можно выключать в ней свет. Это сократит потребление энергии, и в конце месяца вам придут счета с более приятными цифрами. Помимо выключения света, есть много других способов сократить количество потребляемой энергии.

Можно использовать электрические приборы, которые потребляют меньше мощности. Например, чистота в вашей квартире не станет хуже, если пользоваться пылесосом средней мощности. Это относится и к другим бытовым приборам. Главное, чтобы качество вашей жизни не ухудшилось. А это можно осуществить, пользуясь приборами средней мощности. Ведь они делают все необходимое и потребляют не так много энергии.

Если вы так и не поняли все детали расчёта мощности, не мучайте себя. Лучше воспользуйтесь онлайн-калькулятором или установите на ваш смартфон специальное приложения для её расчёта. Помните, в жизни важно экономить не только энергию, но и время.

Расчётами электрической мощности занимаются инженеры, которые разрабатывают бытовую технику. Они делают это для избежания короткого замыкания и пожаров. Помните, это нужно прежде всего для вашей безопасности.

Теперь вы знаете, как посчитать мощность, и в чём заключается суть этой физической величины. Выбирая бытовой прибор, вы будете иметь представление о том, какая мощность вам нужна для достижения той или иной цели. Успехов вам!

Источник: https://tokar.guru/hochu-vse-znat/raschet-moschnosti-potreblyaemoy-energii.html

Коэффициент полезного действия

Источник: https://remont220.ru/osnovy-elektrotehniki/976-kpd-fizicheskiy-smysl-velichiny-kak-ee-vychislyat/

Расчёт силы тока и выбор питающего кабеля по мощности для электросети напряжением 220 и 380 В

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей.

Расчет тока

Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.

  • От значения этой величины зависит выбор питающего кабеля (провода), по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения.

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Однофазная сеть напряжением 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

I = P / U,

где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);

U – напряжение электрической сети, В (вольт).

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В).

На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В.

Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

I = P /1,73 U,

где P -потребляемая мощность, Вт;

U — напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

I = P /657, 4.

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

При расчётах необходимо учитывать это явление. В мощных приборах и оборудовании доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Источник: https://elektro.guru/osnovy-elektrotehniki/raschet-velichiny-toka-po-moschnosti-i-napryazheniyu.html

Энергия и человек. Ряд случайных сравнений

В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами. В чем измеряется, энергия?

Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.

Человек — потребитель энергии. 2 кВт*ч, 100 Вт

Человек в среднем потребляет около 2000 ккалорий в день, что дает около 2 кВт*ч или около 100 Ватт, средней мощности. Можно представить, что человек ест, как одна большая лампочка на накаливания на 100 Ватт.

Энергопотребление человека сравнительно небольшое по сравнению с приборами, которые нас окружают. Можно сказать, что человек произвел техническую революцию.

Человек принимает «в себя» меньше энергии, чем он использует «для себя» даже только в домашних условиях (средний расчет больше 100 кВт*ч в месяц).

Человек — вычислительная машина. 30 Вт

Распространены оценки, что мозг съедает от 200 до 1000 Ккал (стрессовые ситуации), то есть от 20%-40% энергии, что дает оценку средней мощности 30 Вт. Мозг — крайне эффективная система.

Да современные ноутбуки производят операции гораздо лучше нас и средняя мощность находится около 30 Вт, а телефоны вообще 0.5-1 Вт.

Зато современные видеокарты потребляют в среднем от 250 Вт и все равно не могут сравниться с мозгом по скорости и точности обработки визуальной информации. Так что, человек очень неплохой процессор, правда только для специфических задач.

Человек — аккумулятор. 10 кВт*ч

Говорят, человек может не есть 3-7 дней. Понятно, что не питаясь, человек начнет потреблять меньше энергии на внутренние и на внешние нужды. Можно положить, что съев двойную суточную норму, человек будет активен 2 дня (при наличии воды), что дает грубую оценку 10 кВт*ч.

Если посчитать, энергоемкость человека, то мы можем получить крайне разные цифры, вес людей, которые могут прожить N-е количество дней и произвести какую-то полезную работу, крайне разнится от 50 кг — 150 кг. Скорее всего, средняя энергоемкость равна 0.1 кВт*ч/кг, что не так и хорошо и не так плохо.

Мы находимся между бензином (10 кВт*ч/кг) и Liion (0.1 кВт*ч/кг), ближе к аккумуляторам.

Человек — потребитель солнечной энергии. 1-2 солнечные панели

Сегодняшняя солнечная панель дает около 300 Ватт в пике, в умеренных широтах средний КИУМ до 20% (солнце светит только днем и слабо).

Мы знаем, что человек недолговечный, но все-таки аккумулятор, поэтому в среднем 2 панелей достаточно, чтобы человек питался только солнцем.

Если отбросить условности и сделать небольшие прорывы в технологиях (использование дорогих элементов позволяет достигать до 40% КПД в панелях), человеку будет достаточно носить «солнечную одежду» для того, чтобы получать всю необходимую энергию.

Человек — обогреватель

Процитирую статью про одежду: в покое человеческое тело вырабатывает 80 ватт тепла, а теряет при этом за счет дыхания 10 ватт, теплового излучения — 30 ватт, теплопроводности и конвекции — 20 ватта, испарения влаги — 20 ватт. Получается человек крайне «слабый» обогреватель. Домашние обогреватели потребляют по 1 кВт и они покрывают нужды на обогрев только частично.

Подогрев воды и обогрев помещений в принципе является самым большим энергопотреблением домашнего хозяйства. Приведу свой годовой расклад: — Перемещение (транспорт, топливо): 8 000 кВт*ч за год. — Электричество: 2 500 кВт*ч за год. — Подогрев воды и обогрев: 30 000 кВт*ч за год.

Получается на средний ежедневный подогрев воды и обогрев уходит до 100 кВт*ч в день, что в 50 раз больше, чем человек в принципе потребляет.

Человек — средство передвижения (автомобиль, пешеход, велосипед)

Человек как активное живое существо может перемещаться в пространстве. Допустим человек может переместиться на 30 км за день пешком и на 120 км за день на велосипеде. Это не максимальные значения, конечно, спортсмены пробегают до 100 км и проезжают до 1000 км за день. Попробуем сравнить человека как эффективную систему передвижения человека.

— Автомобиль с ДВС тратит в среднем 5 л на 100 км, 1 литр = 10 кВт*ч, что дает 500 Втч на км

— Электромобиль — 150-200 Вт*ч на км
— Пешеход — 2 кВт*ч разделить на 10-50 км, 50-200 Вт*ч на км
— Медленный/маленький электромобиль — 50-100 Вт*ч на км
— Электровелосипед — 10 Вт*ч/км (средняя скорость 10-15 кмч)
— Велосипедист — 2 кВт*ч разделить на 100-1000 км, 2-20 Вт*ч на км Знаете еще интересные совпадения — пишите в комментариях.

Спасибо за внимание.

Источник: https://habr.com/post/373741/

Как найти мощность, зная напряжение, ток и сопротивление

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы.

Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи.

Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи.

Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования.

Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации.

Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто.

Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно.

Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними.

Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

Источник: https://www.asutpp.ru/kak-nayti-moschnost.html

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

https://www.youtube.com/watch?v=rPVKb_leXus\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Онлайн расчет:

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

I=P/U=2000/220В = 9А

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

 — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ

 — ЗАЩИТНОЕ ЗАНУЛЕНИЕ

 — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!

 — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ

 Автор — Антон Писарев

Источник: http://moydomik.info/load/sistemy/ehlektrosnabzhenie/raschet_ehlektricheskikh_cepej_onlajn_opredelenie_naprjazhenija_toka_moshhnosti_i_sechenija_provodnika/26-1-0-132

Как найти мощность: формула, расчёт силы тока, напряжения и сопротивления

Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.

Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.

Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:

  • P — мощность.
  • A — работа, совершаемая зарядом в электрической цепи.
  • U — падение напряжения в проводнике.
  • I — сила тока.
  • Q — количество электрических зарядов, переносимых в единицу времени.

Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.

На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q.

Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I.

Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.

Производительность постоянного тока

В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.

Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.

Мощность переменной сети

Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.

В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:

  1. Активная.
  2. Реактивная.
  3. Полная.

Активный компонент

Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.

В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.

Реверсивные потери

Для работы конденсаторов, катушек индуктивности, обмоток электродвигателей затрачивается сила сети. Из-за физических свойств таких устройств энергия, которая определяется реактивной мощностью, возвращается в цепь. Величина отдачи рассчитывается при помощи уравнения: V = U ∙ I ∙ sin ϕ.

Единицей измерения принят ватт. Возможно использование внесистемной меры подсчёта var, название которой составлено из английских слов volt, amper, reaction. Перевод на русский язык соответственно означает «вольт», «ампер», «обратное действие».

Если напряжение опережает ток, то смещение фаз считается больше нуля. В противном случае сдвиг фаз отрицательный. В зависимости от значения sin ϕ реактивная составляющая носит положительный или отрицательный характер. Присутствие в цепи индуктивной нагрузки позволяет говорить о реверсивной части больше нуля, а подключённый прибор потребляет энергию. Использование конденсаторов делает реактивную производительность минусовой, и устройство добавляет энергию в сеть.

Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.

В полную силу

Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).

С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.

Критерий полезности

Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.

В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.

Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/kak-nayti-elektricheskuyu-moschnost-formula-rascheta.html

IndustrialCraft 2/Энергия

Энергия — новый элемент геймплея, добавляемый модификацией IndustrialCraft². Энергия вырабатывается несколькими видами генераторов, на ней работают многие устройства и инструменты.

Энергия[править | править код]

Изначально, энергия запасена тем или иным образом в окружающем мире. Генераторы превращают эту энергию в электричество. Энергия, в том числе электрическая, измеряется в еЭ, единицах Энергии (англ. EU, Energy Unit).

Близкой по смыслу единицей из жизни является джоуль (Дж).

Энергия извлекается из топлива или окружающей среды генераторами и может накапливаться в устройствах и инструментах, некоторые из которых могут отдавать её снова, некоторые — расходуют на работу.

Мощность и пакеты[править | править код]

Мощность, производная энергии по времени, характеризует количество энергии, производимой, передаваемой или потребляемой за определённое время.

https://www.youtube.com/watch?v=kRH0v9_wT-M\u0026list=PLYLAAGsAQhw_7NJesD6o9yfzDk0vtnnIm

Измеряется в еЭ/т, единицах Энергии за такт (англ. EU/t, Energy Unit per tick), где такт — внутриигровая единица времени, равная 1/20 секунды (50 мс). Аналог еЭ/т в реальной жизни — Ватт (Вт). В игре энергия вырабатывается и передаётся пакетами, имеющими определённый размер в еЭ.

Каждый такт происходит следующее:

  • Генераторы и энергохранилища посылают пакеты, равные их выходной мощности;
  • Провода проверяют пакеты на предмет возможности их провести, и взрываются, если хотя бы один из пакетов превышает допустимый размер;
  • Понижающие трансформаторы получают пакет, делят его на пакеты меньшего размера и отправляют все меньшие пакеты сразу;
  • Повышающие трансформаторы получают пакет и, если накоплено достаточно еЭ, передают дальше большой пакет, иначе продолжают копить;
  • Устройства и энергохранилища получают пакеты и отправляют их на совершение работы или во внутреннее хранилище, если размер пакета входит в рабочий диапазон, если пакет больше — взрываются.

Количество пакетов и их суммарный размер никак не ограничиваются. Таким образом, общее количество передаваемой и принимаемой энергии может быть много больше максимально допустимого размера пакета. Так, например, три энергохранителя, питающие через один медный провод дробитель, передают в сумме 96 еЭ/т, но ни провод, ни дробитель не взорвутся, поскольку энергия будет передана тремя пакетами по 32 еЭ каждый, по одному с каждого энергохранителя.

Зачастую, размер пакетов, особенно максимально допустимый, называют напряжением, однако с физической точки зрения это название некорректно.

Практическое применение проводов[править | править код]

Задача: минимизировать потери энергии, минимизировать расход ценных ресурсов (в первую очередь, алмазов). Резина, несмотря на хлопотность её получения, к ценным ресурсам не относится, поэтому неизолированные провода из рассмотрения исключены.

Вам понадобится много резины, так что заведите себе рощу из десятка гевей, поставьте рядом сундук, в него — инструмент и собирайте урожай каждый раз, когда проходите мимо, либо выведите путём селекции резиновый тростник и, желательно, установите сборщик урожая, не забыв при этом положить в него агроанализатор, в противном случае он не даст вырасти резиновому тростнику и будет собирать в ранней стадии, не дающей латекс.

НазваниеОписаниемакс. напряжение, еЭ на пакетпотери за каждый блок, еЭ на пакетбез потерь, блоковпотери при передаче на N блоков при максимальном напряжении, %103550100500Оловянный провод Изолированный медный провод Золотой провод с двойной изоляцией Высоковольтный провод с тройной изоляцией Высоковольтный провод с тройной изоляцией в режиме 512 еЭ Стекловолоконный провод
Самый дешёвый вид проводов, и предназначены они для передачи малого количества энергии на средние расстояния без потерь. 32 0.025 39 20 % 40 %
Применяется для запитывания мастерских до тех пор, пока вы не захотите использовать больше 5 ускорителей.[1] 128 0,2 4 6,3 % 21,9 % 31,3 % 62,5 %
Применяется для запитывания мастерских (индукционная печь + все остальные машины с 1 улучшением «Трансформатор» и 6-7 ускорителями) если только вы не купаетесь в алмазах. 512 0,4 2 3,1 % 10,9 % 15,6 % 31,3 %
Если вам нужно передать энергию за горизонт и у вас нет лишней стопки алмазов — высоковольтный провод с тройной изоляцией ваш друг. Не забудьте принести резину. Если у вас вообще нет алмазов — вам придётся применять его в режиме пакетов по 512 еЭ, см следующую строчку. Если у вас есть очень много алмазов — лучше сделайте стекловолокно. Если у вас есть два алмаза — сделайте пару трансформаторов высокого напряжения поставьте их на концах своей линии электропередач. 2048 0,8 1 0,4 % 1,4 % 2,0 % 3,9 % 19,5 %
Параметры при неиспользовании трансформаторов высокого напряжения 512 0,8 1 1,6 % 5,5 % 7,8 % 14,6 % 78,1 %
Лучший выбор, если вы хороший шахтер или у вас есть раскапывающее устройство (карьер или черепашка с киркой из ComputerCraft) 8192 0,025 39 0,2 % 0,4 % 2,3 %

Примечания[править | править код]

  1. Вы можете использовать 6 ускорителей, подключив параллельно 2 батбокса, но зачем?

IndustrialCraft²

Источник: https://minecraft-ru.gamepedia.com/IndustrialCraft_2/%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F

ЭТО ИНТЕРЕСНО:  Что входит в понятие электробезопасность
Понравилась статья? Поделиться с друзьями:
Электрогенератор
Для чего нужен источник тока

Закрыть