Что такое электрическое поле в физике

Электрическое поле. Виды и работа. Применение и свойства

Что такое электрическое поле в физике

Электрическое поле – это векторное поле, действующее вокруг частиц обладающих электрическим зарядом. Оно входит в состав электромагнитного поля. Для него характерно отсутствие реальной визуализации. Оно невидимо, и может быть замечено только в результате силового воздействия, на которое реагируют другие заряженные тела с противоположными полюсами.

По сути, поле является особым состоянием материи. Его действие проявляется в ускорении тел или частиц, обладающих электрическим зарядом. К его характеризующим особенностям, можно отнести:

  • Действие только при наличии электрического заряда.
  • Отсутствие границ.
  • Наличие определенной величины воздействия.
  • Возможность определения только по результату действия.

Поле неразрывно связано с зарядами, которые находятся в определенной частице или теле. Оно может образовываться в двух случаях.

Первый предусматривает его появление вокруг электрических зарядов, а второй при перемещении электромагнитных волн, когда меняется электромагнитное поле.

Электрические поля воздействуют на неподвижные относительно наблюдателя электрически заряженные частицы. В результате они получают силовое влияние. Пример воздействия поля можно наблюдать и в быту. Для этого достаточно создать электрический заряд. Учебники физики предлагают для этого простейший пример, когда диэлектрик натирается о шерстяное изделие.

Получить поле вполне возможно, взяв пластиковую шариковую ручку и потерев ее о волосы. На ее поверхности образуется заряд, что приводит к появлению электрического поля. Как следствие ручка притягивает мелкие частицы. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней.

Такой же результат можно достигнуть и при использовании пластиковой расчески.

Бытовым примером проявления электрического поля является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя заряды. При снятии такого предмета одежды электрическое поле подвергается различным силам воздействия, что и приводит к образованию световых вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов.

Для характеристики электрического поля применяется 3 показателя:

  • Потенциал.
  • Напряженность.
  • Напряжение.

Потенциал

Данное свойство является одним из главных. Потенциал указывает на количество накопленной энергии применяемой для перемещения зарядов. По мере их сдвига энергия расточается, постепенно приближаясь к нулю. Наглядной аналогией данного принципа может выступить обыкновенная стальная пружина.

В спокойном положении она не обладает никаким потенциалом, но только до того момента, пока не будет сжата. От такого воздействия она получает энергию противодействия, поэтому после прекращения влияния обязательно разогнется. Когда пружина отпускается, то моментально распрямляется. Если на ее пути окажутся предметы, она начнет их двигать.

Возвращаясь непосредственно к электрическому полю потенциал можно сравнить с приложенными усилиями на выпрямление назад.

Электрическое поле обладает потенциальной энергией, что и делает его способным выполнять определенное воздействие. Но перемещая заряд в пространстве, оно истощает свой ресурс. В том же случае если передвижение заряда внутри поля осуществляется под воздействием сторонней силы, то поле не только не теряет свой потенциал, но и пополняет его.

Также для большего понимания данной величины можно привести еще один пример. Предположим, что незначительный положительно заряженный заряд располагается далеко за пределами действия эл.поля. Это делает его совершенно нейтральным и исключает взаимный контакт.

Если же в результате воздействия любой сторонней силы заряд будет двигаться по направлению к электрическому полю, то достигнув его границы, будет втянут в новую траекторию.

Энергия поля, затраченная на влияние относительно заряда в определенной точке воздействия, и будет называться потенциалом на этой точке.

Выражение электрического потенциала осуществляется через единицу измерения Вольт.

Напряженность

Этот показатель применяется для количественного выражения поля. Данная величина рассчитывается как отношение положительного заряда воздействующего на силу действия. Простым языком напряженность выражает силу эл.поля в определенном месте и времени. Чем выше напряженность, тем более выраженным будет влияние поля на окружающие предметы или живые существа.

Напряжение

Этот параметр образуется от потенциала. Он применяется для демонстрации количественного соотношения действия, которое производит поле. То есть, сам потенциал показывает объем накопленной энергии, а напряжение демонстрирует потери на обеспечение движения зарядов.

В электрическом поле положительные заряды перемещаются от точек с высоким потенциалом в места, где он ниже. Что касается отрицательных зарядов, то они движутся противоположно. Как следствие осуществляется работа с использованием потенциальной энергии поля. Фактически напряжение между точками качественно выражает работу, совершенную полем для переноса единицы противоположно заряженных зарядов. Таким образом, термины напряжение и разность потенциалов это одно и то же.

Наглядное проявление поля

Электрическое поле имеет условное визуальное выражение. Для этого применяются графические линии. Они совпадают с линиями воздействия силы, которые излучают заряды вокруг себя. Помимо линии действия сил, также важно их направление. Для классификации линий за основу определения направлений принято использовать положительный заряд. Таким образом, стрелка движения поля идет от положительных частиц к отрицательным.

Чертежи, изображающие эл.поля, на линиях имеют направление в виде стрелки. Схематически в них всегда есть условное начало и конец. Таким образом, они не замыкаются сами на себе. Силовые линии берут свое начало на точке нахождения положительного заряда и заканчиваются на месте отрицательных частиц.

Электрическое поле может иметь различные типы линий в зависимости не только от полярности заряда, который способствует их образованию, но и наличию сторонних факторов. Так, при встрече противоположных полей они начинают действовать друг на друга притягательно. Искаженные линий приобретают очертания гнутых дуг. В том же случае, когда встречаются 2 одинаковых поля, то они отталкиваются в противоположные стороны.

Сфера применения

Электрическое поле обладает рядом свойств, которые нашли полезное применение. Данное явление используется при создании различного оборудования для работы в нескольких весьма важных сферах.

Использование в медицине

Воздействия электрического поля на определенные участки тела человека позволяет повышать его фактическую температуру. Это свойство нашло свое применение в медицине. Специализированные аппараты обеспечивают воздействия на необходимые участки поврежденных или больных тканей. В результате чего улучшается их кровообращение и возникает заживляющий эффект. Поле воздействует с высокой частотой, поэтому точечное влияние на температуру дает свои результаты и вполне ощутимо для больного.

Применение в химии

Данная сфера науки предусматривает использования различных чистых или смешанных материалов. В связи с этим работа с эл.полями не могла обойти эту отрасль. Компоненты смесей взаимодействуют с электрическим полем по-разному. В химии это свойство применяется для разделения жидкостей. Данный метод нашел лабораторное применение, но встречается и в промышленности, хотя и реже. К примеру, при воздействии полем осуществляется отделения в нефти загрязняющих компонентов.

Электрическое поле применяется для обработки при фильтрации воды. Оно способно отделить отдельные группы загрязняющих веществ. Такой способ обработки намного дешевле, чем использование сменных картриджей.

Электротехника

Использование электрического поля имеет весьма интересное применение в электротехнике. Так, был разработан способ беспроводной передачи электричества от источника до потребителя. До недавнего времени все разработки имели теоретический и экспериментальный характер.

Уже имеется эффективная реализация технологии зарядки телефона без применения непосредственного гибкого кабеля вставляемого в USB разъем смартфона. Данный способ пока не позволяет передавать энергию на продолжительное расстояние, но он совершенствуется.

Вполне возможно, что в ближайшем будущем надобность в зарядных кабелях с блоками питания отпадет полностью.

При выполнении электромонтажных и ремонтных работ применяется светодиодная индикаторная отвертка, действующая на основе схемы полевого транзистора. Помимо ряда функций, она может реагировать на электрическое поле.

Благодаря этому при приближении пробника к фазному проводу индикатор начинает светиться без фактического касания к токопроводящей жиле. Он реагирует на поле исходящие от проводника даже сквозь изоляцию.

Наличие электрического поля позволяет находить токопроводящие провода в стене, а также определять точки их разрыва.

Защититься от воздействия эл.поля можно при помощи металлического экрана, внутри которого его не будет. Это свойство широко применяется в электронике, чтобы исключить взаимное влияние электрических схем, которые расположены довольно близко друг к другу.

Возможности применения в будущем

Имеются и более экзотические возможности для электрического поля, которыми на сегодняшний день еще не обладает наука. Это коммуникации быстрее скорости света, телепортация физических объектов, перемещение за один миг между разомкнутыми местоположениями (червоточины). Однако для осуществления подобных планов будут нужны куда более сложные исследования и эксперименты, чем проведение экспериментов с двумя возможными исходами.

Однако наука все время развивается, открывая все новые возможности применения электр.поля. В будущем его сфера использования может значительно расшириться. Возможно, что оно найдет применение во всех значимых областях нашей жизни.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/elektricheskoe-pole/

Электрическое поле: определение, типы и свойства

Что такое электрическое поле в физике

В данной статье вы узнаете что такое электрическое поле, определение, его типы и основные свойства.

Определение

Область вокруг электрического заряда, в которой действует напряжение или электрическая сила, называется электрическим полем или электростатическим полем. Если величина заряда велика, то это может создать огромное напряжение в области. Электрическое поле обозначается символом E. Единица СИ электрического поля — ньютон на кулон, что равно вольт на метр.

Электрическое поле представлено воображаемыми силовыми линиями. Для положительного заряда силовая линия выходит из заряда, а для отрицательного заряда силовая линия будет двигаться в направлении заряда. Электрическое поле для положительных и отрицательных зарядов показано ниже.

Рассмотрим единичный заряд Q, помещенный в вакуум. Если рядом с Q находится другой заряд q, то согласно закону Кулона на него накладывается сила. Заряд Q создает вокруг него электрическое поле, и когда рядом с ним помещается любой другой заряд, электрическое поле Q прикладывает к нему силу.

Электрическое поле, создаваемое зарядом Q в точке r, определяется как:

где Q — единица заряда,
r — расстояние между зарядами.

Заряд Q прикладывает силу к заряду q, выраженному:

Заряд q также прикладывает равную и противоположную силу к заряду Q.

Типы электрического поля

Электрическое поле в основном подразделяется на два типа. Это однородное электрическое поле и неоднородное электрическое поле.

Однородное электрическое поле

Когда электрическое поле является постоянным в каждой точке, то это поле называется однородным электрическим полем. Постоянное поле получается путем размещения двух проводников параллельно друг другу, и разность потенциалов между ними остается одинаковой в каждой точке.

Неоднородное электрическое поле

Непостоянное в каждой точке поле называется неоднородным электрическим полем. Неоднородное поле имеет разную величину и направления.

Свойства электрического поля

Ниже приведены свойства электрического поля.

  1. Полевые линии никогда не пересекаются друг с другом.
  2. Они перпендикулярны поверхностному заряду.
  3. Поле сильное, когда линии расположены близко друг к другу, и слабое, когда линии поля расходятся друг от друга.
  4. Количество силовых линий прямо пропорционально величине заряда.
  5. Линия электрического поля начинается с положительного заряда и заканчивается отрицательным зарядом.
  6. Если заряд одиночный, то они начинаются или заканчиваются на бесконечности.
  7. Кривые линий непрерывны в области без заряда.

Когда электрическое и магнитное поле объединяются, они образуют электромагнитное поле.

Источник: https://meanders.ru/chto-takoe-jelektricheskoe-pole.shtml

Физика 21 века

Что такое электрическое поле в физике

Изучая микромир, физика к началу 20 века установила, что вещество состоит из атомов. Изучая структуру атомов, Резерфорд (1911 год) установил наличие у атомов плотного яда с положительным электрическим зарядом.

Дальнейшее развитие физики микромира установило наличие в атомных ядрах элементарных частиц: протонов и нейтронов, из которых совместно с электронами состоит барионное вещество Вселенной.

Физика 20 века также установила, что элементарные частицы вещества Вселенной обладают физическими полями и создают физические поля в окружающем пространстве.

1 Фундаментальные взаимодействия

Физика, изучая природу, доказала наличие следующих фундаментальных взаимодействий и их физических полей:

Фундаментальные взаимодействия в природе (и их физические поля)
∙ Электромагнитные взаимодействия (электромагнитные поля) ∙ Гравитационные взаимодействия (гравитационные поля элементарных частиц)

У данных фундаментальных взаимодействий есть соответствующие им физические поля.

Все реально существующие в природе физические взаимодействия должны сводиться к этим двум фундаментальным взаимодействиям. Доказательствами существования в природе иных гипотетических фундаментальных взаимодействий и их гипотетических физических полей — физика НЕ располагает.

В физике 20 века появилось множество абстрактных теоретических построений, выдаваемых авторами и сторонниками за высшее достижение науки, выдумывающих свои частицы, свои поля и свои взаимодействия. Это возникло в следствие отказа вначале 20 века от доказательной физики. В результате этого в физику, одновременно с выдающимися открытиями, хлынул поток математических Сказок, имитирующих Науку и захлестнул ее.

Как и предостерегали сторонники Классической Физики, теперь в учебниках по физике и в научных изданиях рядом присутствуют как подлинные научные знания, так и псевдонаучные сказки и их чрезвычайно трудно отделить, особенно человеку, не обладающему необходимыми знаниями. Более того, математические Сказки уже проникли и в школьные учебники физики и обманывают детей, наивно считающих, что они получают подлинные Знания.

Предостережение сторонников Классической Физики сбылось — МЫ ПОТЕРЯЛИ ФИЗИКУ, и предстоит жесткая и упорная борьба за возрождение ФИЗИКИ, как НАУКИ.

Посмотрите, кто пишет статьи по физике, даже на сайте Викизнание. У них у всех есть высшее физическое образование? — Многие из них скрывают свое имя под никнеймом, и мы не можем проверить уровень их знаний и определиться, до какой степени им можно доверять. Но они считают себя в праве, даже не обладая знаниями физики, навязывать свои идеи в качестве истины. А в итоге, преподаватели физики перестают доверять информации на сайтах Википедия и Викизнание.

2.1 Постоянные электрические поля заряженных элементарных частиц

Физика 20 века экспериментально установила, что примерно половина элементарных частиц обладает постоянным электрическим полем, эквивалентным полю элементарного электрического заряда +e или -e. Во второй половине 20 века, физика установила наличие у этих элементарных частиц (кроме лептонов — структуру которых тяжело изучать) еще и дипольного электрического поля. — Т.е.

ЭТО ИНТЕРЕСНО:  Как проверить работоспособность блока питания

внутри заряженных элементарных частиц имеются электрические заряды, создающие не только суммарное поле электрического заряда в дальней зоне, но и дипольное электрическое поле в ближней зоне (внутри элементарной частицы).

Господствующая сегодня в физике Стандартная модель приписывает это НЕ найденным в природе кваркам, то есть Стандартная модель согласна с наличием у заряженных элементарных частиц дипольных электрических полей.

2.2 Постоянные электрические поля нейтральных элементарных частиц

У второй половины элементарных частиц, с ненулевой величиной массы покоя (кроме нейтрино — которых чрезвычайно трудно изучать), физика второй половины 20 века также экспериментально установила наличие внутри дипольных электрических полей. Господствующая сегодня в физике Стандартная модель приписывает это НЕ найденным в природе кваркам, но Стандартная модель согласна с наличием у нейтральных элементарных частиц дипольных электрических полей.

2.3 Дипольные электрические поля элементарных частиц

Итак, внутри изученных элементарных частиц, физика 20 века экспериментально доказала наличие дипольных электрических полей. Данные поля могут, как создавать в окружающем пространстве электрическое поле элементарного заряда, так и быть, в целом, нейтральными и ненаблюдаемыми на больших расстояниях (в макромире).

3 Постоянные магнитные поля элементарных частиц

Физика 20 века у элементарных частиц с ненулевой величиной массы покоя установила наличие магнитных моментов (у тех элементарных частиц, магнитный момент которых удалось измерить).

Измеренные величины магнитных моментов для ряда элементарных частиц оказались аномальными, для Стандартной модели, но ожидаемыми для Полевой теории элементарных частиц.

Следовательно: у элементарных частиц, с ненулевой величиной массы покоя, имеются постоянные магнитные поля — их факт существования у элементарных частиц экспериментально доказан физикой.

4 Переменное электромагнитное поле элементарных частиц

Физика 20 века установила наличие у элементарных частиц волновых свойств, которыми обладает свет — переменное электромагнитное поле.

Волновые теории элементарных частиц, а вместе с ними и Полевая теория утверждают, что волновые свойства элементарных частиц, с ненулевой величиной массы покоя, создаются вращающимся переменным электромагнитным полем.

Стандартная модель не может это признать, поскольку для нее такое признание равноценно самоубийству. Вот мы и слышим все новые математические Сказки.

Полевая теория элементарных частиц утверждает, что волновое переменное электромагнитное поле элементарных частиц является поляризованным. Поляризованное переменное электромагнитное поле элементарной частицы может вращаться либо в плоскости электрической составляющей (что соответствует заряженной частице и античастице), либо в плоскости магнитной составляющей (что соответствует нейтральной частице и античастице).

5 Электромагнитные поля элементарных частиц — Итог

Как мы видим, элементарные частицы вещества Вселенной обладают электромагнитными полями по утверждению Стандартной модели и являются комбинацией электромагнитных полей по Полевой теории элементарных частиц.

Стандартная модель утверждает, что протон состоит из следующих гипотетических кварков: uud. Просуммируем величины их масс, рассчитанных Стандартной моделью.

И это из 938,272 МэВ — такова величина всей массы покоя протона.

Таким образом, на долю гипотетических кварков в протоне приходится около 1 процента массы покоя (его полной внутренней энергии), а остальные 99 процента обладают НЕ кварковой природой.

А нам продолжают утверждать, что протон состоит из кварков — но даже с точки зрения элементарной математики, такое утверждение полная нелепица (что уж говорить о мнении физики 21 века).

Полевая теория элементарных частиц согласна со Стандартной моделью насчет оставшихся 99 процентов массы протона, но НЕ согласна с 1 процентом.

Стандартная модель также утверждает, что нейтрон состоит из следующих гипотетических кварков: udd. Просуммируем величины их масс, рассчитанных Стандартной моделью.

И это из 939,565 МэВ — такова величина всей массы покоя нейтрона.

Таким образом, на долю гипотетических кварков в нейтроне приходится 1,27 процента массы покоя (его полной внутренней энергии), а остальные 98,73 процента обладают НЕ кварковой природой.

А нам продолжают утверждать, что нейтрон также состоит из кварков — но даже с точки зрения элементарной математики, такое утверждение тоже полная нелепица (что уж говорить о мнении физики 21 века).

Полевая теория элементарных частиц согласна со Стандартной моделью насчет оставшихся 98,73 процентов массы нейтрона, но НЕ согласна с 1,27 процента.

Поскольку гипотетические кварки так и не удалось обнаружить в природе (нам каждый раз подсовывают их якобы следы), кварки — это миф Стандартной модели.

А поскольку внутри элементарных частиц экспериментально доказано существование только электромагнитных полей и вместе с ними гравитационного поля, которое может создаваться этими полями — следовательно: элементарные частицы вещества Вселенной являются формой электромагнитной полевой материи, как физика гениально догадалась еще 100 лет назад.

6 Электрические заряды внутри элементарных частиц

Постоянная составляющая электромагнитного поля заряженной элементарной частицы создает в окружающем пространстве постоянное дипольное электрическое поле пары электрических зарядов (+1.25e и -0.

25e) для положительно заряженной элементарной частицы суммарного электрического заряда +e, и (-1.25e и +0.25e) для отрицательно заряженной элементарной частицы заряда -e.

Здесь имеет место небольшое расхождение с величиной дипольных электрических зарядов установленных Стандартной моделью для протона (+1.333e и -0.333e) и антипротона (-1.333e и +0.333e).

Постоянная составляющая электромагнитного поля нейтральной элементарной частицы и античастицы создает в окружающем пространстве постоянное дипольное электрическое поле пары электрических зарядов (+0,75e и -0,75e).

При этом постоянное дипольное электрическое поле частицы отличается от поля античастицы поляризацией дипольного электрического момента па отношению к спину (по спину или против спина).

Здесь имеет место небольшое расхождение с величиной дипольных электрических зарядов установленных Стандартной моделью для нейтрона и антинейтрона (+0,666e и -0.666e).

Полевая теория элементарных частиц утверждает, что первопричиной постоянных электрических полей элементарных частиц являются не электрические заряды, а сами электрические поля, эквивалентные полям таких электрических зарядов. Наши представления об электромагнетизме изменяются, по мере изучения микромира физикой.

7 Гравитационное поле элементарных частиц

Поскольку вещество Вселенной состоит из элементарных частиц и в то же время является источником гравитации, следовательно: элементарные частицы и являются источниками гравитации во Вселенной.

Гравитационное поле, создаваемое элементарными частицами, описывается Теорией гравитации элементарных частиц — одним из крупнейших достижений физики 21 века.

Противники Новой физики не желают признавать данную теорию, поскольку она хоронит их собственные теоретические построения, выдаваемые за высшие достижения науки, но НЕ доказанные.

7.1 Инерционная масса элементарных частиц и природа их кинетической энергии

Согласно Классической электродинамике — Науке, созданной трудами величайших физиков прошлого, и формуле Эйнштейна, масса, содержащаяся в электрическом поле напряженностью E, равна:

    (1)

А масса, содержащаяся в магнитном поле напряженностью H, равна:

    (2)

Масса всего электромагнитного поля (покоящейся элементарной частицы) равна сумме масс его компонент и равна:

    (3)

Эти и все последующие формулы будут написаны в системе СГС (сантиметр-грамм-секунда), принятой в Классической электродинамике.

Преобразования Лоренца для скоростей, значительно ниже скорости света (V

Источник: http://vladimir-gorunovich.narod.ru/index/fizicheskie_polja_ehlementarnykh_chastic/0-116

Электрическое поле — что это такое, понятие в физике

Одной из основ электротехники и физики является такое явление, как электрическое поле. Оно играет огромную роль не только в фундаментальной физической науке, но и широко применяется в различных практических областях: электротехнике, приборостроении, радиолюбительстве, медицине.

История развития электрического поля

Что такое электрическое сопротивление

Основными вехами истории развития учения о данном явлении являются следующие открытия:

  • 1773 г. – французский астроном Ж.Л. Лангранж впервые применяет такое понятие, как «потенциал». Примененное относительно небесных тел это понятие в дальнейшем стало широко использоваться в физике.
  • 1785 – Шарль Кулон сформулировал названный позднее его именем закон, описывающий взаимодействие заряженных частиц;
  • 1812 – французский физик С.М. Пуассон применил понятие «потенциал» в описании электрических, электромагнитных процессов и явлений;
  • 1819 – датский физик Х.К. Эрстед опытным путем показал влияние протекающего по проводнику тока на отклонение магнитной стрелки, происходящее под воздействием образующегося вокруг него электрополя;
  • 1827 – Г. Омом сформулирован названный его именем основной закон электротехники, описывающий соотношение основных характеристик протекающего по проводнику электрического тока (напряжения, силы, сопротивления);
  • 1831 – М. Фарадей, ученик известного британского ученого Гемфри Дэви, в своем труде по электромагнетизму описывает взаимодействие двух составляющих электромагнитного поля;
  • 1873 –Д.К. Максвелл издает свой знаменитый фундаментальный труд «Трактат об электричестве и магнетизме», в котором ученый подробно описывает взаимодействие электрического и магнитного полей, приводит уравнения, описывающие их закономерность.

Важно! Данное явление часто называют ошибочно электронным полем. Подобного понятия в физике не существует.

Виды полей

Напряженность электрического поля

В зависимости от модуля и вектора напряженности различают следующие виды электрополей:

  • Однородное – модуль и вектор напряженности одинаковы (однородные) в любой точке поля;
  • Неоднородное – модуль и вектор напряженности отличаются (неоднородные) в различных его точках.

В зависимости от того, каким источником тока создается поле, различают такие его виды, как:

  • Создаваемое постоянным током – вектор напряженности имеет неизменное во времени направление;
  • Создаваемое переменным током – вектор напряженности изменяется во времени.

Проводники и диэлектрики в электрополях

Взаимодействие электрического поля на проводники и диэлектрики вследствие их разной электропроводности отличается:

  • Если в электростатическое поле, образованное двумя плоскостями, внести проводник, под воздействием кулоновских сил находящиеся в нем заряды сконцентрируются на его поверхности. В это же самое время внутри проводника возникнет собственное поле, вектор напряженности которого противоположен, а модуль равен аналогичной характеристике внешнего. Вследствие этого проводник, несмотря на внешнее воздействие на него, будет оставаться нейтральным. Данное свойство широко используют для защиты приборов от воздействия на них электрического и магнитного полей.
  • Если такие же манипуляции произвести с диэлектриком, образующееся внутри него поле будет иметь модуль напряженности меньше, чем внешнее. Соотношение модуля напряженности внутреннего и внешнего полей является постоянным для каждого диэлектрического материала значением, его принято называть диэлектрической проницаемости.

Работа электрического поля

Также в диэлектриках в данной ситуации наблюдается такое явление, как поляризация – ограниченное перемещение связанных зарядов или диполей.

На заметку. Реальным примером системы, состоящей из двух разноименно заряженных пластин, является электролитический конденсатор с небольшой емкостью. Внутри этого элемента при его зарядке будет создаваться однородное электрополе.

Статическое распределение зарядов

Самый простой электростатический (однородный) вид данного явления образуется двумя неподвижными заряженными частицами сферической формы и графически обозначается силовыми линиями, направленными от положительного заряда к отрицательному.

Характеристики поля

Основными характеристиками описываемого явления являются напряженность, потенциал и напряжение.

Потенциал

Потенциал электрополя равен отношению потенциальной энергии помещенной в него пробной заряженной частицы к ее заряду. Если объяснять понятным большинству физиков и ученых языком, то данная характеристика равна отношению работы, совершаемой полем по перемещению заряженной частицы из одной точки в другую, к значению заряда данной частицы. Измеряется она в Вольтах (В).

Напряженность

Данная характеристика представляет собой силу, действующую на внесенный в определенную точку поля пробный статический положительный заряд. Имеет численное значение (модуль) и направление (вектор). Измеряется в Н/Кл.

Напряжение

Напряжение – эта применимая на практике характеристика, равная разности потенциалов между двумя образующими поле заряженными частицами. Как и потенциал, измеряется в Вольтах (В).

Электрическое поле внутри проводников с избыточными зарядами

Если в проводнике избыток электронов, то под воздействием электростатического поля они концентрируются на его поверхности. При этом пределы тела электроны не покидают, благодаря наличию внутри проводника собственного поля, компенсирующего внешнее.

Электрическое поле внутри проводников с недостатком собственных электронов

Если в проводнике дефицит электронов, то являющиеся основными носителями заряда «дырки» под действием эл поля скапливаются на поверхности металла.

Сфера применения

Описываемое в данной статье явление обладает большой ролью в таких сферах, как медицина, химия, электротехника.

Использование в медицине

В медицине данное явление используется для улучшения кровообращения, восстановления поврежденных тканей, точечного прогревания, повышения температуры тела.

Медицинский УВЧ аппарат для прогревания

Применение в химии

В химии это явление применяется для разделения разнородных по составу жидкостей, фильтрации воды, удаления растворенных в веществах загрязнителей.

Электротехника

В электротехнике эта форма материи используется для беспроводной зарядки различных гаджетов (мобильных телефонов, планшетов) с помощью специального зарядного устройства, определения наличия в проводке напряжения бесконтактным способом (индикаторные отвертки на полевых транзисторах).

Возможности применения в будущем

Очень многие ученые считают, что электрическое поле – это очень важное явление, которое в будущем поможет совершить прорыв в области телекоммуникационных технологий, телепортации объектов на большие расстояния. В данных направлениях в настоящее время ведутся серьезные исследования и изыскания.

Таким образом, разобравшись в том, что такое представляет собой электрическое поле, можно не только понять и объяснить другим суть, а также основные характеристики данного явления, но и почерпнуть много полезных знаний о том, где оно применяется, какие перспективы в будущем имеет.

Источник: https://amperof.ru/teoriya/elektricheskoe-pole-v-fizike.html

Электрическое поле: понятие и свойства электрического поля

Изучая механизм взаимодействия зарядов, ученые уже давно предположили наличие электрического поля. Уже давно известно, что не существует непосредственного взаимодействия электрозарядов между собой. Вокруг каждого заряда создается поле, через которое и осуществляется действие электрозарядов друг на друга. При удалении от заряда, действие поля начинает ослабевать.

Что такое электрическое поле

Электрическое поле не воспринимается обычными органами чувств, оно определяется только по его воздействию на электрозаряды. Последствия этих взаимодействий можно определить с помощью приборов, отсюда следует, что электрополе имеет материальную основу. Не зацикливается в какой-то одной точке, а существует в определенном пространстве. Наличие его определяется появлением определенной силы, воздействующей на тот или иной электрозаряд.

Электрическое поле – это проявление особой формы материи, окружающей тела, обладающие электрическими зарядами. Если в какую-либо точку поля поместить заряд, то он будет испытывать воздействие силы. Для того, чтобы реально определить наличие или отсутствие поля, необходимо в определенной области разместить как можно большее количество зарядов. Чем большее число расположено в одном месте, тем больше шансов для измерительных приборов зарегистрировать электрополе.

Что такое электрическое поле — Советы электрика

Когда мы рождаемся и начинаем изучать мир, то все приучаемся делать руками и ногами. То есть это наш метод контакта со средой — прямой и непосредственный. Берем предметы, открываем двери, наводим порядок, преодолеваем препятствия.

ЭТО ИНТЕРЕСНО:  Какое соединение трехфазной цепи называется соединением в звезду

Разумеется, того же самого ожидаем обычно и от всего окружающего. А если заметим, как нечто воздействует на что-то другое на расстоянии, то обычно можем представить некие ниточки, невидимые, но которые могут тянуть и передвигать предметы.

Как это делают фокусники в каких-то своих трюках.

Электрическое поле

Невидимые ниточки действуют на зрителей магически, и все неизвестные взаимодействия легче и нагляднее всего нарисовать именно в виде таких тонких ниточек. Рисуют обычно на бумаге, а так как ниточки могут уходить довольно далеко, сразу представляешь широкое бумажном поле. И, кстати, сама природа в этом иногда помогает.

Потому что магнитные опилки, насыпанные на бумажное «поле», сразу сами «в затылок друг другу» и выстраиваются ниточками, стоит только поднести магнит к листу с нижней стороны. И вот уже видим на бумажном поле нерукотворный рисунок поля магнитного.

Красота и восхищение любого мальчишки, который первый раз увидел такие ожившие железные опилки.

Действие магнита Действие магнита

С действием магнита люди познакомились уже давно. А вот чтобы понять основные свойства электрического поля, надо было придумать еще и его носителей. Что такое электрическое поле, если сделать картинку, как с магнитами и опилками, нельзя.

Нет таких опилок, и электрические заряды не так удобны в обращении, как твердые магниты: стоит только чуть приблизить друг к другу два разноименно зараженных тела, как происходит разряд, и весь эксперимент закончится на самом интересном месте. Поэтому додумались нарисовать электрический  единичный заряд, вокруг которого электрическое поле создается.

Он похож на одинокий полюс магнита, поле действует в любом направлении, и сила электрического поля, им созданного, убывает с расстоянием. А где-то в бесконечном отдалении от него рисуется и второй полюс, в котором те же самые линии должны сходиться.

Взаимодействие

Это прямо следует из опытов, которые проводили первооткрыватели электрических явлений и законов. И ведь измерить тогда, не зная ни законов, ни формул, можно было мало что. Только расстояния между зарядами и силу их взаимодействия на шкале по отклонению крутильных весов при воздействии их друг на друга. Ну и относительную величину заряда. Скорее всего, один заряд был основной, другой — пробный.

И поле, окружавшее основной заряд, изучалось в разных точках с помощью этого пробного заряда.

Если основное тело зарядить больше, то и поле станет сильнее, и это можно замерить на крутильных весах. То есть металлический шарик, который был «пробным» зарядом, играл роль заряженной частицы, поведение которой в поле основного заряда и изучалось.

Измерения позволили связать несколько величин, характеризующих электрическое взаимодействие, формулами.

Закон Кулона

Закон воздействия друг на друга электрических зарядов оказался подобен гениальному закону всемирного притяжения Ньютона.

Формула закона Кулона

Только массы надо заменить на величины электрических зарядов, а вместо гравитационной постоянной поставить коэффициент k. Знак зарядов внес тоже своеобразие. Если всемирное тяготение всегда только притягивает тела друг к другу, то электрические заряды могут как притягиваться друг к другу (разноименные), так и отталкиваться друг от друга (одноименные).

Формула

Если факт притяжения или отталкивания определять в формуле знаками зарядов (+ или — ), то F положительное будет означать отталкивание зарядов, а F отрицательное — притяжение.

Напряженность электростатического поля

Электростатическое поле — это поле неподвижных электрических зарядов. Или зарядов, движущихся с настолько малыми скоростями, что можно пренебречь силами, дополнительно возникающими при перемещении зарядов в электрическом поле.

Для изучения электростатического поля удобна векторная форма закона Кулона.

Векторная форма закона Кулона

Главной характеристикой электростатического поля является величина напряженности поля. Как и кулоновская сила, это величина векторная, и определяется силой, действующей на пробный заряд q.

Формула величины напряженности поля

Как видим, это действительно характеристика поля, которая дает полное определение электрического поля, создаваемого зарядами, хотя нет привязки ни к зарядам, породившим поле, ни к расстояниям между зарядами. А разделив силу Кулона на величину пробного заряда q, мы нормировали напряженность, освободили ее и от самого этого пробного заряда. Теперь это просто векторная характеристика некоторого поля в пространстве, имеющая в каждой точке величину и направление.

Удобнее всего электрическое поле и его свойства представляются наглядно силовыми линиями, касательные к которым в каждой точке и дают вектор напряженности, а величина напряженности (модуль вектора напряженности) изображается густотой этих линий.

И мы видим, что вблизи заряда густота линий больше, следовательно, и напряженность поля около заряда высокая, а по мере увеличения расстояния от заряда напряженность поля падает, что видно и по уменьшению густоты силовых линий — они расходятся.  

Векторная характеристика поля

Простая картина получается, когда величина пробного заряда, которым исследуется поле, не влияет на карту напряженности поля от исследуемого заряженного тела. А это будет только тогда, когда пробный заряд значительно меньше заряда тела. Если же внести в поле одного заряженного тела другое заряженное тело, их взаимодействие способно создать новые картины силовых линий.

Когда знаки двух зарядов разные, то поле становится полем притяжения зарядов Когда знаки зарядов одинаковые, то это поле отталкивания

Силовые линии можно получить, если двигать пробный заряд внутри такого поля из двух зарядов и измерять кулоновскую силу, которая действует на пробный заряд в каждой точке. Только в каждой точке он будет испытывать влияние не одного, а двух источников поля. В этом случае и кулоновская сила, действующая на пробный заряд в каждой точке, и напряженность поля, станут векторными суммами полей от обоих источников.

Здесь изображено поведение отрицательного пробного заряда, внесенного в электрические поля двух положительных зарядов («поле отталкивания»). Притяжение он испытывает от обоих зарядов — он же отрицательный, а они положительные. Попав на их «границу влияния», он должен двинуться далее по равноденствующей этих двух сил.

То есть по касательной к силовой линии в точке, где оказался. И он, если ему позволить, возьмет направление «не вашим — не нашим», а потом остановится точно между двумя этими зарядами. Но долго там пробудет вряд ли, потому что любое легкое дуновение выведет его из равновесия, и он упадет все-таки на один из зарядов.

Полю присущ принцип суперпозиции. Он гласит, что суммарное электростатическое поле от нескольких заряженных тел (источников поля) является суперпозицией (суммой) полей от составляющих его зарядов, а напряженность такого поля в каждой его точке равна векторной сумме напряженностей полей от всех источников.

Суммарное поле зарядов

Суммарное поле зарядов, размещенных некоторым образом в пространстве, и является суперпозицией полей. Пример такого результирующего поля — две помещенные на некотором расстоянии друг от друга разноименно заряженные плоские пластины, заряд на которых распределен равномерно по поверхности. Как видим, направление почти всех линий, кроме крайних, одно — перпедикулярно поверхностям.

Источник: https://ns-sts.ru/bazovye-znaniya/chto-takoe-elektricheskoe-pole.html

Электрическое поле

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

Мыслителям прошлого трудно было принять концепцию «действия на расстоянии». И правда, как может один заряд действовать на другой, если они не соприкасаются?
Даже Ньютону, применившему эту идею в теории всемирного тяготения, нелегко было свыкнуться с нею. Как мы видели, однако, эти трудности можно преодолеть с помощью понятия поля, которое ввел английский ученый Майкл Фарадей (1791-1867).

Согласно Фарадею, от каждого заряда исходит электрическое поле, пронизывающее все пространство. Когда к одному заряду подносят другой, он испытывает действие силы, которая обусловлена электрическим полем первого заряда. Электрическое поле в точке, где находится второй заряд, влияет непосредственно на этот заряд, создавая действующую на него силу.

Следует подчеркнуть, что поле не является некой разновидностью вещества; правильнее сказать, это — чрезвычайно полезная концепция.

Поле, создаваемое одним или несколькими зарядами, можно исследовать с помощью небольшого положительного пробного заряда, измеряя действующую на него силу. Под пробным зарядом мы понимаем достаточно малый заряд, собственное поле которого не меняет существенно распределения остальных зарядов, создающих исследуемое поле.

Силы, действующие на малый пробный заряд q в окрестности уединенного положительного заряда Q, показаны на рис. 22.13. Сила в точке b меньше, чем в a, из-за большего расстояния между зарядами (закон Кулона); в точке с сила еще меньше. Во всех случаях сила направлена радиально от заряда Q.

По определению напряженность электрического поля, (или просто электрическое поле) E в любой точке пространства равна отношению силы F, действующей на малый положительный пробный заряд q, к величине этого заряда:

E = F/q

Из вышеописанного определения следует, что направление напряженности электрического поля в любой точке пространства совпадает с направлением силы, действующей в этой точке на положительный пробный заряд. Напряженность электрического поля представляет собой силу, действующую на единицу заряда; она измеряется в ньютонах на кулон (Н/Кл).

Более строго Е определяется как предел отношения F/q при q, стремящемся к нулю.

Напряженность электрического поля Е определяется через отношение F/q, чтобы исключить зависимость поля Е от величины пробного заряда q. Иначе говоря, Е учитывает только те заряды, которые создают рассматриваемое в данной точке электрическое поле. Поскольку Е — векторная величина, электрическое поле является векторным полем.

Силовые линии

Коль скоро электрическое поле является векторным, его можно изображать в различных точках стрелками, как это сделано на рис. 22.13. Направления векторов Еа, Еb, Ес совпадали бы с направлениями показанных на этом рисунке сил и лишь длина их была бы уже иной в результате деления на q.

Отношение длин векторов Еа, Еb, Ес сохранится прежним, так как мы делим на один и тот же заряд. Однако изображать электрическое поле таким образом неудобно, поскольку при большом числе точек весь рисунок будет испещрен стрелками.

Поэтому пользуются другим способом изображения поля-методом силовых линий.

Для наглядного представления электрического поля его изображают семейством линий, указывающих направление напряженности поля в каждой точке пространства. Эти так называемые силовые линии проводятся так, чтобы указывать направление силы, действующей в данном поле на положительный пробный заряд. Силовые линии точечного положительного заряда показаны на рис. 22.20, а, отрицательного — на рис. 22.20,6.

В первом случае линии радиально расходятся от заряда, во втором они радиально сходятся к заряду. Именно в таком направлении будут действовать силы на положительный пробный заряд. Конечно, силовые линии можно нанести и в промежутках между изображенными на рисунке.

Но мы условимся наносить силовые линии с таким расчетом, чтобы число линий, исходящих от положительного заряда или заканчивающихся на отрицательном заряде, было пропорционально величине этого заряда.

Обратим внимание на то, что вблизи заряда, где сила максимальна, линии расположены более тесно. Это общее свойство силовых линий: чем теснее расположены силовые линии, тем сильнее электрическое поле в этой области. Вообще говоря, можно всегда изображать силовые линии таким образом, чтобы число линий, пересекающих единичную площадку, перпендикулярную направлению поля Е, было пропорционально напряженности электрического поля. Например, для уединенного точечного заряда (рис. 22.20) напряженность электрического поля убывает как 1/r 2; так же будет уменьшаться с расстоянием и число равномерно распределенных силовых линий, пересекающих единичную площадку: ведь общее число силовых линий остается постоянным, а площадь поверхности, через которую они проходят, растет как 4πr 2 (поверхность сферы радиусом г). Соответственно число силовых линий на единицу площади пропорционально 1/r 2.

На рис. 22.21, а показаны силовые линии поля, создаваемого двумя зарядами противоположных знаков. Здесь силовые линии искривлены и направлены от положительного заряда к отрицательному. Поле в любой точке направлено по касательной к силовой линии, как показано стрелкой в точке Р.
На рис.

22.21,6 и в показаны силовые линии электрического поля двух положительных зарядов и поля между двумя параллельными противоположно заряженными пластинами. Заметим, что силовые линии поля между пластинами параллельны и расположены на равном расстоянии друг от друга, исключая область вблизи краев.

Таким образом, в центральной области напряженность электрического поля во всех точках одинакова, и мы можем написать:
Е = const (между близко расположенными параллельными пластинами).
Хотя вблизи краев это не так (силовые линии изгибаются), часто этим можно пренебречь, особенно если расстояние между пластинами мало по сравнению с их размерами. [Сравните этот результат со случаем уединенного точечного заряда, где поле изменяется обратно пропорционально квадрату расстояния].

Итак, силовые линии обладают следующими свойствами:

1. Силовые линии указывают направление напряженности электрического поля: в любой точке напряженность поля направлена по касательной к силовой линии.

2. Силовые линии проводятся так, чтобы напряженность электрического поля Е была пропорциональна числу линий, проходящих через единичную площадку, перпендикулярную линиям.

3. Силовые линии начинаются только на положительных зарядах и заканчиваются только на отрицательных зарядах; число линий, выходящих из заряда или входящих в него, пропорционально величине заряда.

Можно также сказать, что силовая линия электрического поля — это траектория, по которой следовал бы помещенный в поле малый пробный заряд. (Строго говоря, это верно лишь в том случае, если пробный заряд не обладает инерцией или движется медленно, например вследствие трения.)
Силовые линии никогда не пересекаются. (Если бы они пересекались, это означало бы, что в одной и той же точке напряженность электрического поля имеет два различных направления, что лишено смысла.)

Электрические поля и проводники

В статическом случае (т.е. когда заряды покоятся) электрическое поле внутри хорошего проводника отсутствует.

Если бы в проводнике существовало электрическое поле, то на внутренние свободные электроны действовала бы сила, вследствие чего электроны пришли бы в движение и двигались до тех пор, пока не заняли бы такое положение, при котором, напряженность электрического поля, а стало быть, и действующая на них сила обратились бы в нуль. Из этого рассуждения вытекают любопытные следствия.

В частности, если проводник обладает результирующим зарядом, то этот заряд распределяется по внешней поверхности проводника. Этот факт можно объяснить с иной точки зрения. Если, например, проводник заряжен отрицательно, то мы легко можем представить, что отрицательные заряды отталкивают друг друга и устремляются к поверхности проводника, чтобы расположиться как можно дальше друг от друга.

Другое следствие состоит в следующем. Пусть положительный заряд Q помещен в центр полого изолированного проводника в форме сферической оболочки (рис. 22.22).
Поскольку внутри проводника электрического поля быть не может, силовые линии, идущие от положительного заряда, должны заканчиваться на отрицательных зарядах на внутренней поверхности металлической сферы.

В результате на внутренней поверхности сферического проводника будет индуцирован соответствующий отрицательный заряд -Q, а равный по величине положительный заряд +Q распределится по внешней поверхности сферы (поскольку в целом оболочка нейтральна). Таким образом, хотя внутри проводника электрическое поле отсутствует, снаружи сферы существует электрическое поле (рис. 22.22), как если бы металлической сферы вовсе не было.

ЭТО ИНТЕРЕСНО:  Какие виды энергии относятся к возобновляемым

С этим связано также и то обстоятельство, что силовые линии электрического поля всегда перпендикулярны поверхности проводника. Действительно, если бы вектор напряженности электрического поля Е имел компоненту, параллельную поверхности проводника, то электроны под действием силы двигались бы до тех пор, пока не заняли положение, в котором на них не действует сила, т. е. пока вектор напряженности электрического поля не будет перпендикулярен поверхности.

Все сказанное относится только к проводникам. В изоляторах, у которых нет свободных электронов, может существовать электрическое поле и силовые линии не обязательно перпендикулярны поверхности.

Источник: https://tel-spb.ru/statika/electric_field.php

Что такое электрическое поле и какими свойствами оно обладает

Простое объяснение понятия «электрическое поле». Свойства электрического поля и применение на практике.

Есть такой термин в физике, как «Электрическое поле». Он описывает явление возникновения определенной силы вокруг заряженных тел. Оно применяется на практике и встречается в повседневной жизни. В этой статье мы рассмотрим, что такое электрическое поле и какие его свойства, а также, где оно возникает и применяется. :

  • Определение
  • Виды полей
  • Обнаружение электрического поля
  • Практика

Обнаружение электрического поля

Мы попытались вам рассказать все важные определения и условия существования электрического поля простым языком. Давайте разбираться, как его обнаружить. Магнитное обнаружить легко – с помощью компаса.

Электрическое поле мы можем обнаружить в быту. Все мы знаем, что если потереть пластиковую линейку об волосы, то мелкие бумажки начнут к ней притягиваться. Это и есть действие электрического поля. Когда вы снимаете шерстяной свитер, слышите треск и видите искорки – это оно же.

Другим способом обнаружить ЭП – поместить в него пробный заряд. Действующее поле отклонит его. Это применяется в ЭЛТ мониторах и, соответственно, лучевых трубках осциллографа, об этом поговорим позже.

Практика

Мы уже упомянули о том, что в быту электрическое поле проявляется, когда вы снимаете шерстяную или синтетическую одежду с себя и проскакивают искорки между волосами и шерстью, когда натрете пластиковую линейку и проведете над мелкими бумажками, а они притягиваются и прочее. Но это не является нормальными техническими примерами.

В проводниках малейшее ЭП вызывает движение носителей зарядов и их перераспределение. В диэлектриках, так как ширина запрещенной зоны в этих веществах большая, ЭП вызовет движение носителей зарядов только в случае пробоя диэлектрика. В полупроводниках действие находится между диэлектриком и проводником, но нужно преодолеть небольшую ширину запрещенной зоны, передав энергию порядка 0.30.7 эВ (для германия и кремния).

Из того, что есть в каждом доме – это электронные бытовые приборы, в том числе и блоки питания. В них есть важная деталь, которая работает благодаря электрическому полю – это конденсатор. В нём заряды удерживаются на обкладках, разделенных диэлектриком, как раз таки благодаря работе электрического поля. На картинке ниже вы видите условное изображение зарядов на обкладках конденсатора.

Другое применение в электротехнике — это полевые транзисторы или МДП-транзисторы. В их названии уже упоминается принцип действия. В них принцип работы основан на изменении проводимости СТОК-ИСТОК под воздействием на полупроводник поперечного электрического поля, а в МДП (МОП, MOSFET – одно и то же) и вовсе затвор отделен диэлектрическим слоем (окислом) от проводящего канала, так что влияние токов ЗАТВОР-ИСТОК невозможно по определению.

Другое применение уже отошедшее в быту, но еще «живое» в промышленной и лабораторной технике – электроннолучевые трубки (ЭЛТ или т.н. кинескопы). Где одним из вариантов устройства для перемещения луча по экрану является электростатическая отклоняющая система.

Если рассказать простым языком, то есть пушка, которая излучает (эмитирует) электроны. Есть система, которая отклоняет этот электрон в нужную точку на экране, для получения необходимого изображения.

Напряжение прикладывается к пластинам, а на эмитированный летящий электрон воздействуют кулоновские силы, соответственно и электрическое поле. Все описанное происходит в вакууме.

Тогда к пластинам прикладывают высокое напряжение, а для его формирования устанавливают трансформатор строчной развертки и обратноходовой преобразователь.

Источник: https://elektrik-sam.ru/baza-znanij/3647-chto-takoe-jelektricheskoe-pole-i-kakimi-svojstvami-ono-obladaet.html

Электрическое поле: основные понятия

Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.

Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.

Понятие напряженности электрического поля

Определение 1

Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.

Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.

Напряженность электрического поля можно задать формулой:

E→=F→q.

Напряжение электрического поля является векторной величиной. Направление вектора E→ совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.

Напряженность электрического поля

Какое поле называют электростатическим?

Определение 2

Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.

Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.

Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.

Определение 3

Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:

E→=E1→+E2→+

Электрическое поле подчиняется принципу суперпозиции.

Определение 4

Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:

E=14πε0·Qr2.

Это поле называется кулоновским.

В кулоновском поле направление вектора E⇀ зависит от знака заряда Q: если Q>0, то вектор E⇀ направлен по радиусу от заряда, если Q0 вектор E→ параллелен r→, а при Q

Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/elektricheskoe-pole-osnovnye-ponjatija/

Электростатика: элементы учебной физики

Продолжение. См. № 17, 18, 19/07

Лекция 4. Электрическое поле

Человек существует в гравитационном поле, которое он в принципе не может устранить. Электрическое поле можно создавать и уничтожать в простых опытах. Поэтому экспериментально изучать электрическое поле можно на гораздо более глубоком уровне, чем гравитационное. Фактически общее понятие физического поля формиру­ется в сознании учащихся именно при изучении электрического поля.

В электростатике имеют дело с электрическими полями, создаваемыми неподвижными зарядами. Такие не изменяющиеся с течением времени поля называются электростатическими. Но, усвоив понятие электростатического поля, вскоре учащиеся должны овладеть понятиями стационар­ного электрического, вихревого электрического и электромагнитного полей. Поэтому уже в электростатике нужно зна комить учащихся с полями, которые не являются электростатическими.

Это необходимо ещё и потому, что в реальной электростатике никогда не имеют дела с не изменяющимися во времени зарядами. Действительно, при электризации заряды разделяются и возрастают, заряженные электрометры постепенно разряжаются, заряды проходят по проводникам и перемещаются вместе с заряженными телами. Поэтому при изучении электростатики необходимы начальные представления и об электрическом токе, и о переменных электрических полях.

Но главное, в чём должны быть убеждены учащиеся, – это в реальности существования электрического поля, которое создаётся электрическими зарядами и передаёт их взаимодействие, и которое окружает всех нас постольку, поскольку мы пользуемся электричеством. Эта убеждённость должна опираться на систему экспериментальных доказательств, а не на авторитет учебника или учителя.

4.1. Понятие электрического поля. Опыт показывает, что заряженное тело вызывает притяжение или отталкивание другого заряженного тела на расстоянии. Непредвзято анализируя этот и другие эксперименты, вряд ли можно согласиться со странным утверждением, будто один заряд действует на другой непосредственно через пустое пространство.

С этим не мог согласиться и великий экспериментатор М.Фарадей, хотя многие теоретики его времени, следуя И.Ньютону, были убеждены в справедливости так называемой теории дальнодействия.

Фарадей считал, что заряд порождает вокруг себя особый вид материи – электрическое поле, – которое простирается до бесконечности и отличается от иных видов материи тем, что способно действовать на другой заряд.

Понятие электрического поля, подобно понятию заряда, относится к основным, или фундаментальным, физическим понятиям и не может быть определено формально. Существование электрического поля подтверждается всей совокупностью экспериментов электродинамики – нет ни одного опыта, которому противоречила бы концепция электрического поля.

Можно поставить опыты, наглядно показывающие электрическое поле, созданное зарядами.

В плоский сосуд, наполненный густым маслом, введём два проводящих шарика и насыпем лёгкий сыпучий непроводящий порошок, например манную крупу или мелко настриженный волос. На шарики подадим разноимённые заряды.

При этом будем наблюдать, как первоначально хаотически ориентированные частички выстраиваются в линии, начинающиеся на одном и заканчивающиеся на другом заряде.

Таким образом, в каждой точке пространства между двумя зарядами имеется субстанция, которой не было при отсутствии зарядов. Это и есть электрическое поле. Частицы выстраиваются в линии потому, что со стороны электрического поля на них действуют силы.

Поэтому линии между электродами, которые обозначают частицы, называются силовыми линиями электрического поля.

4.2. Энергия электрического поля. При электризации трением, давлением или посредством электростатической индукции разноимённые заряды возникают за счёт механической работы. Значит, для создания электрического поля надо совершить работу. В электрическом поле заряжен­ные тела начинают перемещаться и поворачиваться. Следовательно, электрическое поле способно совершать работу. Таким образом, электрическое поле обладает энергией.

При разряде заряженных тел электрическое поле исчезает, и его энер­гия превращается в кинетическую энергию движущихся зарядов. В металлах это электроны, в жидкостях и газах – электроны и ионы. Кинетическая энергия зарядов превращается в другие виды энергии. Например, если при разряде возникает электрическая искра, то энергия электрического поля в конечном итоге превращается в механическую (звук), тепловую (нагрев), световую (вспышка).

4.3. Скорость распространения электрического поля. Доказать существование электрического поля можно только экспериментально. Пусть два заряженных тела расположены на некотором расстоянии друг от друга. Сдвинем одно из них на небольшое расстояние.

Тогда изменится сила, действующая на второе тело, и оно также переместится на соответствующее расстояние.

Если электрическое поле реально существует, то перемещение второго тела должно произойти спустя некоторое время, в течение которого изменение поля вблизи первого тела дойдёт до второго.

Опыты с заряженными телами показывают, что электрическое воздействие одного заряженного тела на другое происходит мгновенно. Давайте вдумаемся в это утверждение. Мгновенно – значит моментально, в тот же момент времени.

Поэтому промежуток времени между перемещением первого заряда и откликом на это перемещение второго заряда должен быть равен нулю. Но ни один эксперимент не позволяет измерить как угодно малый промежуток времени.

Значит, опыты по перемещению зарядов, на которые мы ссылались, доказывают только то, что взаимодействие происходит за время, меньшее чувствительности использованных часов или иных измерителей времени.

Если перемещать заряд очень быстро и воздействовать им на заряд, который тоже может двигаться с большой скоростью, то, может быть, удастся измерить время распространения взаимодействия между зарядами? Но как заставить заряд быстро перемещаться? Понятно, что пытаться использовать механическое перемещение бесполезно. Вспомним, что при сближении заряженных противоположными зарядами шариков между ними проскакивает искра и шарики разряжаются. Это означает, что заряд с одного из них переходит на другой. Движение заряда при этом происходит очень быстро.

Воспользовавшись этим наблюдением, соберём экспериментальную установку, состоящую из двух одинаковых пар проводящих стержней с разрядными промежутками между ними. Зарядим металлические шарики одной пары стержней зарядами +q и –q и начнём их сближать. Как только между шариками проскочит искра, появляется маленькая искорка между шариками и во втором диполе! Отсюда следует, что быстрое движение зарядов в одной точке пространства вызывает соответствующее движение зарядов в другой точке.

Казалось бы, мы не узнали ничего нового. Но это не так: заряды в обсуждаемом эксперименте движутся настолько быстро, что удаётся измерить время, необходимое для распространения изменения электрического состояния на некоторое расстояние. Такие измерения будут выполнены позже, в конце изучения электродинамики. Сейчас, забегая вперёд, можно просто сообщить учащимся, что они дадут значение скорости передачи электрического состояния с = 3 • 108 м/с.

Таким образом, электрическое поле реально существует потому, что, как показывает эксперимент, оно обладает энергией и его изменения рас­пространяются в пространстве с конечной скоростью, равной скорости света в вакууме.

Любопытно, что описанный опыт первым поставил итальянский физик Л.Гальвани на заре систематического исследования явлений электродинамики. Правда, вместо второго разрядного промежутка он использовал препарированную лапку лягушки, которая сокращалась всякий раз, когда проскакивала искра между шариками первого разрядного промежутка. Спустя примерно 100 лет фактически те же опыты повторил немецкий физик Г.

Герц. Но он уже владел развитой теорией электродинамических процессов, которую создал К.Максвелл, опиравшийся на «Экспериментальные исследования по электричеству» М.Фарадея. Именно Герц первым экспериментально доказал, что возмущение электрического поля распространяется в пространстве в виде электромагнитной волны, и измерил скорость этого распространения, которая совпала со скоростью света в вакууме.

4.4. Принцип суперпозиции электрических полей.

Источник: https://fiz.1sept.ru/article.php?ID=200702011

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Что представляет собой якорь электродвигателя

Закрыть