Что такое Геотермальные ресурсы

Геотермальные электростанции: история развития, преимущества и недостатки технологии, использование подземного потенциала в реальных условия

Что такое Геотермальные ресурсы

Среди альтернативных источников электроэнергии существуют довольно специфические и экзотические способы ее получения. Кроме солнца и ветра в определенных условиях используется внутренние тепловые запасы планеты, для чего созданы геотермальные электростанции (ГеоЭС или ГеоТЭС).

Их работа основывается на энергии пара, поступающего из поземных емкостей, содержащих горячую воду естественного происхождения. Он обеспечивает вращение турбоустановки, соединенной с электрическим генератором.

В результате, после нескольких превращений одних видов энергии в другие, на выходе получается электрический ток, распределяемый среди потребителей.

История развития

О практическом использовании геотермальных источников известно очень давно. Кроме обычного купания, эти природные ресурсы применялись в публичных банях в качестве источника тепла и горячей воды еще в 1-м веке нашей эры.

Позднее, уже в 14-м веке, французы изобрели первую систему общего теплоснабжения, использующую геотермальный потенциал. В промышленности она начала внедряться в 1827 году в Италии, когда под действием пара из вулканических веществ извлекалась борная кислота.

Первая система отопления, основанная только на подземной энергии, разработана в Америке в 1892 году. Затем в 1926 году Исландия стала использовать гейзеры для отопления сначала тепличных сооружений, а впоследствии – и жилых домов.

В 1852 году был изобретен насос для перемещения тепла, а в 1912 году получен патент на его применение в области добычи и извлечения на поверхность подземного пара. На практике эта идея стала реально возможной лишь в 40-х годах 20 века.

Постепенно дошла очередь и до первой электростанции на подземном тепле, сооруженной в 1960 году в американском штате Калифорния. Ее мощность составила 11 мегаватт, и она стабильно проработала в течение длительного времени.

Однако, несмотря на некоторую популярность, широкого распространения эти установки сразу не получили.

Лишь когда в 1979 году были изобретены полибутиленовые трубы, геотермальная энергия стала значительно эффективнее в области ее практического использования.

В дальнейшем технологии постоянно развивались и в 1967 году в СССР была построена первая станция с двойным рабочим циклом, использующая для получения электричества более низкие температуры, чем обычно. Такая же установка, сооруженная в 2006 году на Аляске, вырабатывает потенциал с использованием воды, нагретой лишь до 57 градусов.

От подземного тепла до электричества

Для добычи геотермальной энергии задействуется естественное тепло, производимое в глубине земных недр. Подобраться к таким источникам на нужное расстояние возможно по специальным шахтам или скважинам.

По мере бурения наблюдается возрастание геотермического градиента на 10С при прохождении точного расстояния в 36 метров. Тепло, извлеченное наверх, представляет собой воду, нагретую почти до кипения или пар.

Полученная этим способом тепловая энергия применяется напрямую в отоплении зданий или при помощи специального оборудования превращается в электроэнергию. Районы, пригодные для получения термальной энергии, есть во многих местах земного шара.

Проведенные исследования показали, что в центральной точке планеты температура ядра составляет примерно 66500С и выше. Постепенно происходит остывание в среднем темпе в 300-3500С каждый миллиард лет.

В мантии и ядре содержится примерно 98% тепловой энергии, и лишь 2% приходится на слой земной коры. Однако даже эта незначительная доля способна обеспечивать потребности людей в течение длительного времени.

Идеальными местами под геотермальные станции считаются места в районе стыков между континентальными плитами, поскольку толщина коры здесь значительно меньше.

Известно, что с повышением глубины скважины пропорционально возрастает и температура. Однако, существует немало мест, где она поднимается значительно быстрее.

Это участки с высокой сейсмической активностью, проявляющейся при столкновениях или разрывах тектонических плит. Именно здесь намного проще добывать тепловые ресурсы, отличающиеся повышенным геотермическим градиентом.

Такая энергия получается более дешевой из-за сокращения затрат на бурильные и насосные работы.

Иногда вода выходит прямо на поверхность, сразу оказывается нагретой до требуемых параметров, как это случается с гейзерами. Именно в этих точках прежде всего возводятся электроустановки, функционирующие на бесплатной тепловой энергии.

Использование подземного потенциала в реальных условиях

Во многих случаях подземная энергия применяется в двух видах.

  1. Первый вариант – это непосредственная подача тепла в отопительные системы и устройства подогрева горячей воды. Этот способ хорошо зарекомендовал себя в районах высоких широт, в точках, где тектонические плиты смыкаются друг с другом. Вода закачивается в трубы напрямую из глубинных скважин и служит для обогрева объектов.
  2. Второй вариант схематично практически не отличается от первого, только для производства электроэнергии требуется повышенная температура – от 1500С. Это основные преимущества геотермальных электростанций.

В качестве живых примеров можно привести американские штаты Калифорнию и Неваду, где за счет подземного тепла снабжаются энергией большие электростанции.

В Калифорнии на долю подобных установок в общей массе приходится 5%. В Сальвадоре геотермальными источниками производится свыше 30% электричества.

В частных домах этих регионов широко используется экологически чистая и дешевая тепловая энергия.

Способы получения подземной тепловой энергии:

  • Из сухой породы в разогретом состоянии. В естественные резервуары, состоящие из сухих твердых материалов, под высоким давлением закачивается вода. Она увлажняет поры и трещины, увеличивает имеющиеся разломы, после чего нагревается и становится паром или горячей водой.
  • Магма. Находится под землей в виде расплавленной массы, нагретой до температуры 12000С. Довольно редко она в небольших объемах подходит совсем близко к поверхности и располагается на доступных глубинах. В данный момент возможные методы использования магмы как источника бесплатного тепла разрабатываются лишь в теории и на уровне отдельных экспериментов.
  • Горячие воды. Испытывают постоянное давление, располагаются возле поверхности и содержат в своем составе метан в растворенном виде. В данном варианте электроэнергия производится при помощи не только тепла, но и газа.

Как действуют геотермальные установки

В получении электроэнергии при помощи подземного тепла используются три наиболее распространенных варианта.

  1. Прямая схема, где работает пар в сухом виде;
  2. Непрямая, в которой задействованы свойства водяного пара;
  3. Бинарная (смешанная).

Конкретный вариант зависит от того, в каком состоянии находится геотермальная среда – водяном или паровом. Учитываются и температурные показатели. В своем первоначальном виде электростанции работали по первой схеме, когда добытый пар подается напрямую внутрь турбины.

Однако, чаще всего стал использоваться второй вариант непрямого действия, когда закачка жидкости производится под повышенным давлением в резервуары генераторных агрегатов, установленных на поверхности. В данной схеме отсутствует непосредственный контакт пара, воды и турбин с генераторами.

Каждый способ следует рассмотреть подробнее.

Многие установки пользуются в своей работе гидротермальным сухим паром (рис. 1). Его движение осуществляется напрямую внутрь турбины, соединенной с электрическим генератором. Горячий пар используется вместо обычных видов твердого и жидкого топлива, поэтому данная технология используется до сих пор, хотя она и несколько устарела.

Более прогрессивным считается вариант на парогидротермах (рис. 2) с непрямым действием. Нагрев гидротермального раствора производится до температуры от 182 градусов и выше.

Он нагнетается в специальный испаритель и под образовавшимся давлением выполняется его быстрое выпаривание. Под влиянием образовавшегося пара турбинный вал приводится в действие.

Жидкость, оставшаяся в емкости, может быть выпарена в другом испарительном устройстве, что дает возможность повысить мощность установки.

В большинстве районов с горячими источниками тепла температура воды довольно умеренная и не превышает 2000С, а зачастую она значительно ниже. Такая вода применяется в оборудовании с бинарным циклом и оказывается вполне пригодной для выработки электроэнергии.

В данной ситуации принцип работы геотермальной электростанции следующий: помимо воды в системе применяется еще одна, специальная жидкость, с более низкой точкой кипения. Они обе проходят внутри теплообменника, где нагретая подземная вода превращает в пар другую жидкость.

Полученный за счет этого пар, попадает в турбину и начинает вращать лопатки.

Данная система функционирует полностью в замкнутом цикле, поэтому каких-либо ядовитых выбросов в окружающую среду практически нет. Так как вода с умеренной температурой обычно встречается в горячих источниках, то в перспективе большинство электроустановок будет переведено на этот рабочий режим.

В дальнейшем планируется использовать и другие геотермальные ресурсы. Горячая вода и пар составляют лишь незначительную часть от общих резервов. Практически неиссякаемые энергетические источники будут обеспечены за счет сухих твердых пород и магмы. В данное время ведутся практические разработки, нацеленные на снижение стоимости получения геотермального электричества.

Геотермальные установки в России

На территории Российской Федерации располагается немало районов с активной вулканической деятельностью. В основном, это Дальний Восток, Камчатка, Сахалин и Курильские острова. Именно в этих местах в разное время были построены геотермальные электростанции. Рассмотрим наиболее известные станции.

Паужетская ГеоТЭС

Первая в России электростанция такого типа была построена в 1966 году. Основной целью установки стало обеспечение электричеством населенных пунктов и рыбоперерабатывающих предприятий. Местом расположения был определен западный берег Камчатского полуострова, рядом с селом Паужетка и вулканом Камбальным.

При запуске станция выдавала установленную мощность в 5 мегаватт, а к 2011 году этот показатель был увеличен до 12 МВт. В последнее время ведутся работы по реализации проекта с бинарным энергоблоком, созданным российскими инженерами. Это позволит увеличить мощность станции до 17 МВт и улучшить экологическую обстановку за счет сокращения выбросов отработанных материалов.

Верхне-Мутновская ГТЭС (опытно-промышленная)

Располагается в юго-восточной части Камчатки непосредственно на вулкане Мутновский. Высота над уровнем моря составляет 780 м. Окончание строительства и ввод в эксплуатацию – 1999 год. Оборудована тремя энергоблоками по 4 мегаватта, общая мощность станции – 12 МВт.

Рядом расположена еще одна, более современная установка, введенная в строй в 2003 году. Показатель установленной мощности – 50 МВт, планируется довести до 80 МВт.

Обслуживание объекта выполняется полностью в автоматическом режиме. За счет обеих станций на Камчатке значительно снизилась зависимость от привозного топлива.

Две геотермальные электростанции производят примерно 30% всей электроэнергии полуострова.

Станция Океанская

Расположена на Курильском острове Итуруп, введена в строй в 2006 году. Производительность – 2,5 МВт.

Станция Менделеевская

Находится на Курильском острове – Кунашире, неподалеку от вулкана Менделеева. Производительность составляет 3,6 Мвт, после модернизации она возрастет до 7,4 МВт.

Преимущества и недостатки ГТЭС

Несомненными положительными чертами геотермальных установок являются:

  • Работают на возобновляемых источниках энергии на весь период существования планеты.
  • В сравнении с солнцем и ветром подземная энергия отличается повышенной стабильностью.
  • Экологические преимущества и чистота, минимальное негативное влияние на окружающую обстановку.
  • Для функционирования геотермальные электростанции не требуют какого-либо другого топлива.
  • Возможность применения в частном секторе, окупается сравнительно быстро.

Среди минусов наиболее существенными будут такие:

  • Обязательная привязка к конкретной местности с подходящими условиями.
  • При бурении скважин часть газов улетучивается в атмосферу.
  • Вероятность спровоцировать землетрясение из-за нарушений структуры породы.
  • Необходимость больших первоначальных вложений.

Источник: https://narobraz.ru/meditsina-i-zdorove/geotermalnye-elektrostantsii-osnovnye-plyusy-i-minusy.html

Источники геотермальной энергии: ресурсы земли и воды

Что такое Геотермальные ресурсы

Основные источники энергии, используемые сегодня, полностью обеспечивают все текущие потребности населения. Однако, согласно расчетам ученых, уже через 20 лет человечество начнет ощущать нехватку энергии.

Это произойдет из-за постоянно возрастающих потребностей населения и, в особенности, промышленных предприятий.

К тому времени заметно истощатся такие источники, как угольные нефтяные и газовые месторождения, а гидроэнергетические сооружения уже сегодня значительно изношены и нуждаются в поддержке со стороны.

Ученые видят выход в использовании альтернативных (солнечная и ветровая энергетика) или возобновляемых видов энергии (ВИЭ), одной из разновидностей которых является геотермальная энергетика.

Согласно результатов исследований, температура земного ядра составляет около 6000°С. По мере приближения к земной коре она понемногу снижается. Скорость охлаждения земного ядра составляет около 400°С за миллиард лет, что позволяет не беспокоиться о том, что источник иссякнет. Причиной такого нагрева считается постоянная реакция радиоактивного распада элементов, составляющих значительную часть земного ядра урана, тория, радиоактивного калия.

Использование этого тепла человеком пока значительно ограничено, поскольку технологические возможности низки и не позволяют получать энергию в любой географической точке. На сегодня используются только термоаномальные зоны, где имеются точки выхода на поверхность горячих пород или водных источников.

Различают следующие типы источников тепловой энергии:

  • поверхностные, находящиеся на глубинах нескольких десятков метров
  • подземные гидротермальные резервуары
  • парогидротермальные участки
  • петротермальные системы, обладающие «сухим» теплом горных пород
  • магматические участки, где к поверхности подходят расплавленные горные массивы

Основными типами геотермальных источников являются участки с теплоносителями (вода или пар) и с сухими нагретыми горными породами. Рассмотрим их внимательнее.

Петротермальная энергетика

Петротермальная энергетика основана на получении энергии с помощью подземного тепла, полученного от горячих горных пород.

Технологически это направление еще не отработано, поскольку для получения энергии требуется иметь доступ к нагретым горным породам, а они даже в регионах с повышенным температурным градиентом залегают на глубине около 2 км от поверхности.

Поэтому на сегодня используются только близкие к поверхности, по сути — аномальные участки земной коры с выходом на поверхность горячих массивов.

При появлении технологической возможности бурить на глубины 8-10 км, сооружать геотермальные электростанции (ГеоТЭС) будет можно в любой точке, где это необходимо.

Получение электроэнергии планируется путем закачки в подземные полости воды, превращающейся в перегретый пар. Он выводится под давлением на поверхность, где подключается к турбинным установкам, производящим электроэнергию. Сложность заключается в необходимости большой площади контакта, чтобы получать достаточные мощности. Предполагается использование подземных разломов, систем трещин и прочих полостей с высокими температурами.

Гидротермальная энергетика

Это направление активно используется уже сегодня. Страны, имеющие на своей территории участки с богатыми горячими источниками, используют их для обогрева жилья и получения электроэнергии.

Наиболее заметными пользователями в этом направлении являются:

  • Исландия
  • Новая Зеландия
  • США
  • Мексика
  • Япония
  • Италия
  • Сальвадор

В зависимости от характера источников, температуры и мощности подземных процессов, устанавливаются электростанции, производится подключение городских отопительных сетей к подземным резервуарам с горячей водой, находящейся под давлением.

Температура пара, пригодного для выработки электроэнергии в промышленных масштабах, должна составлять как минимум 200°С, что возможно не везде.

ЭТО ИНТЕРЕСНО:  Как вычислить последовательное сопротивление

Практически, все существующие ныне электростанции, использующие геотермальную энергию, являются особенными, работающими в отдельных уникальных условиях.

Принципы работы геотермальных электростанций

Геотермальные электростанции используют либо горячие горные породы для нагрева закачиваемой в подземные полости воды, либо естественные горячие источники, уже существующие в толще земли. Перегретый пар, образующийся в результате геотермальных процессов, выводится на поверхность земли и задействует лопатки турбин паровых электрогенераторов.

Изложенный принцип верно отражает схему, но на практике все обстоит намного сложнее. Во-первых, состав пара, выводимого из подземных емкостей, сложен и насыщен агрессивными и ядовитыми газами и соединениями. Во-вторых, количество выводимого носителя должно пополняться закачкой свежих объемов, иначе будет нарушен гидродинамический баланс, отчего функционирование источника может быть нарушено или вовсе прекратится.

В зависимости от типа источника существуют следующие типы ГеоТЭС:

  • сооружения, установленные на природных источниках горячего пара или воды (парогидротермах)
  • двухконтурные ГеоТЭС, использующие горячий водяной пар из источника и вторичный пар, полученный от подведенной и нагретой воды
  • двухконтурные ГеоТЭС, использующие перегретую воду естественного происхождения

Конструкция каждой конкретной установки специализирована под местные условия, температуры и состав воды или пара. В большинстве случаев используются теплообменники, забирающие тепло у выведенного из подземных полостей носителя, который после этого закачивается обратно. Используются различные циклы очистки пара от ядовитых или агрессивных примесей, сернистых соединений, сероводорода и других веществ.

Достоинства ГеоТЭС

К достоинствам гидротермальных электростанций можно отнести:

  • источник энергии практически неисчерпаем
  • не используются углеводородные источники энергии
  • сооружение ГеоТЭС не меняет природный ландшафт, не требует использования больших площадей поверхности земли
  • необходимость во внешнем источнике энергии присутствует только на момент запуска оборудования. Как только станция дает первый ток, она обеспечивает свою работу самостоятельно никаких вложений, кроме первоначальных расходов на строительство, не имеется. Требуются лишь обслуживание и ремонт оборудования по необходимости
  • существуют возможности дополнительного использования оборудования станции (например, в качестве опреснителей воды)
  • экологическая чистота, отсутствие опасности заражения или загрязнения местности (этот пункт действует с определенными оговорками)

Недостатки

  • привязка станции к точке выхода на поверхность горячих источников, иногда находящихся в удаленных районах
  • эксплуатация ГеоТЭС способствует изменениям в ходе естественных природных процессов, в результате чего появляется опасность их прекращения
  • скважины или иные точки выхода могут стать источниками выбросов вредных или агрессивных летучих соединений
  • расходы на постройку станции достаточно велики, что способствует возрастанию стоимости энергии для конечного пользователя

Основная причина наличия указанных недостатков — неустойчивость естественных процессов для промышленного использования. Любое вмешательство способно нарушить хрупкое равновесие, а в гидродинамических системах опасность возрастает из-за появления возможности образования карстовых полостей. Эксплуатация ГеоТЭС требует аккуратного и бережного отношения к природным системам, возобновления объемов воды и прочих профилактических мероприятий.

Сферы применения

Геотермальная энергия на сегодняшний день не имеет преобладающего значения, но используется вполне активно. В регионах, где это возможно, создаются ГеоТЭС, станции обогрева жилья или производственных зданий и помещений. Рассмотрим наиболее популярные сферы использования геотермальной энергии:

Сельское хозяйство и садоводство

Доступ к нагретой воде или пару позволяет применять их в сельскохозяйственных или садоводческих комплексах и хозяйствах. Производится обогрев и полив растений, сельскохозяйственных культур в теплицах, оранжереях.

Возможен обогрев сельскохозяйственных комплексов по содержанию и разведению животных, птицы. Возможности данного направления во многом зависят от характеристик источника, его специфических параметров и состава воды.

Активное использование геотермальной энергии в сельском хозяйстве наблюдается в Израиле, Мексике, Кении, Греции Гватемале.

Промышленность и ЖКХ

Для использования геотермальной энергии промышленность и сфера ЖКХ являются наиболее удобными потребителями. Они нуждаются в стабильном и устойчивом источнике энергии, не зависящем от времени суток или других внешних проявлений. Добыча электроэнергии с помощью ГеоТЭС в промышленных масштабах производится в США, России, Новой Зеландии, Филиппинах, Исландии и других странах.

Постоянно происходит ввод в строй новых мощностей. Так, в 2014 году в Кении запущена самая мощная на тот момент ГеоТЭС. В Исландии находится вторая по величине станция — Хеллишейди. Кроме электроэнергии, используется обогрев жилья нагретыми подземными водами. В той же Исландии таким образом обогревается около 80% жилья и общественных зданий.

Геотермальные системы отопления для дома

Геотермальная энергия может быть использована как централизованным, так и частным порядком. Существуют геотермальные системы отопления для частных домов, действующие автономно и не использующие носители из централизованных сетей.

Используется принцип кондиционера, работающего в режиме обогрева. Отличие в том, что кондиционер прекращает нагрев при температуре наружного воздуха около -5°С, а для геотермальных установок такого ограничения не существует.

Под землей устанавливаются коллекторы, в которых циркулирует антифриз. Он поглощает тепловую энергию и возвращается в жилое помещение нагретым, где через теплообменник греет теплоноситель системы отопления.

Возможности этого способа обогрева велики, а расходы идут только на первичный монтаж установки и оплату электроэнергии для циркуляционного оборудования.

Крупнейшие производители геотермальной энергии

Самым крупным производителем геотермальной энергии в мире по праву считается Исландия. Ее доля в общем количестве составляет около 30%, что значительно превышает объемы выработки других государств.

На втором месте находятся Филиппины, где производят 27% от общего количества. Сальвадор и Коста-Рика вырабатывают по 14%, Кения дает 11,2%, а Никарагуа — 10% геотермальной энергии. Заметный вклад привносят Индонезия и Мексика — соответственно 3,7% и 3%.

Эти государства лидируют в производстве геотермальной энергии, что обусловлено наличием у них богатых и мощных источников, обилием вулканических проявлений или подземных гидротермальных источников. Примечательно, что существуют регионы, имеющие большой потенциал в отношении гидротермальных ресурсов, но практически не использующие их из-за достаточного количества других источников энергии.

Перспективы освоения геотермальных ресурсов в России

Энергоизбыточность России, основанная на обилии гидроэнергетических сооружений, понемногу снижается. Если не принимать серьезные меры уже сегодня, может наступить момент, когда объемы выработки энергии снизятся до критических величин.

Возможности использования геотермальной энергии в России невелики, поскольку наличие горячих источников и их мощность не позволяют делать основную ставку на этот вид энергии.

Тем не менее, в регионах, обладающих такими возможностями, использование геотермальной энергетики является одним из приоритетных направлений.

Ведутся серьезные исследования состояния источников, их объемы, рассматриваются перспективы и возможные последствия от работы геотермальных электростанций. На сегодня существующие геотермальные станции сосредоточены, в основном, на Камчатке и Сахалине, но, с развитием технологий, количество и мощность российских ГеоТЭС будут существенно увеличены.

Рекомендуемые товары

Источник: https://Energo.house/otoplenie/geotermalnaya-energiya.html

Геотермальные электростанции

Что такое Геотермальные ресурсы

Геотермальная энергия – это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 0С каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно как для обогрева домов и зданий, так и для производства электроэнергии. Термальные регионы имеются во многих частях мира.

По различным подсчетам, температура в центре Земли составляет, минимум, 6 650 0С. Скорость остывания Земля примерно равна 300-350 0С в миллиард лет. Земля содержит 42 х 1012 Вт тепла, из которых 2% содержится в коре и 98% — в мантии и ядре.

Современные технологии не позволяют достичь тепла, которое находится слишком глубоко, но и 840 000 000 000 Вт (2%) доступной геотермальной энергии могут обеспечить нужды человечества на долгое время.

Области вокруг краев континентальных плит являются наилучшим местом для строительства геотермальных станций, потому что кора в таких зонах намного тоньше.

Геотермальные электростанции и геотермальные ресурсы

Чем глубже скважина, тем выше температура, но в некоторых местах геотермальная температура поднимается быстрее. Такие места обычно находятся в зонах повышенной сейсмической активности, где сталкиваются или разрываются тектонические плиты.

Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности. Чем выше геотермический градиент, тем дешевле обходится добыча тепла, за счет уменьшения расходов на бурение и качание.

В наиболее благоприятных случаях, градиент может быть настолько высок, что поверхностные воды нагреваются до нужной температуры. Примером таких случаев служат гейзеры и горячие источники.

Ниже земной коры находится слой горячего и расплавленного камня называемый магмой. Тепло возникает там, прежде всего, за счет распада природных радиоактивных элементов, таких как уран и калий. Энергетический потенциал тепла на глубине 10 000 метров в 50 000 раз больше энергии, чем все мировые запасы нефти и газа.

Зоны наивысших подземных температур находятся в регионах с активными и молодыми вулканами. Такие «горячие точки» находятся на границах тектонических плит или в местах, где кора настолько тонка, что пропускает тепло магмы. Множество горячих точек находится в зоне Тихоокеанского кольца, которое еще называют «огненное кольцо» из-за большого количества вулканов.

Геотермальные электростанции —  способы использования геотермальной энергии

Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом. Практика прямого использования тепла широко распространенна в высоких широтах на границах тектонических плит, например в Исландии и Японии.

Водопровод в таких случаях монтируется непосредственно в глубинные скважины. Получаемая горячая вода применяется для подогрева дорог, сушки одежды и обогрева теплиц и жилых строений. Способ производства электричества из геотермальной энергии очень похож на способ прямого использования. Единственным отличием является необходимость в более высокой температуре (более 150 0С).

В Калифорнии, Неваде и некоторых других местах геотермальная энергия используется на больших электростанциях, Так, в Калифорнии около 5% электричества вырабатывается за счет геотермальной энергии, в Сальвадоре геотермальная энергия производит около 1/3 электроэнергии. В Айдахо и Исландии геотермальное тепло используется в различных сферах, в том числе и для обогрева жилья. В тысячах домах геотермальные тепловые насосы используются для получения экологически чистого и недорогого тепла.

Геотермальные электростанции —  источники геотермальной энергии

Сухая нагретая порода – Для того, чтобы использовать энергию в геотермальных электростанциях, содержащуюся в сухой скальной породе, воду при высоком давлении закачивают в породу. Таким образом, расширяются существующие в породе изломы, и создается подземный резервуар пара или горячей воды.

Магма – расплавленная масса, образующаяся под корой Земли. Температура магмы достигает 1 200 0С. Несмотря на то, что небольшие объемы магмы находятся на доступных глубинах, практические методы получения энергии из магмы находятся на стадии разработки.

Горячие, находящиеся под давлением, подземные воды, содержащие растворенный метан. В производстве электроэнергии используются и тепло, и газ.

Геотермальные электростанции — принципы работы

В настоящее время существует три схемы производства электроэнергии с использованием гидротермальных ресурсов: прямая с использованием сухого пара, непрямая с использованием водяного пара и смешанная схема производства (бинарный цикл). Тип преобразования зависит от состояния среды (пар или вода) и ее температуры. Первыми были освоены электростанции на сухом пару.

Для производства электроэнергии на них пар, поступающий из скважины, пропускается непосредственно через турбину/генератор. Электростанции с непрямым типом производства электроэнергии на сегодняшний день являются самыми распространенными. Они используют горячие подземные воды (температурой до 182 0С) которая закачивается при высоком давлении в генераторные установки на поверхности.

Геотермальные электростанции со смешанной схемой производства отличаются от двух предыдущих типов геотермальных электростанций тем, что пар и вода никогда не вступают в непосредственный контакт с турбиной/генератором.

Геотермальные электростанции, работающие на сухом пару

Паровые электростанции работают преимущественно на гидротермальном пару. Пар поступает непосредственно в турбину, которая питает генератор, производящий электроэнергию.

Использование пара позволяет отказаться от сжигания ископаемого топлива (также отпадает необходимость в транспортировке и хранении топлива). Это старейшие геотермальные электростанции. Первая такая электростанция была построена в Лардерелло (Италия) в 1904 году, она действует и в настоящее время.

Паровая технология используется на электростанции «Гейзерс» в Северной Калифорнии – это самая крупная геотермальная электростанция в мире.

Геотермальные электростанции на парогидротермах

Для производства электричества на таких заводах используются перегретые гидротермы (температура выше 182 °С). Гидротермальный раствор нагнетается в испаритель для снижения давления, из-за этого часть раствора очень быстро выпаривается. Полученный пар приводит в действие турбину. Если в резервуаре остается жидкость, то ее можно выпарить в следующем испарителе для получения еще большей мощности.

Геотермальные электростанции с бинарным циклом производства электроэнергии

Большинство геотермальных районов содержат воду умеренных температур (ниже 200 0С). На электростанциях с бинарным циклом производства эта вода используется для получения энергии. Горячая геотермальные вода и вторая, дополнительная жидкость с более низкой точкой кипения, чем у воды, пропускаются через теплообменник.

Тепло геотермальной воды выпаривает вторую жидкость, пары которой приводят в действие турбины. Так как это замкнутая система, выбросы в атмосферу практически отсутствуют.

Воды умеренной температуры являются наиболее распространенным геотермальным ресурсом, поэтому большинство геотермальных электростанций будущего будут работать на этом принципе.

Будущее геотермального электричества

Резервуары с паром и горячей водой являются лишь малой частью геотермальных ресурсов. Земная магма и сухая твердая порода обеспечат дешевой, чистой практически неиссякаемой энергией, как только будут разработаны соответствующие технологии по их утилизации. До тех пор, самыми распространенными производителями геотермальной электроэнергии будут электростанции с бинарным циклом.

Чтобы геотермальное электричество стало ключевым элементом энергетической инфраструктуры США, необходимо разработать методы по уменьшению стоимости его получения. Департамент Энергетики США работает с представителями геотермальной промышленности по уменьшению стоимости киловатт-часа до $0,03-0,05. По прогнозам, в ближайшее десятилетие появятся новые геотермальные электростанции мощностью 15 000 МВт.

http://www1.eere.energy.gov/geothermal/powerplants.htm

Источник: https://manbw.ru/analitycs/geothermal_power_stations_plant.html

Геотермальные ресурсы

Общие сведения о геотермальных ресурсах

Геотермальная энергетика России

Геотермальные электростанции России

Общие сведения о геотермальных ресурсах

Помимо нефти и газа большой потенциал в энергетике имеют геотермальные ресурсы. Под ними понимают запасы тепла из недр планеты, образовавшиеся в итоге расщепления радионуклидов.

В Российской Федерации запасы этих ресурсов значительно больше, чем во многих странах мира. Используя тепло планеты Земля, можно получить до десяти процентов от всего теплоснабжения государства. На сегодняшний день известно более шестидесяти месторождений геотермальных ресурсов, для получения энергии создано свыше четырех тысяч скважин.

Наиболее перспективными регионами в отношении развития такой энергии являются полуостров Камчатка, Курилы, Сибирь и Кавказ.

Лучше всего сейчас исследованы месторождения на Северном Кавказе. Температура вод в артезианских бассейнах этого региона достигает ста восьмидесяти градусов. Залежи ресурсов располагаются на глубине в границах 300-5000 метров.

В Краснодарском крае известны месторождения с тепловым потенциалом до 3800 ГДж в год. В настоящее время только пять процентов этого потенциала реализованы.

ЭТО ИНТЕРЕСНО:  Как перевести амперы в киловатты

Относительно сибирских термальных ресурсов известно, что они перспективны для использования.

Потенциал такого вида отопления заключается в том, что этот ресурс быстро возобновляется, является экологически чистым и дешевым.

Применение геотермальных ресурсов в народном хозяйстве возможно при отапливании помещений, теплиц, в рыбном хозяйстве – для выращивания мальков, также при разведении грибниц. В промышленности энергия нагретой до градуса кипения воды может использоваться для электрификации зданий. Водяной пар в таком случае будет подаваться на турбины.

Геотермальные ресурсы неоднородны. Специалисты выделяют петротермальные и гидротермальные.

Геотермальная энергетика России

Наиболее востребован данный вид ресурсов в Соединённых Штатах Америки, государстве, давно и активно использующем внутренние тепло планеты. Наша страна также рассматривает отрасль хозяйства как одну из самых перспективных.

Как правило, электростанции, работающие на термальных источниках энергии, располагаются в регионах с повышенной вулканической деятельностью. Объясняется такое их расположение тем, что раскаленная лава нагревает протекающие рядом воды.

В местах разлома горной породы нагретая вода вырывается наружу. Таким образом создаются гейзеры и геотермальные озера.

Если разломы отсутствуют, и нет возможности получить энергию из открытых источников, к термальной воде добираются посредством бурения скважин.

Хотя залежи геотермальных ресурсов в нашем государстве богаты, используются в хозяйстве только малая их часть. Электростанции, работающие на таком источнике, делятся на два типа: станции непрямого типа (встречаются наиболее часто) и станции смешанного типа. Последние считаются самыми щадящими для состояния экологии регионов.

Начало использования энергии источников подземных вод в Советском союзе относится к середине двадцатого века. Именно в шестидесятых годах на Камчатке появилась первая опытная геотермальная электростанция. Ее задачей стала выработка энергии для промышленных предприятий. Мощность станции не превышала 500 кВт.

Запуск станции позволил поставлять жителям полуострова электроэнергию по самым выгодным ценам. Это продолжалось долгие годы, пока резко не повысилась стоимость мазута.

После подорожания топлива выше стала себестоимость электроэнергии, которая ранее была так дешева.

Подорожание услуги стало причиной того, что, несмотря на перспективность геотермальной энергетики, эта отрасль на полуострове развивается не так активно и отстает от потребности территории в дешевых и экологически чистых источниках энергии.

По сравнению с прочими источниками геотермальные источники энергии обладают рядом преимуществ. Прежде всего, электростанции на термальной воде могут эффективно работать в любых климатических условиях в любое время года, при этом коэффициент использования будет не ниже девяноста процентов.

Такие предприятия не вредят состоянию окружающей среды, вредные примеси, в том числе и углекислый газ, не выбрасываются в атмосферу. Обслуживание электростанции не нуждается в больших технических затратах.

Себестоимость конечного продукта – электроэнергии – ниже, чем стоимость этого продукта, вырабатываемого электростанциями других типов.

В Российской Федерации функционируют пять станций, работающих на геотермальных ресурсах. В условиях севера или недостаточно заселенных территорий государства, где обеспечение населенных пунктов энергией через централизованную сеть электростанций нерентабельно, решить проблему помогут станции, работающие на геотермальной энергии.

Геотермальные электростанции России

Самой первой на территории нашего государства была открыта Паужетская электростанция в шестидесятых годах прошлого века. Строилась станция с целью обеспечить энергией жителей и предприятия, находящиеся в поселках рыбопереработчиков. Название станции дало наименование села, расположенного на берегу полуострова Камчатка. Рядом с ним располагаются два вулкана – Кошелев и Камбальный.

Паужетская ГеоЭС к запуску в эксплуатацию работала на мощности, равной 5 МВт. После подключения бинарного электроблока производственные мощности возросли до 17 МВт. Какой бы щадящей для окружающей среды ни была термальная ГЭС, негативное влияние на экологию ее работа оказывает.

Сброс массива геотермальных вод в ближайшую реку приводит к тому, что нерест рыбы в Озерной становится невозможным. Повышение температуры воды в реке до 120 градусов также негативно сказывается на ее экологическом состоянии.

На геотермальном носителе также негативно сказывается работа станции – происходит постоянная потеря теплового потенциала.

В конце девяностых годов на Камчатке была построена Верхне-Мутновская ГеоЭС. Спустя четыре года введена в эксплуатацию Муновская станция, крупнейшая в регионе. Питающий ее вулкан Мутновский, нагревает воды, поднятые с глубины не менее трехсот метров. Нагреваясь, вода превращается в пар, температура которого доходит до двухсот пятидесяти градусов. Паровым конденсатом отапливается поселок, расположенный неподалеку.

Энергетика полуострова Камчатка практически на двадцать пять процентов обеспечивает потребности жителей в электричестве за счет использования геотермальных источников.

В двухтысячных годах заработала Океанская станция. Располагается она в Сахалинской области на Итурупе – курильском острове. Через тринадцать лет на станции произошел ряд аварий, после чего электростанция подверглась консервации.

Другой остров Курильской гряды – Кунашир – имеет собственную станцию, которая выстроена недалеко от вулкана Менделеева. Строилась Менделеевская электростанция неполные десять лет. Целью строительства было обеспечение города Южно-Курильска электроэнергией и теплом. В настоящее время предприятие модернизируется на средства федерального бюджета. После модернизации мощность предприятия возрастет.

При несомненных плюсах геотермальной энергетики эта часть отрасли обладает рядом негативных сторон. Среди них:

  • Вредные примеси в выбросах отработанного пара, загрязняющие воздух;
  • Неэффективная утилизация отработанной воды, поднятой с большой глубины. Далеко не все сотрудники ГеоЭС соблюдают требования безопасности, в результате чего выбросы воды производятся в ближайшие водоемы;
  • Возведение таких электростанций стоит довольно дорого;
  • Стоимость оборудования неоправданно высока при достаточно низком получении энергии на выходе;
  • Недостаточно высокие потенциалы теплоносителей;
  • Полученный продукт невозможно транспортировать на большие расстояния;
  • Сложности складирования.

Сказанное выше позволяет сделать следующие выводы. Российская Федерация располагает тремя геотермальными зонами, в каждой из которых особые типы и возможности применения геотермальной энергии.

Первая из них располагается на Дальнем Востоке – Камчатском полуострове и островах Курильской гряды. Вторая и третья – Прибайкалье и Северный Кавказ.

Строительство электростанций с использованием геотермальных ресурсов помогло решить множество важнейших проблем в удаленных регионах. Ученые страны защитили ряд патентов, имеют наработки в области добычи энергии.

Осталось только применить этот научный потенциал на практике для использования на благо государства.

Источник: https://sciterm.ru/spravochnik/geotermalnie-resursi/

Геотермальная энергия: плюсы и минусы. Геотермальные источники энергии :

Среди альтернативных источников геотермальная энергия занимает значительное место – ее так или иначе используют примерно в 80 странах по всему миру. В большинстве случаев это происходит на уровне строительства теплиц, бассейнов, применения в качестве лечебного средства или отопления.

В нескольких странах – в том числе США, Исландии, Италии, Японии и других — построены и работают электростанции.

Геотермальная энергия в целом подразделяется на две разновидности – петротермальную и гидротермальную. Первый тип использует как источник горячие горные породы. Второй — подземные воды.

Если свести все данные по теме в одну диаграмму, обнаружится, что в 99% случаев используется тепло пород, и только в 1% геотермальная энергия извлекается из подземных вод.

Основные черты геотермальной энергетики

Внимание к альтернативным источникам обусловлено тем, что запасы нефти и газа на планете не бесконечны, и постепенно исчерпываются. Кроме того, они есть не везде, и многие страны зависят от поставок из других регионов. Среди иных важных факторов – негативное влияние ядерной и топливной энергетики на среду обитания человека и дикую природу.

Большое достоинство ГЭ – возобновляемость и универсальность: возможность использовать для водо- и теплоснабжения, или для выработки электроэнергии, или для всех трех целей сразу.

Но главное – это геотермальная энергия, плюсы и минусы которой зависят не столько от местности, сколько от кошелька заказчика.

Достоинства и недостатки ГЭ

В числе преимуществ этого вида энергии следующие:

  • она возобновляемая и практически неиссякаемая;
  • независима от времени суток, сезона, погоды;
  • универсальна — с ее помощью можно обеспечить водо- и теплоснабжение, а также электричество;
  • геотермальные источники энергии не загрязняют окружающую среду;
  • не вызывают парникового эффекта;
  • станции не занимают много места.

Однако имеются и недостатки:

  • геотермальная энергия не считается полностью безвредной из-за выбросов пара, в составе которого могут быть сероводород, радон и другие вредные примеси;
  • при использовании воды с глубоких горизонтов стоит вопрос ее утилизации после использования – из-за химического состава такую воду нужно сливать либо обратно в глубокие слои, либо в океан;
  • постройка станции относительно дорога – это удорожает и стоимость энергии в итоге.

Частный сектор

Одна из наиболее перспективных сфер – частный сектор, для которого геотермальная энергия – это реальная альтернатива автономного газового отопления. Самая серьезная преграда здесь – при довольно дешевой эксплуатации высокая начальная стоимость оборудования, которая значительно выше, чем цена установки «традиционного» отопления.

Свои разработки для частного сектора предлагают компании MuoviTech, Geodynamics Ltd, Vaillant, Viessmann, Nibe.

Страны, использующие тепло планеты

Безусловным лидером в использовании георесурсов является США – в 2012 году выработка энергии в этой стране достигла отметки 16.792 миллиона мегаватт-часов. В том же году, суммарная мощность всех геотермальных станций на территории Штатов достигала 3386 МВт.

ГеоТЭС на территории США расположены в штатах Калифорния, Невада, Юта, Гавайи, Орегон, Айдахо, Нью-Мехико, Аляска и Вайоминг. Самая крупная группа заводов носит название «Гейзеры» и расположена неподалеку от Сан-Франциско.

Кроме Соединенных Штатов, в первой десятке лидеров (по состоянию на 2013 год) также находятся Филиппины, Индонезия, Италия, Новая Зеландия, Мексика, Исландия, Япония, Кения и Турция. При этом в Исландии геотермальные источники энергии обеспечивают 30% от всей потребности страны, на Филиппинах – 27%, а в США – меньше 1%.

Потенциальные ресурсы

Работающие станции – только начало, отрасль лишь начинает развиваться. Исследования в этом направлении идут постоянно: более чем в 70 странах ведется разведка потенциальных месторождений, в 60 освоено промышленное использование ГЭ.

Перспективными выглядят сейсмически активные районы (как это видно на примере Исландии) – штат Калифорния в США, Новая Зеландия, Япония, страны Центральной Америки, Филиппины, Исландия, Коста-Рика, Турция, Кения. Эти страны имеют потенциально выгодные не исследованные месторождения.

В России это Ставропольский край и Дагестан, остров Сахалин и Курильские о-ва, Камчатка. В Беларуси определенный потенциал есть на юге страны, охватывая города Светлогорск, Гомель, Речица, Калинковичи и Октябрьский.

На Украине перспективными являются Закарпатская, Николаевская, Одесская и Херсонская области.

Достаточно перспективным является полуостров Крым, тем более что большая часть потребляемой им энергии импортируется извне.

Источник: https://www.syl.ru/article/173209/new_geotermalnaya-energiya-plyusyi-i-minusyi-geotermalnyie-istochniki-energii

Геотермальная энергетика и ресурсы России

Геотермальная энергетика России может обеспечивать население определенными ресурсами для коммунальных, промышленных и сельскохозяйственных нужд.

В России и бывшем Советском Союзе на протяжении более 60 лет проводились буровые работы для получения горячей воды и пара из недр Земли. Сегодня практически вся территория страны хорошо изучена. Выяснилось, что многие регионы имеют запасы горячей воды и пара с температурой от 50 до 2000С на глубине от 200 до 3000 м.

Геотермальные источники в России

Центральный регион, Северный Кавказ, Дагестан, Сибирь, зона Байкальского рифта, Красноярский край, Чукотка, Сахалин, полуостров Камчатка и Курильские острова имеют богатейшие ресурсы геотермальной энергии для производства до 2000 МВт электроэнергии и более 3000 МВт тепла для системы централизованного теплоснабжения. Использование геотермальных ресурсов в России особенно важно для снабжения северных территорий страны.

В России в связи с холодным климатом более 45% от общего объема энергетических ресурсов используются для теплоснабжения городов, населенных пунктов и производственных комплексов. До 30% этих энергетических ресурсов в отдельных районах может быть обеспечено при использовании тепла из недр Земли.

Использование геотермальной энергетики планируется провести в следующих регионах России: в Краснодарском крае (теплоснабжение города Лабинск, а также комплекс в поселке Розовый), Калининградской области и на Камчатке (теплоснабжение Елизовской и Паужетской электростанции мощностью 12 мВт и расширение существующей Мутновской Геоэс до 50 МВт, где используется вторичный пар для производства электроэнергии.

Экономические и политические изменения, которые произошли в России в значительной степени влияют на то, как электроэнергетика развивается.

Электроэнергия в России, в основном, базируется на использовании ископаемого топлива и эксплуатации атомных и гидроэлектростанций. В настоящее время геотермальная энергетика является сравнительно скромной, хотя страна обладает значительными ресурсами.

Современная экономическая ситуация в России зависит от развития своего энергетического потенциала. Трудности экономики делают проблему энергоснабжения существенной, особенно в северных и восточных регионах страны.

Под эти обстоятельства, вполне естественно, что регионы должны стремиться к использованию собственных энергетических ресурсов и развития возобновляемых источников энергии.

В регионах Дальнего Востока, Сахалина, Курил, на Камчатке, использование геотермальных электростанций в России становится экономически целесообразным.

Есть несколько основных регионов, перспективных для “прямого” использования (теплоснабжения жилых домов и промышленных зданий, подогрева теплиц и почвы, в животноводстве, рыболовстве, в промышленном производстве, для добычи химических элементов, увеличения нефтеотдачи пластов, для плавления мерзлых пород, в бальнеологии и т. д.), а также для тепла с применением тепловых насосов и получения электроэнергии на Геоэс бинарного цикла (геотермальная электростанция).

Один из них регион (Камчатка и Курильские острова) находится в районе активных вулканов, наиболее перспективный район для “прямого” использования геотермальной энергетики и строительства Геоэс. До сих пор 66 скважин термальной воды и пара были изучены в России. Половина из них находится в эксплуатации, обеспечивая около 1,5 млн Гкал тепла в год, что равно почти 300 тысяч тонн условного топлива.

Южная часть России

Дагестан на Северном Кавказе является одним из крупнейших в области развития геотермальной энергетики. Общая сумма ресурсов на глубине 0,5-5,5 км позволяет получить примерно 4 млн. м3/сутки горячей воды. В настоящее время более 7,5 млн. м3/год воды температурой 50-1100C используется в Дагестане. Среди них 17% в качестве горячей; 43% для централизованного теплоснабжения; 20% для теплиц и 3% для бальнеологии и производства минеральной воды.

В Дагестане около 180 скважин пробурено на глубине от 200 до 5500 м. Такие города, как Кизляр, Тарумовка и Южно-Сухокумск, обладают уникальными запасами горячей воды. Например, Таруморское месторождение имеет запасы горячих вод высокой минерализации (200 г/л) с температурой до 950С шесть скважин были пробурены на глубину около 5500 м, самых глубоких скважин в России.

ЭТО ИНТЕРЕСНО:  Для чего служит полупроводниковый диод

Тесты указывают на высокую проницаемость пласта скважин между 7500 и 11000 м3/сутки и устьевое давление 140-150 бар.

На Кавказе и в Предкавказье термальные воды образовались за счет многослойных артезианских бассейнов в отложениях геологической эры Мезозоя и Кайнозоя.

Минерализация и температура этих вод существенно различается: на глубинах 1-2 км – от 0,5 до 65 г/кг и от 70 до 100 0С соответственно, в то время как на Скифской платформе на глубинах 4-5 км – от 1 до 200 г/кг и от 50°С до 170°С.

В Дагестане общая сумма разведанных термальных запасов воды составляет 278 тыс. м3/сутки, а с использованием пласта воды – 400 тыс. м3/сутки. Тепловой потенциал здесь эквивалентен ежегодной замене 600 тыс. тонн условного топлива.

Геотермальная энергетика использует ресурсы при температуре от 40-1070С и минерализацию от 1,5-27 г/л находящиеся в Северном Дагестане. За последние 40 лет 12 крупных термальных вод были обнаружены и 130 скважин было пробурено и подготовлено к эксплуатации в данном регионе.

Однако в настоящее время используется только 15% потенциальных известных термальных запасов воды.

Краснодарский край также обладает значительными запасами геотермальной энергетики. Район имеет широкий опыт использования геотермальных источников энергии. Порядка 50 скважин находятся в эксплуатации, которые принимают воду в объеме до 10 млн.

м3 с температурой от 75 до 110 °C. Широкие области использования энергии в Краснодарском крае позволят обеспечить к 2020 году до 10% спроса всего тепла и до 3% всех энергетических потребностей региона.

В совокупности тепловая мощность месторождений, находящихся в эксплуатации составляет 238 МВт.

Центральная часть России и Сибирь

Экономическая целесообразность использования геотермальных ресурсов для выработки тепла и производства электроэнергии становится более очевидной если ресурсы в основном доступны с температурой от 30 до 800С (иногда даже до 1000С) на глубинах 1-2 км. Такие ресурсы находятся в центральной части средне-русского бассейна (Московская синеклиза (разрез)), которые включает в себя 8 районов: Вологодский, Ивановский, Костромской, Московский, Нижегородский,

Новгородский, Тверской и Ярославский. Есть также перспективные возможности для эффективного использования термальных вод в Ленинградской области и особенно в Калининградской области. Эффективность их использования может быть обеспечена за счет применения тепловых насосов и бинарных циркуляционных систем. Широкое использование геотермальной энергетики возможно в центре Европейской части России.

Сибирь также обладает запасами тепла из недр, которые могут использоваться для теплоснабжения и сельского хозяйства. Термальные воды платформы Западной Сибири имеют большой артезианский бассейн  на площади почти 3 млн. км2. На глубинах до 3 км имеются тепловые ресурсы воды с температурой от 35 до 75 0С и минерализацией от 1 до 25 г/кг и оцениваются в 180 м3/сек.

Высокая минерализация этих термальных вод требует их обратной закачки после использования теплового потенциала для предотвращения загрязнения среды.

Использование даже 5% своих резервов позволит производить 834 млн Гкал/год, что позволит сэкономить 119 млн. т условного топлива.

На Байкале и прилегающей территории есть множество термальных источников, энергия которых может достигать многих тысяч кубических метров в сутки с температурой от 30 до 800С и выше. Обычно минерализация таких вод не превышает 0,6 г/л.

Если рассмотреть химический состав термальных вод, в основном, они имеют щелочную реакцию, сульфат или гидрокарбонат натрия. Большая часть этих ресурсов находится в Тункинской и Баргузинской полости и вдоль побережья озера Байкал.

Камчатка и Курильские острова

Самые богатые запасы геотермальной энергии на Дальнем Востоке России. В частности, на Камчатке и Курильских островах имеются богатейшие ресурсы, с генерирующей мощностью до 2000 МВт и тепловой мощностью не менее 3000 МВт использующих пароводяную смесь и горячую воду.

С середины 50-х проводились систематические геофизические исследования и бурение для поиска горячей воды. На сегодняшний день пробурены порядка 400 скважин на глубину от 170 до 1800 м. С 1966 года Паужетская геотермальная электростанция находится в стадии успешного функционирования, генерирующая дешевую электроэнергию в этом регионе.

По оценкам потенциал этого месторождения составляет около 50 МВт (до 30 лет).

Практически на всей территории Камчатки имеется геотермальная энергетика в виде горячей воды и пара. К югу от Камчатки в районе Паужетской Геоэс при освоении был обнаружен ресурс достаточный для Геоэс, мощностью около 350 МВт. К северу от Мутновская Геоэс существуют ресурсы величиной порядка 180-200 МВт.

Восточная часть Камчатки оценивается как богатый высокотемпературный водный ресурс мощностью около 250 МВт. В центре и северной части Камчатки расчетная мощность геотермальных ресурсов с температурами выше 1500C составляет 550 МВт.

Расчетная тепловая мощность геотермальных ресурсов с температурами ниже 150 0С до 600 МВт.

Курильские острова, в основном, питаются  дизель-генераторами электроэнергии и отапливаются котельными работающими на привозном угле. В то же время Курильские острова богаты геотермальной энергетикой.

Ожидается, что их мощность будет достигать 300 МВт.

Геотермальная энергетика необходимой мощности может быть реализована в непосредственной близости от каждого крупного населенного пункта, действующих или планируемых объектов Курильских островов – на Кунашире, Итурупе, островах Парамушир и др.

Были изучены несколько источников геотермальной энергетики на упомянутых островах. Например, на острове Кунашир по данным геологоразведочных работ ожидается, что запасы геотермальных резервуаров оцениваются в 52 МВт. Ожидаемые запасы самого Северного острова Курильской гряды – Парамушир, рассчитанные с помощью различных методов, могут поддерживать работу геотермальных электростанций мощностью 15 – 100 мВт.

Прямое использование геотермальных ресурсов в основном развито в Курило-Камчатской области, Дагестане и Краснодарском крае, и в первую очередь для теплоснабжения и отопления теплиц. Развитие геотермальных ресурсов является достаточно перспективным в таких регионах, как Западная Сибирь, Байкал, Чукотка, Приморье, Сахалин.

Экономическая целесообразность использования геотермальных ресурсов при воде с температурой между 30 и 80/даже 100ºС на глубинах 1-2 км.

Природные ресурсы России

Россия, в отличие от многих других стран, обладает уникальными природными ресурсами.

Запасы ископаемого топлива огромны в России, и по сравнению с мировыми составляют: 35% газа, 33% для древесины, 12% на нефть, но в то же время обладают огромным количеством горячей воды из земли – тепла из недр.

Потенциальная энергия в 8-12 раз превышает энергетический потенциал углеводородного топлива, который может кардинально изменить энергетический баланс.

Резюмируя ситуацию с использованием геотермальной энергии в России в первую очередь надо еще раз отметить, что на Камчатке три геотермальные электростанции успешно работают: 12 МВт и 50 МВт (Верхне-Мутновская и Мутновская) и 11 МВт на Паужетской области. На Курильских островах (Кунашир и Итуруп) есть две небольшие Геотэс мощностью 3,6 МВт, которые также успешно работают.

Источник: https://beelead.com/geotermalnaya-energetika-resursy/

Как Земля может служить источником неисчерпаемой энергии

Все городские жители привыкли к тому, что электричество и тепло в их дома поступают как-то сами собой. Плати за них каждый месяц и дома будет светло, тепло и вкусно пахнуть с кухни.

Но задумывались ли вы когда-нибудь откуда вся эта энергия берется? В крупных городах, как правило, это гидроэлектростанции, теплоэлектростанции и атомные электростанции.

Сегодня поговорим про немного специфический, но очень интересный способ добычи тепла и света непосредственно из темных недр нашей планеты. Сжигать ничего не придется.

Геотермальная электростанция во всей красе.

Прежде, чем говорить о производстве энергии, давайте представим себе отдаленное от крупных городов место. Не деревню, в которой живет 10 жителей в 15 покосившихся домах, а просто небольшой городок. Желательно, чтобы он находился рядом с вулканом. Если представили, то теперь надо понять, как доставить туда электричество и отопление.

Можно построить тепловую электростанцию и круглые сутки жечь природные ископаемые, которые стоят больших денег, портят окружающую среду и требуют как минимум хорошую дорогу для их доставки, а то и железнодорожную ветку.

Не пропускайте статьи о самых интересных технология. Подпишитесь на наш канал в Яндекс Дзен. Там есть даже то, чего нет на сайте.

Вторым вариантом будет дорогущая атомная станция, которая несет в себе вполне понятные риски и требует работы специалистов узкого профиля. Это тоже не самый хороший вариант для небольших городов. Но что тогда выбрать и как обеспечить людей бытовыми благами?

Что такое ГеоТЭС

Перед тем, как рассказать о самих электростанциях, стоит сказать, что такое вообще геотермальная энергия.

Геотермальная энергия — это энергия, получаемая из природного тепла Земли.

Для получения тепла из недр Земли требуется бурение скважин. При этом, чем глубже скважина, тем больше энергии можно получить. Геотермический градиент в скважине возрастает в среднем на 1 °C каждые 36 метров. Тепло доставляется на поверхность в виде пара или горячей воды, а использовать его можно как для производства электричества, так и для отопления. Благодаря тому, что термальные регионы есть по всему миру, пользоваться таким способом получения энергии могут многие страны.

Наиболее удачными местами для размещения подобных электростанций являются стыки тектонических плит. Именно в этих зонах кора тоньше и тепло получить проще. Напомню, считается, что температура в центре Земли не ниже 6800 градусов. Чем ближе к центру, тем выше температура. Все логично.

Примерно по такой схеме работает геотермальная электростанция.

В простейшем примере ГеоТЭС работает путем получения водяного пара, который крутит турбину, вырабатывающую электричество, но из-за особенностей каждого конкретного варианта они делятся на несколько типов.

Типы ГеоТЭС

Самый простой тип ГеоТЭС использует при работе так называемую прямую схему. При ней пар поднимается по трубам и сразу раскручивает турбину. При непрямой схеме перед тем, как попасть в трубы, пар очищается от газов, которые вызывают ускоренное разрушение металла. Если удаление газов производится после конденсации воды, схема считается смешанной. Но есть еще и бинарная схема, являющаяся самой технологичной.

Примером таких станций является геотермальная электростанция Ландау в Германии. Она использует термальную воду для доставки тепла из недр Земли, но дальше в дело включается другая жидкость с низкой температурой кипения. Она и раскручивает турбины.

Как правило, для этого используется изопентан. Такой способ позволяет разместить электростанции в тех местах, где нет доступа к таким источникам тепла, которые способны непосредственно выдать пар для работы турбины.

Для их работы достаточно воды с температурой не более 70 градусов.

Первая геотермальная электростанция

Все мы привыкли к тому, что много лет назад энергия добывалась из природных ископаемых. Так оно и было, вот только еще до этого одними их первых электростанций были именно геотермальные. В целом это очень логично, так как техника работала на паровой тяге, и использовать именно пар было более правильным решением. Да и собственно единственным для того времени, не считая сжигания дерева и угля.

Еще в 1817 году граф Франсуа де Лардерель разработал технологию сбора природного пара, которая очень пригодилась в двадцатом веке, когда спрос на геотермальные электростанции стал очень высоким.

Первая реально работающая станция была построена в итальянском городе Лардерелло в 1904 году. Правда, она была больше прототипом, так как могла питать только 4 лампочки, но она работала. Спустя шесть лет в 1910 году в этом же городе была построена реально работающая станция, которая могла добывать энергию, достаточную для промышленного использования.

Даже в таких живописных местах могут быть ГеоТЭС.

Экспериментальные генераторы строились во многих местах, но именно Италия до 1958 года удерживала лидерство и была единственным в мире производителем геотермальной энергии в промышленных масштабах.

Уступить лидерство пришлось после того, как в Новой Зеландии запустили в эксплуатацию электростанцию Вайракей. Она была первой геотермальной электростанцией непрямого типа. Через несколько лет подобные объекты открылись и в других странах, включая США с ее источниками в Калифорнии.

Первая геоТЭС непрямого типа была построена в СССР в 1967 году. В это время такой способ получения энергии начал активно развиваться по всему миру. Особенно в таких местах, как Аляска, Филиппины и Индонезия, которые до сих пор являются одними из лидеров по добываемой таким способом энергии.

Кпд геотермальной электростанции

На самом деле, нельзя сказать, что геоТЭС очень эффективны, так как их КПД составляет всего 7-10 процентов. Это очень мало в сравнении с объектами, на которых энергия извлекается из сгорающего топлива.

Именно поэтому нельзя просто выкопать яму, засунуть в нее трубу и пойти отдыхать.

Система должна быть высокоэффективной и использовать несколько циклов для большей производительности, иначе полученной энергии не хватит даже на работу насосов, используемых для доставки жидкости на поверхность.

Ключевым фактором успеха геотермальных электростанций, в сравнении с ветряными и солнечными, является их постоянство. Они способны работать 24/7 с одинаковой интенсивностью, затрачивая на работу меньше энергии, чем производится на выходе. Дополнительным плюсом является возможность получения тепла, используемого для отопления домов и объектов в ближайшей зоне. И для всего этого не надо сжигать дорогое топливо.

Перспективы геоТЭС

Спустя более чем сто лет с момента первой демонстрации возможностей использования геотермальной энергии, станции, работающие на этом “топливе”, являются перспективными и незаменимыми для некоторых регионов. В России, например, почти все станции находятся на Камчатке. В США речь идет о Калифорнии, а в Германии о некоторых Альпийских районах.

Страны лидеры по производству энергии из геотермальных источников.

Пятерка лидеров по объему производимой ГеоТЭС энергии включает в себя США, Индонезию, Филиппины, Италию и Новую Зеландию. Несложно заметить, что это страны с совершенно разным уровнем развития. Получается, что геотермальная энергии доступна всем и все в ней заинтересованы. По мере развития технологий, увеличения КПД станций и уменьшения запасов невозобновляемых источников энергии, геотермальная энергия будет становиться все более востребованной.

Для тех, кто переживает за температуру планеты, стоит сказать, что при температуре центра Земли минимум 6800 градусов Цельсия, остывает он всего на 300-500 градусов за миллиард лет. Думаю, что не стоит беспокоиться по этому поводу.

Источник: https://Hi-News.ru/technology/kak-zemlya-mozhet-sluzhit-istochnikom-neischerpaemoj-energii.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор