Что такое диодный мост и для чего он нужен

Диодный мост

Что такое диодный мост и для чего он нужен

Словосочетание “диодный мост” образуется от слова “диод“. Значит, диодный мост – это радиодеталь, которая состоит из диодов. Здесь очень важно то, как соединены эти диоды, иначе диодный мост превратится просто в кучку из диодов.

Диод на электрических схемах обозначается вот так.

Самый простой диодный мост состоит из 4 диодов, которые соединяются вот так.

Эта рисунок также является самой распространенным обозначением диодного моста на электрических схемах.

Упрощенный вариант выглядит вот так.

Можно увидеть на схемах даже что-то типа этого.

Для правильной эксплуатации диодного моста, мы должны его правильно подсоединить. Правильное подключение диодного моста выглядит таким образом.

Как вы видите, на вход диодного моста мы подаем переменное напряжение, а на выходе диодного моста снимаем постоянное напряжение. Отсюда можно сделать вывод:

Диод в цепи переменного напряжения

Итак, в статье про диод мы рассматривал, что будет на выходе диода, если подать на него переменный ток. Для этого мы даже собирали вот такую схему, где G – это синусоидальный генератор. С клемм X1 и X2 уже снимали сигнал.

Мы на диод подавали переменное напряжение.

А на выходе после диода получали уже вот такой сигнал.

То есть у нас получилось вот так.

Да, мы получили постоянный ток из переменного, но стоило ли это того? В этом случае у нас получился постоянный пульсирующий ток, где половина мощности сигнала была вообще вырезана.

Как работает диодный мост в теории

Как вы знаете, переменный ток меняет свое направление несколько раз в секунду. Поэтому, его можно разбить на положительные полуволны и отрицательные полуволны. Положительные полуволны я пометил красным, а отрицательные – синим.

Для того, чтобы диодный мост работал, ему нужна какая-либо нагрузка. Пусть это будет резистор. Следовательно, когда на диодный мост приходит положительная полуволна, протекание тока через него будет выглядеть вот так.

Как вы видите, при положительной полуволне не задействованы диоды, которые я показал штриховой линией.

После положительной полуволны приходит отрицательная полуволна, и в этом случае протекание тока в диодном мосте выглядит так.

В этом случае, диоды, которые работали при положительной полуволне, при отрицательной полуволне они отдыхают). Эстафету принимает на себя другая пара диодов. Можно даже сказать, что в диодном мосте они работают попарно. Одна пара диодов работает на положительную полуволну, а другая пара – на отрицательную.

Обратите внимание на нагрузку. На нее всегда приходит одна и та же полярность тока при любом стечении обстоятельств.

Работа диодного моста на практике

Давайте и мы посмотрим, что получается на выходе диодного моста, если подать на него переменное напряжение. Для этого возьмем 4 простых кремниевых диода и соединим их в диодный мост. Важно, чтобы диоды были одной марки.

На вход диодного моста будем подавать переменное напряжение, и посмотрим, что у нас получается на выходе.

Итак, на вход я подаю вот такой сигнал.

На выходе получаю постоянное пульсирующее напряжение.

Здесь мы видим, что отрицательная полуволна в диодном мосте не срезается, а превращается в положительную. Мощность сигнала при этом не теряется, так как отрицательная полуволна просто инвертируется в положительную полуволну. Ну разве не чудо?

Наблюдательный читатель также может заметить, что амплитуда сигнала чуть-чуть просела. Если мы на вход подавали синусоидальный сигнал с амплитудой в 6 Вольт, то на выходе диодного моста имеем чуть меньше 6 Вольт, а точнее где-то 4,8 Вольта. Почему так произошло? Дело все в том, что на кремниевом диоде падает напряжение 0,6-0,7 Вольт. Так как переменное напряжение проходит через 2 диода при каждой полуволне, то на каждом диоде падает по 0,6 Вольт. 2×0,6=1,2 Вольта. 6-1,2=4,8 Вольта.

Теперь можно с гордостью нарисовать рисунок.

Виды диодных мостов

Примерно так выглядит импортный и советский диодные мосты.

Например, на советском показаны контакты, на которые надо подавать переменное напряжение значком ” ~ “, а контакты, с которых сниамем постоянное пульсирующее напряжение значком “+” и “-“.

Существует множество видов диодных мостов в разных корпусах.

Есть даже диодный мост для трехфазного напряжения.

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы, а два другие – на постоянное напряжение.

Он собирается по так называемой схеме Ларионова и состоит из 6 диодов.

В основном трехфазные мосты используются в силовой электронике.

Характеристики диодного моста

Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.

Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

Распиновка и корпус

Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

Package – тип корпуса. Корпуса GBU выглядят вот так.

Максимальный ток

Итак, с этим разобрались. Далее следующий параметр. IF(AV) – максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

Максимальное пиковое обратное напряжение

Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”. Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение.

Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2). Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт.

Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

Как проверить диодный мост

1-ый способ.

Как вы теперь знаете, однофазный диодный мост состоит из 4 диодов. Для того, чтобы узнать их расположение, мы должны скачать даташит на данный диод и посмотреть, как расположены диоды в данном диодном мосте. Например, для моего моста GBU6K диоды расположены вот так.

То есть все, что мне надо сделать – это просто прозвонить каждый диод с помощью мультиметра. Как это сделать, я писал еще в этой статье.

Второй способ.

Он же 100%. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор, а также резистор, желательно 5-10 КОм. После того, как мы нашли его расположение выводов, на “+” и “-”  припаиваем резистор 5-10 КОм. С этих же выводов снимаем осциллограмму.

То есть все должно выглядеть вот так.

Смотрим осциллограмму

Значит, диодный мост исправен.

Диодный мост генератора

Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

Диодный мост генератора ВАЗ 2110

В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

Как проверить диодный мост генератора

Для проверки диодного моста генератора есть два способа.

Проверка с помощью лампы накаливания

Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.

Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой “прибор” для проверки диодов выглядит вот так.

Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.

Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

Таким же образом проверяем все диоды таблетки.

Маленькие черные диоды проверяются точь-в-точь таким же способом.

Меняем выводы и убеждаемся, что диод рабочий.

Правила:

1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

Проверка с помощью мультиметра

Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

Берем в руки мультиметр и ставим его в режим прозвонки диодов.

И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

Таким же образом проверяем все оставшиеся диоды.

Источник: https://www.RusElectronic.com/diodnyj-most/

⚡ Диодный мост: схема, особенности, назначение

Что такое диодный мост и для чего он нужен

Подавляющее большинство электронной аппаратуры работает на постоянном токе. А источником напряжения может быть как гальванический элемент, так и городская сеть переменного ток 220 В.

Вот и приходится переменный ток преобразовывать в постоянный, то есть – «выпрямлять». Для этой цели служит устройство под названием выпрямитель.

Это может быть готовый промышленный компонент, а может быть электронная схема, собранная из отдельных, более простых, элементов. Сегодня разберём, что же такое диодный мост, зачем он нужен и как работает.

Что такое диодный мост и зачем нужен

Переменный ток в бытовой электросети по синусоидальному закону меняет свою полярность 50 раз в секунду. Диодный мост, собранный из четырёх диодов, 25 раз в секунду пропускает одну положительную полуволну.

То есть, превращает ток переменного знака амплитудой, имеющей колебательный характер, в ток одного знака, но с удвоенной частотой колебаний амплитуды. Если потребителя это не устраивает, то после выпрямителя ставится сглаживающий фильтр.

Ниже представлена принципиальная электрическая схема диодного моста-выпрямителя.

ФОТО: go-radio.ruСхема диодного моста

Диодный мост можно собрать из отдельных конструктивно законченных диодов, но можно в промышленных условиях сразу изготовить из кристаллов в виде цельного изделия, пригодного к дальнейшей установке в электронную схему. Такая диодная сборка имеет технологические преимущества над предыдущим вариантом. Она компактней, монтаж моста надёжней, стоимость существенно ниже, чем у четырёх диодов.

ФОТО: .comОдин из вариантов исполнения диодаФОТО: .comДиодный мост, собранный из четырёх диодовФОТО: .comДиодный мост в виде одного изделия

Принцип работы

Диодный мост представляет собой электрическую схему из четырёх диодов. Схема построена таким образом, что в каждый полупериод переменного тока соответствующая полуволна проходит по одному плечу моста, в другой полупериод другая полуволна проходит по другому плечу. Но в точках моста, где диоды соединены одинаковой полярностью, знак тока всегда один и тот же.

Основные характеристики

И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:

  • это напряжение обратной полярности, которое можно, не опасаясь пробоя, приложить к устройству;
  • величина тока обратной полярности, который безопасно можно пропустить по устройству;
  • длительность протекания тока по устройству без его перегрева;
  • максимальная температура устройства, при которой оно сохраняет свою работоспособность;
  • максимальная допустимая частота проходящего тока.

ФОТО: go-radio.ruВариант изображения моста на принципиальной электрической схемеФОТО: go-radio.ruСборка «Диодный мост» на печатной плате

Схема диодного моста

И самодельный мост, и промышленная диодная сборка изготавливаются по одной и той же схеме. Два диода последовательно спаиваются разноимёнными полюсами. Потом две пары спаивают одноимёнными полюсами на концах этих пар. К точкам соединения разноимённых полюсов подключается источник переменного напряжения, к точкам соединения одноимённых полюсов подключают нагрузку.

Диодные мосты применяются для выпрямления однофазного и трёхфазного тока.

Однофазный выпрямитель

Этот выпрямитель применяется в бытовой электронной технике чаще всего, так как бытовая электросеть однофазная. Как правило, пульсации выпрямленного тока с частотой 100 Гц не годятся для нормальной работы аппаратуры, появится неприятный звуковой фон – гудение. После выпрямителя следует ставить качественный сглаживающий фильтр из катушки индуктивности (последовательно) и конденсатора достаточной ёмкости (параллельно выходу выпрямителя).

ФОТО: electroinfo.netСхема однофазного моста

Трёхфазный выпрямитель

Трёхфазные выпрямители на выходе дают меньшую частоту пульсаций, чем однофазные. Понижаются требования к сглаживающим фильтрам.

Схемы выпрямителей для трёхфазных цепей бывают однотактные и двухтактные. В однотактной схеме к каждой обмотке трёхфазного трансформатора подключается минус диода. Свободные концы каждой из трёх катушек соединяются в общую точку.  Плюсы диодов тоже соединяются в одну точку. Нагрузка подключается между этими двумя общими точками.

ФОТО: electricalschool.infoПринципиальная схема однотактного трёхфазного моста-выпрямителя

Если требуется выходное напряжение более высокого значения, а пульсации поменьше, то собирается двухтактна схема. Собираются три пары диодов, в каждой паре плюсовой вывод одного подключается к минусу другого.

  Плюсовые выводы трёх пар тоже собираются в одну точку, так же объединяются минусы диодов, а общие точки в каждой паре диодов подключаются к свободным концам трёх обмоток вторичной обмотки трансформатора. Нагрузка подключается между общим минусом и плюсом сборки. В такой схеме выходное напряжение несколько выше, а пульсации намного меньше.

Иногда можно обойтись без сглаживающего фильтра. Такая схема имеет название «Мостовой трёхфазный выпрямитель Ларионова».

ЭТО ИНТЕРЕСНО:  Что такое электрическое напряжение простыми словами

ФОТО: electricalschool.infoПринципиальная схема двухтактного трёхфазного моста-выпрямителяФОТО: electricalschool.infoСборка «Трёхфазный диодный мост»

Где применяется схема диодного моста

Кстати, автомобильный генератор тоже выдаёт переменный ток, а всё электрооборудование автомобиля работает на постоянном токе. После генератора установлен мощный диодный выпрямитель. Мостовая схема диодного выпрямителя широко применяется в бытовой радиоаппаратуре – радиоприёмниках, телевизорах, всевозможных магнитофонах и проигрывателях. Диодные мосты ставят и в трансформаторных, и в импульсных блоках питания.

Как сделать диодный мост своими руками

При необходимости и при наличии нужных диодов и паяльника нетрудно собрать диодный мост своими руками.

Что нужно для работы

Для работы нужно подготовить рабочее место с розеткой для паяльника, паяльник с подставкой, припой, канифоль, пинцет, маленькие кусачки. Конечно, нужны диоды с нужными характеристиками. При большом желании мост можно собрать на печатной плате с готовыми дорожками.

Инструкция по изготовлению

Иллюстрация Описание действия
ФОТО: .com Подготовка рабочего места
ФОТО: .com Пайка схемы
ФОТО: .com Приборная проверка собранной схемы
ФОТО: .com Проверка схемы под нагрузкой с конденсатором фильтра

Проверка на работоспособность

Первая проверка всегда визуальная. Проверяется, те ли детали установлены, правильно ли собрана схема, качество пайки. Затем собирается проверочная схема с источником и измерительным прибором. И если этот этап прошёл успешно, то можно подключить нагрузку и провести окончательную проверку результатов своей работы.

Заключение

Работа с электроникой – это очень интересное занятие. И когда результат собственной деятельности начинает успешно функционировать, человек испытывает огромное удовлетворение.

ПредыдущаяСледующая

Источник: https://homius.ru/diodnyj-most-shema.html

Для чего нужен диодный мост, схема, принцип работы

Что такое диодный мост и для чего он нужен

Как мы знаем, в наших розетках протекает переменный электрический ток с напряжением в 220 вольт. Но как быть если нам нужно запитать низковольтный приемник, которому требуется постоянный ток? Если с напряжением все понятно – нам поможет трансформатор, то как сделать из переменного тока постоянный – вопрос.

В этой ситуации нам на помощь приходит такое устройство как выпрямитель.Это устройство содержится почти во всех электронных приборах, которые работает на постоянном токе, от сварочных полуавтоматов, до блоков питания. В статье мы рассмотрим классическую схему выпрямителя из четырех диодов, которая именуется выпрямительным диодным мостом.

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

Будет интересно➡  Дроссели в электрике: что это и где используются?

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Как работает диодный мост

Принцип работы диодного моста достаточно прост. Переменный ток имеет две полуволны: положительную отрицательную. Каждое плечо (2 диода) выпрямляют свою полуволну, в то время как второе плечо блокирует протекание тока в другом направлении. В результате выпрямляется два полупериода, а на выводах всегда неизменная полярность.

Подключить диодный мост не составит труда, ведь это схематично показано на всех УГО (это и есть схема подключения) этого устройства. В случае с подключением диодной сборки, ее выводы обозначены соответственными обозначениями.

Собрать диодный мост самостоятельно тоже проще простого. Если вы уже подобрали диоды, то достаточно припаять их концы соответственно схеме. Но перед этим не поленитесь проверить диоды на исправность и не перепутайте их полярность.

Обычно катод и анод указаны на корпусе диодов.

Если остались вопросы, то рекомендуем к просмотру видео, чтобы найти ответы на оставшиеся вопросы.

Вывод

В статье мы рассмотрели такое классическое электронное устройство как диодный мост. Изучили его схему и разобрались в принципе работы. Я, как автор этой статьи, надеюсь, что она будет понятна даже чайнику и эти знания помогут вам в освоении радиоэлектроники.

Следующая

Источник: https://ElectroInfo.net/radiodetali/4-diodnyj-most.html

Как работает диодный мост?

Пару слов о том, как работает диодный мост.

Если на его вход (обозначен значком «~») подать переменный ток, полярность которого меняется с определённой частотой (например, с частотой 50 герц, как в электросети), то на выходе (выводы «+» и «-») мы получим ток строго одной полярности. Правда, этот ток будет иметь пульсации. Частота их будет вдвое больше, чем частота переменного тока, который подаётся на вход.

Таким образом, если на вход диодного моста подать переменный ток электросети (частота 50 герц), то на выходе получим постоянный ток с пульсациями частотой 100 герц. Эти пульсации нежелательны и могут в значительной степени помешать работе электронной схемы.

Чтобы «убрать» пульсации необходимо применить фильтр. Простейший фильтр – это электролитический конденсатор достаточно большой ёмкости. Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока.

Обозначение диодного моста на схеме

На принципиальных схемах диодный мост может изображаться по-разному. Взгляните на рисунки ниже – всё это одна и та же схема, но изображена она по-разному. Думаю, теперь взглянув на незнакомую схему, вы с лёгкостью обнаружите его.

Диодная сборка

Диодный мост во многих случаях обозначают на принципиальных схемах упрощённо. Например, вот так.

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Сборка диодного моста (или просто диодная сборка) – это 4 одинаковых по параметрам диода, которые соединены по схеме мостового выпрямителя и запакованы в один общий корпус. У такой сборки 4 вывода. Два служат для подключения переменного напряжения и обозначаются значком «~». Иногда могут иметь обозначение AC (Alternating Current — переменный ток).

Оставшиеся два вывода имеют обозначения « + » и « — ». Это выход выпрямленного, пульсирующего напряжения (тока).

Диодная сборка выпрямительного моста является более технологичной деталью. Она занимает меньше места на печатной плате. Для робота-сборщика на заводе проще и быстрее установить одну монолитную деталь вместо четырёх. Ещё одним из плюсов такой сборки можно считать то, что при работе все диоды внутри неё находятся в одном тепловом режиме.

Также стоит отметить и то, что сборки, порой, стоят дешевле, чем четыре отдельных диода. Но и в бочке мёда должна быть ложка дёгтя. Минус диодных сборок в том, что если выходит из строя хотя бы один диод, то менять её придётся полностью. Поэтому не лишним будет научиться проверять диодный мост мультиметром.

Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.

В реальности сборка диодного моста может выглядеть вот так.

Диодная сборка KBL02 на печатной плате

Или вот так.

Диодная сборка RS607 на плате компьютерного блока питания

А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504, рассчитанный на прямой ток 25 ампер.

Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.

Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.

Условное изображение диодного моста и диодной сборки

Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.

На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD, а рядом ставиться его порядковый номер в схеме.

Например, вот так: VD1VD4. Иногда применяется обозначение VDS. Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка.

Также можно встретить обозначение BD.

Где применяется схема диодного моста?

Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах .

Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания, но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания.

На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.

Вы легко найдёте диодный мост на печатных платах электро-пускорегулирующих аппаратов (ЭПРА) или по-простому «балластах», а также в компактных люминесцентных лампах (КЛЛ).

В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • MOSFET-транзисторы.
  • Условное обозначение полевых транзисторов.

Источник: https://go-radio.ru/diodniy%20most.html

Что такое диодный мост — принцип работы, где применяется и виды

Как подключить диодный мост и зачем он вообще нужен? Какие типы бывают и как выбрать? Как правильно замерить напряжение при помощи мультиметра? Где его применяют?

Что такое диодный мост

Работа и функционал двухполупериодного мостового выпрямителя довольно просты. Схемы и формы сигналов, которые мы привели ниже, помогут вам лучше понять работу мостового выпрямителя. На принципиальной схеме 4 диода расположены в виде моста. Вторичная обмотка трансформатора подключена к двум диаметрально противоположным точкам моста в точках A и C. Сопротивление нагрузки R L подключено к мосту через точки B и D.

Функционирование

Общая схема питания

Форма волны переменного тока не постоянна, зависит от времени. Когда оно достигает положительного пикового значения, ток имеет тенденцию к падению; то же самое будет следовать за отрицательным значением, после того как снова достигнет нуля, оно вернется к нулевым значениям.

Теперь рассмотрим работу выпрямителя, применив AC в качестве входа. Для положительной половины цикла диод работает в режиме прямого смещения. Следовательно, путь установлен для движения носителей заряда.

Как только отрицательная часть цикла приложена к диоду, он блокирует значение тока, потому что движением неосновных носителей заряда в нем можно пренебречь. Просто можно определить работу диода как проводящую в прямом смещении и блокирующую в обратном смещении к потоку тока.

Следовательно, течение тока очевидно во время положительной части цикла, приложенного к диоду. Полученный выход должен быть преобразован из переменного тока в постоянный. Таким образом, основной диод функционирует как выпрямитель.

Как работает и для чего нужен диодный мост

Положительный полупериод

Схема работы диодов в положительном полупериоде

Во время отрицательного полупериода питания диоды D3 и D4 работают последовательно, но диоды D1 и D2 переключаются в положение «ВЫКЛ», поскольку теперь они имеют обратное смещение. Ток, протекающий через нагрузку, имеет то же направление, что и раньше.

Отрицательный полупериод

Схема работы диодов в отрицательным полупериоде

Поскольку ток, протекающий через нагрузку, является однонаправленным, то и напряжение, развиваемое на нагрузке, также является однонаправленным так же, как и для двухдиодных выпрямителей предыдущих двух диодов, поэтому среднее напряжение постоянного тока на нагрузке составляет 0,637 В макс.

Кремниевые и германиевые диоды

Ученые и инженеры обычно используют кремний чаще, чем германий, при создании диодов. Кремниевые pn-переходы работают более эффективно при более высоких температурах, чем германиевые. Кремниевые полупроводники позволяют электрическому току течь легче и могут производиться с меньшими затратами.

Эти диоды используют преимущество pn-перехода для преобразования переменного тока в постоянный как своего рода электрический «переключатель», который позволяет току протекать в прямом или обратном направлении в зависимости от ориентации pn-перехода.

Диоды с прямым смещением позволяют току течь, а диоды с обратным смещением блокируют его. Это то, что заставляет кремниевые диоды иметь прямое напряжение около 0,7 вольта, так что они пропускают ток, только если он больше, чем вольт.

Для германиевых диодов прямое напряжение составляет 0,3 вольта.

Диод

Анодный вывод батареи, электрода или другого источника напряжения, в котором происходит окисление в цепи, подает отверстия в катод диода при формировании pn-перехода. Напротив, катод источника напряжения, где происходит восстановление, обеспечивает электроны, которые отправляются на анод диода.

Особенности конструкции мостового выпрямителя

Есть несколько моментов, которые необходимо учитывать при использовании мостового выпрямителя для обеспечения выхода постоянного тока от входа переменного тока:

  • Падение напряжения: не следует забывать, что ток, протекающий в мостовом выпрямителе, будет проходить через два диода. В результате выходное напряжение будет уменьшено на эту величину. Поскольку большинство мостовых выпрямителей используют кремниевые диоды, это падение составит минимум 1,2 В и будет увеличиваться по мере увеличения тока. Соответственно, максимальное выходное напряжение, которое может быть достигнуто, составляет минимум 1,2 В ниже пикового напряжения на входе переменного тока.
  • Рассчитайте тепло, рассеиваемое в выпрямителе. Диоды будут снижать напряжение минимум на 1,2 В (при условии, что стандартный кремниевый диод) будет увеличиваться при увеличении тока. Это происходит из-за стандартного падения напряжения на диоде, а также сопротивления в диоде.Стоит ознакомиться с паспортом на диоды мостового выпрямителя, чтобы увидеть падение напряжения для предполагаемого уровня тока.Падение напряжения и ток, проходящий через выпрямитель, вызовут нагрев, который необходимо будет рассеивать. В некоторых случаях это может быть легко рассеяно воздушным охлаждением, но в других случаях мостовой выпрямитель может потребоваться прикрутить к радиатору.
  • Пиковое обратное напряжение: очень важно обеспечить, чтобы пиковое обратное напряжение мостового выпрямителя или отдельных диодов не превышалось, иначе диоды могут выйти из строя.Номинал PIV для диодов в мостовом выпрямителе меньше, чем требуется для конфигурации с двумя диодами, используемой с трансформатором с центральным отводом. Если отбрасыванием диодов пренебрегают, для мостового выпрямителя требуются диоды с половиной номинальной PIV от диодов в выпрямителе с центральным отводом для того же выходного напряжения. Это может быть еще одним преимуществом использования этой конфигурации.
ЭТО ИНТЕРЕСНО:  Для чего нужен диод параллельно реле

Мостовые выпрямители являются идеальным способом обеспечения выпрямленного выхода с чередующегося входа. Мостовой выпрямитель обеспечивает двухполупериодный выпрямленный выходной сигнал, что позволяет добиться большей производительности.

Синхронные выпрямители также известны как активные, и они используются для повышения эффективности цепей диодных выпрямителей.

Полупроводниковые диоды заменены активными переключающими элементами: транзисторами, которые могут быть силовыми МОП-транзисторами или силовыми биполярными транзисторами, которые включаются и выключаются в требуемое время для обеспечения возможности выпрямления.

Поскольку переключение, очевидно, должно происходить синхронно с поступающим сигналом, эти выпрямители часто называют синхронными или иногда активными.

Синхронные выпрямители

Потребность в синхронных или активных выпрямителях возникает из-за постоянного падения, которое происходит через диод, когда он проводит.

Хотя напряжение включения для кремниевого диода – тип, наиболее часто используемый для выпрямителей, составляет около 0,6 вольта, фактическое падение напряжения на диоде может возрасти до 1 вольта при его номинальном токе.

Использование диодов Шоттки может уменьшить падение напряжения, но это все еще может быть проблемой, особенно когда требуются самые высокие уровни эффективности. Синхронные выпрямители способны обеспечить улучшения даже по сравнению с диодными выпрямителями Шоттки.

Вопрос эффективности становится еще острее при использовании низковольтных преобразователей. С уровнями напряжения всего несколько вольт, а также с возможностью высоких уровней тока падения напряжения, вызванные диодами, становятся неприемлемыми, и методы синхронного выпрямителя становятся существенными.

Основы синхронного выпрямления

В типичном диодном выпрямителе диод включается, когда он смещен в прямом направлении, и выключается, когда смещается в обратном направлении. Можно управлять активным элементом, чтобы эффект был таким же. Преимущество активного выпрямителя состоит в том, что сопротивление проводимости и падение напряжения намного меньше, чем у диодов.

Поскольку переключение активного элемента должно быть правильно рассчитано, оно фактически синхронизировано с выпрямляемым сигналом. Именно по этой причине эти выпрямители известны как синхронные.

Часто мощные полевые МОП-транзисторы являются идеальными активными элементами для синхронного выпрямления, и они имеют очень низкое сопротивление, при этом RDS может составлять всего несколько десятков мОм или менее. Падение напряжения на этом уровне сопротивления, вероятно, будет намного меньше, чем на диоде.

Недостатком синхронных или активных выпрямителей является то, что им требуется схема управления для обеспечения синхронного включения устройств, то есть в нужное время. Схема, необходимая для управления синхронным выпрямителем, обычно включает в себя детекторы уровня напряжения и схему возбуждения для активных устройств.

Одним из ключевых вопросов для схемы управления является обеспечение того, чтобы два устройства на противоположных ножках выпрямителя не включались вместе, иначе короткое замыкание будет представлено на входе. Включение и выключение устройств обычно контролируется, чтобы гарантировать, что даже в точке, где одно включается, а другое выключается, имеется короткий промежуток, чтобы предотвратить одновременное включение обоих устройств.

Активное или синхронное выпрямление часто используется в преобразователях переменного тока в постоянный, где ключевым вопросом является эффективность. Использование синхронного выпрямителя позволяет минимизировать потери мощности и повысить уровни эффективности, но за счет дополнительной сложности.

Полуволновой выпрямитель

Полуволновые выпрямители соединены в цепи и переключаются между прямым и обратным смещением на основе положительного или отрицательного полупериода входной волны переменного тока. Он посылает этот сигнал на резистор нагрузки, так что ток, протекающий через резистор, пропорционален напряжению. Это происходит из-за закона Ома, который представляет напряжение V как произведение тока I и сопротивления R в V = IR.

Вы можете измерить напряжение на нагрузочном резисторе как напряжение питания Vs, которое равно выходному напряжению постоянного тока Vout. Сопротивление, связанное с этим напряжением, также зависит от диода самой схемы. Затем схема выпрямителя переключается на обратное смещение, в котором она принимает отрицательный полупериод входного сигнала переменного тока. В этом случае ток не протекает через диод или цепь, а выходное напряжение падает до 0. Выходной ток является однонаправленным.

Двухполупериодная выпрямительная схема

Двухполупериодная выпрямительная схема

Напротив, двухполупериодные выпрямители используют полный цикл (с положительными и отрицательными полупериодами) входного сигнала переменного тока.

Четыре диода в двухполупериодной схеме выпрямителя расположены таким образом, что, когда входной сигнал переменного тока положительный, ток течет через диод от D1 к сопротивлению нагрузки и обратно к источнику переменного тока через D2.

Когда сигнал переменного тока отрицателен, вместо этого ток проходит путь D3 -load- D4. Сопротивление нагрузки также выводит напряжение постоянного тока от двухполупериодного выпрямителя.

Как меняется напряжение после диодного моста

Источник: https://meanders.ru/diodnyj-most.shtml

Диодный мост: назначение и изготовление своими руками

Несмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Особенности видов напряжения

Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

Источник: https://pochini.guru/sovety-mastera/diodnyiy-most

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате.

Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах.

В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом.

Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех.

Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Устройство диода

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону.

Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием.

При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны.

Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный.

Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное.

Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором.

В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.RadioElementy.ru/articles/chto-takoe-diodnyy-most/

Что такое диодный мост — простое объяснение

Подробно рассмотрены устройство, принцип работы и назначение диодного моста. Характеристики данного элемента и схемы выпрямителей. Как спаять и подключить диодный мост.

Мы рассматривали пассивные компоненты электронных схем, такие как резисторы и конденсаторы. Но кроме них электрикам и радиолюбителям приходится сталкиваться и с другими, например полупроводниковыми диодами, стабилитронами и т.д. В этой статье мы расскажем, что такое диодный мост, как он работает и для чего нужен. :

Определение

Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.

Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.

Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.

Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.

В зависимости от сферы применения и схемы подключения диодные мосты бывают:

Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.

Принцип действия

Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.

ЭТО ИНТЕРЕСНО:  Какое явление называется пробоем диода

Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.

Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:

  • На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или ~).
  • Каждая из полуволн синусоидального напряжения (рисунок ниже) пропускается парой вентилей, расположенных на схеме по диагонали.

Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.

Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.

Схемы выпрямителей

Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!

В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.

У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.

Чтобы не было путаницы, давайте разбираться в терминологии.

Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».

Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.

Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.

Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.

Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.

Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.

Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.

Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.

Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.

Как спаять и подключить

Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

Способы проверки

Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.

Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).

Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.

На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.

Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:

На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

  • Как выпаивать радиодетали из плат
  • Как пользоваться мультиметром — инструкция для чайников
  • Как понизить напряжение в сети

Источник: https://elektrik-sam.ru/baza-znanij/4139-chto-takoe-diodnyj-most-prostoe-objasnenie.html

Диодный мост: устройство, принцип работы, обозначение на схеме

Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы.

Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента.

Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный.

Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы.

Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Технические характеристики

При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.

Среди таких характеристик наиболее значимыми для диодного моста являются:

  • Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или V­rpm для зарубежных.
  • Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение  Uобр в отечественных образцах или V­r(rms) для зарубежных диодных мостов.
  • Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
  • Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
  • Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как V­fm.

Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.

Преимущества и недостатки

Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

  • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
  • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
  • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
  • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки.

Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д.

В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.  

Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения.

Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому.

Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Рис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Рис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост  VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Пример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Источник: https://www.asutpp.ru/diodnyy-most.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как рассчитать силу тока по мощности

Закрыть