Что такое DC и AC напряжение

Стандартные AC/DC и DC/DC преобразователи

Что такое DC и AC напряжение

Компания «ЭФО» является официальным дистрибьютором четырех компаний, производящих стандартные типы источников питания: Arch, Bothhand, Minmax и Recom.

Все эти компании прошли аудит «ЭФО» и подтвердили, что являются: непосредственными разработчиками и производителями источников питания, обладают собственными лабораториями для испытания продукции и имеют необходимые сертификаты, подтверждающие качество и безопасность своих изделий.

Работа с компаниями полного цикла позволяют нам гарантировать прямые поставки непосредственно от производителя, что исключает риск получения заказчиком контрафактной продукции и продукции с нарушенным сроком или условиями хранения.

«ЭФО» имеет прямые дистрибьюторские контракты с каждым из производителей и обеспечивает выполнение гарантийных обязательств производителей, а также техническую поддержку по продукции как силами собственного инженерного состава компании «ЭФО», так и привлекая инженеров производителей.

Представленные на данной странице компании Arch, Bothhand, Minmax, Recom выпускают изолированные AC-DC и DC-DC преобразователи с распространёнными в промышленности типами корпусов и напряжений. Благодаря объединению ассортимента четырёх производителей, компания «ЭФО» способна обеспечить потребности заказчика практически в любом источнике питания.

Изолированные DC-DC представлены от миниатюрных нестабилизированных преобразователей мощностью 0,25 Вт до специализированных источников для железнодорожного оборудования мощностью 240 Вт.

AC-DC преобразователи, или как их ещё называют сетевые источники питания, представлены в диапазоне мощностей от 1 до 1000 Вт. Модули имеют различное конструктивное исполнение в зависимости от сферы использования: модули для пайки в плату с пластиковым корпусом залитый компаундом, модули с проводным монтажом под пайку, бескорпусные источники с установленными на них разъёмами или колодками, модули для крепления на DIN-рейку.

Все изолированные AC-DC, DC-DC преобразователи, а также неизолированные стабилизаторы напряжения имеют необходимые сертификаты соответствия международным стандартам безопасности и электромагнитной совместимости, что позволяет использовать их на территории России.

Изолированные AC-DC преобразователи

AC/DC преобразователи; бескорпусные, Recom
 

35 — 150 Вт
3 — 4 кВ
85 — 264 В

AC/DC преобразователи; проводной монтаж, Recom
 

2 — 5 Вт
3 — 4 кВ
85 — 305 В

Компактные AC/DC 
для монтажа в плату, Arch

2 — 100 Вт
3 — 4 кВ
90 — 305 В

AC/DC для медицинского
оборудования, Arch

15 — 700 Вт
4 — 5,6 кВ
90 — 264 В

AC/DC для применения
в промышленности, Arch

60 — 700 Вт
3 — 4 кВ
85 — 265 В

AC/DC для промышленного применения, Minmax

2 — 60 Вт
3 — 4 кВ
85 — 264 В

AC/DC для медицинского применния, Minmax

24 — 60 Вт
4 кВ
85 — 264 В

Стабилизаторы напряжения

POL — конвертер; монтаж в отверстия, Recom
 

0,3 — 2 А
buck, boost
6,5 — 72В 0,65 — 3,3 В

POL — конвертер; SMD монтаж, Recom
 

1 — 6 А
 buck-boost
2,3 -5,5 В 3 — 17 В

POL — конвертер, проводной монтаж, Recom
 

0,5 А
buck
9 — 72 В

Бескорпусной, POL — конвертер, Recom
 

0,5 — 10 А
buck
7 42

DC/DC стабилизаторы напряжения, Minmax
 

0,5 — 1 А
buck
4,75 — 32 В

Источник: https://efo.ru/ru/products/istochniki-pitaniya/standart-ac-dc-and-dc-dc.html

Что такое сварочный аппарат для TIG сварки AC DC?

Что такое DC и AC напряжение

Время чтения: 9 минут

Сварочный аппарат TIG — это давно известная разновидность сварочного оборудования. TIG-аппарат можно найти как на крупном производстве, так и в мастерской у частного мастера или в гараже у сварщика-любителя. Сама технология TIG сварки универсальна и проста в применении, поэтому ее используются многие мастера по всему миру.

Большинство TIG-аппаратов работают на постоянном токе, поскольку это стандарт среди современного сварочного оборудования. Такие аппараты называют DC (DC — постоянный ток). Но в продаже так же есть TIG аппараты с приставкой AC/DC в названии, что означает ток переменный/ток постоянный.

Что это такое? Зачем современному TIG-аппарату работать не только на постоянном, но и на переменном токе? На все вопросы вы найдете ответы в этой статье. Мы также расскажем про лучшие TIG AC/DC аппараты для дома и гаража по цене от 500$ до 800$. Это стандартная цена для аппаратов с таким функционалом. Есть модели и существенно дороже, но их покупка целесообразна только при работе на крупном производстве.

Общая информация

Аппараты TIG имеют множество названий: от «аргонный аппарат» до «установка аргоно-дуговой сварки». Но, несмотря на множество терминов, за всеми ними кроется вполне определенный тип сварочного оборудования.

Все аппараты TIG — это устройства, предназначенные для дуговой сварки неплавящимся электродом в среде аргона.

Сварка TIG используется повсеместно как среди любителей, так и среди профессионалов.

Этот метод позволяет сваривать все типы металлов, получая качественные эстетичные швы.

Аппарат DC и AC/DC: в чем разница?

Большинство аппаратов для TIG сварки работают на постоянном токе (DC), поскольку в данном режиме дуга легче поджигается, горит стабильнее и в целом позволяет получить швы лучшего качества. Но иногда для выполнения особо сложных работ необходимо использовать переменный ток (AC). Профессионалы особенно часто сталкиваются с необходимостью сварки именно на переменном токе.

Производители прекрасно знают об этом. Поэтому с развитием технологий инженеры смогли создать аппараты, способные работать сразу в двух режимах: и AC, и DC. Т.е., такие устройства могут варить как на переменном токе, так и на постоянном. Сварщик сам решает, какой ток выбрать для выполнения тех или иных задач.

Так у мастеров появилось больше возможностей в работе при использовании аппаратов AC DC. Такие аппараты незаменимы при работе с металлами, на поверхности которых есть окисная пленка. При сварке на переменном токе эта пленка не препятствует формированию шва, чего нельзя добиться при использовании обычного TIG DC аппарата.

BRIMA TIG 160 AC/DC

Аппараты Brima известны многим мастерам уже много лет. Они стабильно пользуются спросом, поскольку собираются из качественных комплектующих, и благодаря расширенному функционалу позволяют выполнить работу на 5 с плюсом. У бренда большой ассортимент, и не удивительно, что среди всего разнообразия у них есть аппараты TIG AC/DC.

Первый аппарат в нашем списке — это BRIMA TIG 160 AC/DC. Типичный представитель TIG AC/DC оборудования, пользуется большой популярностью у любителей и полупрофессионалов. А все из-за доступной цены. BRIMA TIG 160 AC/DC — самый недорогой TIG AC/DC аппарат из всех перечисленных в этой статье.

Аппарат работает не только в режиме TIG, но и в режиме ММА (ручная дуговая сварка плавящимся электродом). Выдает сварочный ток около 160 Ампер, чего достаточно для решения  множества задач. Питается от обычной розетки 220В, работает без перерыва до 60% всего сварочного цикла.

Источник: https://svarkaed.ru/oborudovanie-dlya-svarki/apparaty/po-markam/chto-takoe-svarochnyj-apparat-dlya-tig-svarki-ac-dc.html

Принцип работы и разновидности DC-DС преобразователей | ТЕРРАТЕЛ

Что такое DC и AC напряжение

DC/DC преобразователи питания постоянного тока широко применяются в различных электронных приборах, вычислительной технике, устройствах телекоммуникации, автоматизированных системах управления (АСУ), мобильных устройствах и т.д.
DC/DC преобразователи применяются для изменения выходного напряжения как в большую, так и в меньшую сторону, относительно напряжения на входе.

Типы DC DC преобразователей

Сегодня на рынке существует различные типы DC/DC конвертеров, которые используются потребителями.

  1. DC/DC преобразователи без индуктивности.

Для питания маломощных нагрузок выгодно использовать преобразователи на коммутируемых конденсаторах. Использование таких устройств не требует наличия дорогих моточных компонентов, поэтому они позволяют создать дешевые и компактные модули питания. Подобные преобразователи могут быть как с фиксированным напряжением, так регулируемые.

  1. DC/DС преобразователи с индуктивностью.

Большой популярностью пользуются преобразователи без гальванической развязки между входом и выходом. В данном типе DC-DC конвертера находится единичный изолированный источник питания. В зависимости от положения ключа, напряжение может повышаться, понижаться или инвертироваться в напряжение с обратной полярностью. Ключевыми элементами часто выступают биполярные транзисторы с изолированным затвором (IGBT) и полевые транзисторы разного типа (FET).

Среди конвертеров с индуктивностью можно встретить следующие типы:

  • Понижающий импульсный DC-DC преобразователь. В роли ключа выступает транзистор, управляемый с помощью широтно-импульсного модулятора.
  • Повышающий импульсный DC-DC преобразователь. Его особенности мы рассмотрим ниже.
  • Преобразователь с регулируемым выходным напряжением. Такие устройства позволяют получить как повышенное, так и пониженное напряжение на выходе. Зачем это нужно? Например, для использования в устройствах, где напряжение задается Li-ионной батареей. Со временем, когда батарея ослабевает, её напряжение уменьшается, но использование такого преобразователя позволяет всегда поддерживать заданное значение на выходе.
  • Преобразователь с любым выходным напряжением. Они способны производить как повышенное, так и пониженное напряжение на выходе. Зачем они нужны? Например, для использования в схемах, где напряжение задается Li-ионной батареей. Они имеют напряжение 3,3 В. Со временем эксплуатации ее напряжение уменьшается, и поэтому есть смысл преобразовывать его до 3,3В на выходе. Примером такого устройства является Buck-boost DC DC преобразователь от Террател.

Рис. Составные узлы DC-DC преобразователя

  1. DC/DC преобразователь с гальванической развязкой.

В таких преобразователях постоянного тока применяются импульсные трансформаторы с несколькими обмотками, благодаря чему отсутствует связь между входной и выходной цепями.
Для таких устройств характерна большая разница потенциалов между входным и выходным напряжением. Например, они используются в блоках питания импульсных фотовспышек, которые имеют на выходное напряжение около 400В.

Принцип работы DC-DC преобразователя

Описания принципа работы DC/DC преобразователя рассмотрим на следующем примере.

Итак, у нас есть 5В постоянного тока из которых нам необходимо получить большее напряжение. Существует несколько вариантов решения данной задачи. Например, параллельно заряжать конденсаторы, а потом последовательно их переключать. Причем делать это надо очень быстро, по несколько раз в секунду. Конечно, на практике это нереально, поэтому существуют специальные DC/DC преобразователи для решения этой задачи.

Чтобы понять, что такое DC/DC конвертер и какой у него принцип роботы, представим вариант работы системы подачи воды потребителю.

Этап 1 – Процесс разгона турбины.
Для начала нам необходимо разогнать турбину. Для этого открывается заслонка, и вода быстро сливается, передавая часть своей энергии турбине, благодаря чему последняя начинает раскручиваться.

Этап 2 – Заполнение емкости накопителя воды и давления.

Заслонка закрывается. Порция воды, толкаемая раскрученной турбиной-маховиком, приоткрывает клапан и наполняет емкость накопителя воды и давления. Другая часть воды направляется к потребителю, только уже с повышенным давлением от емкости-накопителя. При этом клапан препятствует обратному ходу воды в сторону турбины в случае возникновения большего давления от емкости накопителя.

Этап 3 – Получение энергии из емкости накопителя давления и разгон турбины.

Скорость турбины начинает падать. Давления воды уже не достаточно для продавливания клапана, а энергии в емкости накопителя воды накоплено достаточно. Затем, заслонка открывается снова, и вода начинает быстро раскручивать турбину. При этом поток воды к потребителю не прекращается, так как он получает её из емкости накопителя.

Дальше цикл раскрутки турбины и заполнения емкости накопителя воды и давления повторяется.

По аналогичному принципу работает любой DC DC преобразователь.

Ниже представлена электрическая схема DC DC преобразователя, на которой мы рассмотрим принцип его работы.

При этом роль турбины в электрической схеме DC DC преобразователя выполняет индуктивный дроссель. Вместо заслонки, которая управляет потоком воды, применяется транзистор. Роль клапана выполняет диод, а конденсатор является емкостью для накопителя давления.

Как работает DC DC преобразователь? Все аналогично.

Этап 1 – Накопление заряда индуктивностью.

Ключ замкнут. Индуктивность, получая ток от источника, накапливает энергию.

Этап 2 – Передача энергии в конденсатор.

Ключ размыкается, при этом катушка удерживает накопленную энергию в магнитном поле. Ток старается остаться на том же уровне, но дополнительная энергия из индуктивности подымает напряжение, тем самым открывая путь через диод. Часть энергии попадает к потребителю, а остальная накапливается в конденсаторе.

Этап 3 – Накопление энергии в индуктивности и передача заряда потребителю.

Затем ключ замыкается, и энергия снова начинает накапливаться в катушке. Потребитель, в это время, получает энергию из конденсатора.

ЭТО ИНТЕРЕСНО:  Что такое активная и реактивная энергия

Область применения DC/DC преобразователей и дросселей

В различных электронных устройствах, работающих от автономных источников энергии, необходимые уровни напряжений, возможно, получить только с использованием DC/DC преобразователей постоянного тока.

DC/DC конвертеры, преобразователи или дроссели напряжения постоянного тока широко применяются в различных портативных электронных приборах, вычислительной технике, телекоммуникационном оборудовании, автоматизированных системах управления АСУ, автомобилестроении и т.д.

Источник: https://www.terratel.eu/ru/does-converter-work.html

DC ток

> Теория > DC ток

Постоянным, или DC-током, называется поток электрических зарядов, со временем не меняющий своего направления и силы, которая согласно классическому определению этой величины измеряется в кулонах в секунду (или амперах).

При знакомстве с электрическими явлениями постоянного характера важно помнить не только о направлении протекания физических процессов, но и об их интенсивности (силе). В реальных условиях эксплуатации электротехнического или электронного оборудования значение DC редко бывает абсолютно постоянным.

Причины непостоянства

Дело в том, что на выходе любой выпрямительной схемы, преобразующей переменный ток, всегда имеются низкочастотные гармоники исходного сигнала, называемые пульсациями.

Обратите внимание! При работе аккумуляторов и гальванических элементов говорить о его постоянстве также не совсем корректно, поскольку это может относиться только к понятию «полярность».

Сила потока электронов в любой нагрузке со временем также меняется (убывает), что связано со снижением ЭДС источника питания.

Из приведённых выше рассуждений следует, что говорить о постоянстве токовых характеристик в данных цепях можно только с некоторой долей условности. Оно приемлемо лишь в ситуациях, когда изменениями его силы можно пренебречь.

Основные характеристики тока

При рассмотрении основных параметров этой физической величины сразу оговоримся, что часто употребляемый термин «сила тока» большинством специалистов признан не совсем корректным. Гораздо более подходящей для обозначения его скалярной характеристики является не сила, а скорость (иногда её называют интенсивностью) перемещения свободных электрических зарядов.

https://www.youtube.com/watch?v=vj_rvLVpqg8\u0026list=PLBzBwYhHpqLLTp7rdiOuSflXO0GCzxmpY

Согласно классическому представлению, эта скорость определяется как количество заряда, перемещающегося через заданное сечение проводящего материала в единицу времени. Именно этот показатель, принимаемый за единицу силы тока, носит название одного Ампера.

Таким образом, поток в один Ампер – это перемещение заряда в один Кулон через данное проводящее сечение за время, равное секунде. Ещё одна характеристика постоянного тока, связанная с его протеканием по нагрузке с сопротивлением R, называется падением напряжения, которое измеряется в Вольтах. Оно определяется как разность потенциалов, образуемая на проводнике при протекании через него одного Ампера.

Это же определение может быть представлено в следующем виде. Один Вольт – это такая разность потенциалов между разнесёнными в электрическом поле точками, которой достаточно для совершения работы в один Джоуль (при переносе между ними заряда в один Кулон).

К практическим характеристикам получаемой посредством выпрямителей токовой компоненты обычно относят следующие параметры:

  • Амплитуда пульсаций, определяемая как разность его предельных значений;
  • Показатель пульсаций, представляемый в виде отношения двух величин, в котором в числителе ставится ток AC, а в знаменателе – DC.

Исследуем последнюю более подробно.

DC составляющая

При исследовании формы нагрузочного тока на выходе диодного выпрямителя с помощью осциллографа удаётся разглядеть его пульсации, проявляющиеся из-за ограниченности возможностей фильтрующих компонентов (ёмкостей).

В отдельных случаях эти составляющие настолько малы, что они могут не учитываться при расчёте схем, в которых должны устанавливаться фильтрующие конденсаторы. При таком подходе к категории исследуемый показатель удобнее рассматривать как импульсный или пульсирующий и выделять две его составляющие: DC и ас. Рассмотрим каждую из этих компонент более подробно.

Постоянная DC

Указанная величина вычисляется как среднее значение токового действия в течение периода. Она в корне отлична от другой характеристики пульсирующего потока, называемой переменной составляющей ас.

Изменяющаяся компонента

Переменный ток (точнее составляющая пульсирующего тока) ас представляет собой периодическое колебание его амплитуды около уже рассмотренного ранее среднего положения. При расчёте этой величины следует исходить из того, что её значение включает следующие составляющие:

  • Постоянную часть;
  • Значение переменной компоненты (ас), определяемое как среднеквадратичная величина.

Обе они являются компонентами исследуемого токового сигнала и, подобно всем электрическим параметрам, имеют фиксированную мощность (то есть способность выполнять определённую работу). Последняя вычисляется как:

P=UхI,

где I – это средняя квадратичная постоянной составляющей и пульсаций тока.

То есть при расчёте мощности компоненты постоянной DC и переменной ас суммируются как комплексные величины.

Дополнительная информация. Они представляются в этом случае в виде векторных составляющих исходного сигнала.

Также важно, что все рассмотренные определения, как и символы AC и DC, в равной степени применимы и для категории «напряжение».

В заключение ещё раз обратим внимание на то, что представление о постоянном токе чаще всего связано с неизменностью направления потока свободных электронов. Однако в реальности это понятие предполагает учёт ряда скалярных характеристик, к одной из которых относится интенсивность потока зарядов в пассивной нагрузке.

При изменяющемся во времени номинальном значении этой токовой составляющей считать его постоянным можно только условно, что допускается в рамках решаемой в каждом конкретном случае задачи.

Источник: https://elquanta.ru/teoriya/dc-tok.html

AC, DC — что это такое?

АС, DC – это устоявшиеся термины, буквально означающие: переменный ток, постоянный ток  (англ.: alternating current, direct current). Термин применяют как для обозначения характера тока, так и для обозначения режима работы устройства, соответственно, поддерживающего режим работы по переменному и постоянному току.  

Иногда с аббревиатурой DC связывают постоянную составляющую сигнала, а с AC – переменную.

Обозначения DC+AC, AC+DC или AC/DC  в технической литературе – это совсем не название известной рок-группы :), а обозначение, буквально означающее: постоянный и переменный ток.

Заметим, что термин переменный ток традиционно относят не к величине тока, а к направлению тока. Например, пульсирующий ток одного направления обычно называют постоянным током (DC), а не переменным (АС), поскольку этот ток не меняет направления.  Хотя, если в этом  примере рассматривать по отдельности составляющие тока, то, безусловно, он состоит из постоянной (DC) и переменной (AC) составляющих.

По аналогии эти термины применяют и к напряжению переменного тока и напряжению постоянного тока, поскольку, как известно из ТОЭ, напряжения без тока не существует.

https://www.youtube.com/watch?v=xxqCEPBDZxk\u0026list=PLBzBwYhHpqLLTp7rdiOuSflXO0GCzxmpY

В условных графических обозначениях символами постоянного и переменного тока являются значки  –  ~ , которые означают то же cамое, что и DC, AC.

Если оцифрованную  DC-составляющую сигнала вычисляют  простым  усреднением за выбранный промежуток времени, то AC — составляющую вычисляют как среднеквадратическое значение сигнала (RMS) за вычетом DC-составляющей за выбранный промежуток  времени.

Эти общеизвестные термины широко применяются в эксплуатационной документации при описании технических характеристик систем сбора данных, например, следующих семейств, производимых OOO “Л Кард”:  

Платы АЦП/ЦАП на шину PCI

Источник: https://www.lcard.ru/lexicon/ac_dc_term

ACϟDС. Понимание сварочного тока и полярности

Сварка – это ручной труд, но сварщики должны обладать достаточным количеством технических знаний, даже если в школе физика для них была чем-то сверхъестественным. 

Одним из обязательных понятий, которые необходимо знать, является «сварочный ток». Сварщик должен хорошо понимать, что такое полярность и какое влияние она оказывает на процесс сварки.

На сварочных аппаратах и электродах можно заметить обозначения AC или DC, которые описывают полярность тока. Почему электрические токи и полярность возникают во время сварки? Давайте рассмотрим эти понятия внимательно.

Что такое переменный (AC) и постоянный (DC) ток?

AC от англ. «alternating current» обозначает переменный ток, а DC «direct current»постоянный ток.

АС чередует направление тока, а DС течет только в одном направлении.

Сварочные машины и электроды с маркировкой DC имеют постоянную полярность, тогда как маркированные AC изменяют полярность 120 раз в секунду с частотой тока 60 герц.

Чем переменный и постоянный ток различаются при сварке?

Сварка при постоянном токе (DC) создает более плавные и более устойчивые дуги, образуется меньше брызг. Легче производится сварка в вертикальном и верхнем положениях.

Тем не менее, переменный ток (AC) может быть предпочтительным выбором начинающих сварщиков, поскольку часто используется в недорогих сварочных аппаратах начального уровня. AC также распространен в судостроительной сварке или в любых условиях, где дуга может плавать из стороны в сторону.

Что такое полярность?

Электрическая цепь, возникающая при включении сварочного аппарата, имеет отрицательный и положительный полюс – это свойство называется полярностью. Полярность имеет большое значение при сварке, потому что выбор правильной полярности влияет на прочность и качество сварного шва. Использование неправильной полярности может привести к большому количеству брызг, плохому проплавлению и потере контроля сварочной дуги.

При сварке переменным током соблюдать полярность не требуется!

В свою очередь, сварка с использованием постоянного тока бывает двух типов:

— сварка током прямой полярности

— сварка током обратной полярности

Полярность
прямая обратная
отрицательная положительная
(–) (+)

Процесс сварки будет различаться в зависимости от направления, полярности тока: положительной (+) или отрицательной (–).

Положительная полярность постоянного тока (DC+) обеспечивает высокий уровень проплавления, в то время как отрицательная полярность постоянного тока (DC–) даст меньшее проплавление, но более высокую скорость осаждения (например, на тонком листовом металле). Различные защитные газы могут дополнительно влиять на процесс сварки.

Сварка током прямой полярности

Под сваркой прямой полярности принято понимать сварку, при проведении которой на свариваемую деталь (изделие) подаётся положительный заряд от сварочного аппарата, т.е. сварочный кабель соединяет свариваемое изделие с клеммой (+) сварочного аппарата. На электрод же подаётся отрицательный заряд через электрододержатель, соединённый кабелем с клеммой (–).

При сварке током прямой полярности основная температурная нагрузка ложится на металлическую свариваемую деталь. То есть, она разогревается сильнее, что позволяет углубить корень сварочного шва.

Ток прямой полярности рекомендуется применять при необходимости резки металлоконструкций и сварке толстостенных деталей, а также в иных случаях, когда требуется добиться большого выделения тепла, что как раз и является характерной особенностью такого типа подключения.

Сварка током обратной полярности

Под сваркой обратной полярности принято понимать сварку, при проведении которой на свариваемую деталь (изделие) подаётся отрицательный заряд от сварочного аппарата, т.е. сварочный кабель соединяет свариваемое изделие с клеммой (–) сварочного аппарата. На электрод же подаётся положительный заряд через электрододержатель, соединённый кабелем с клеммой (+).

При сварке током обратной полярности больше тепла выделяется на электроде, а нагрев детали сравнительно уменьшается. Это позволяет производить более «деликатную» сварку и уменьшает вероятность прожига детали.

Сварку током обратной полярности рекомендуется применять при необходимости сваривания тонких листов металла, нержавеющей, легированной стали, иных сталей и сплавов, чувствительных к перегреву.

Так как переменный ток (AC) наполовину положительный и наполовину отрицательный, его сварочные свойства находятся прямо в середине положительной и отрицательной полярности постоянного тока (DC). Некоторые сварщики выбирают переменный ток (AC), если они хотят избежать глубокого проплавления. Например, при ремонтных работах на ржавых металлах.

Хотя переменный ток сам по себе не имеет полярности, если электроды для сварки на переменном токе использовать с постоянным, они покажут более низкие результаты. Поэтому производители электродов обычно указывают наиболее подходящую полярность на покрытии и упаковке электродов.

Понимание направления и полярности сварочного тока важно для правильного выполнения сварочных работ. Знание того, как эти факторы влияют на ваш сварной шов, облегчит вашу работу.

Источник: https://www.elektrodi.info/news/60/

Dc Dc преобразователь. Устройство и принцип работы основных схем

Для питания различной электронной аппаратуры весьма широко используется Dc Dc преобразователь. Применяется он в устройствах вычислительной техники, устройствах связи, различных схемах управления, автоматики и др.

Питание схем с помощью трансформаторных блоков питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

ЭТО ИНТЕРЕСНО:  Кому присваивают 5 группу допуска по электробезопасности

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

Питание схем с помощью Dc Dc преобразователей

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью Dc Dc преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5 В до 5 В (выходное напряжение компьютерного USB).

  Dc Dc преобразователь 1,5 В / 5 В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше.

Классификация Dc Dc преобразователей

Вообще Dc Dc преобразователи можно разделить на несколько групп.

Понижающий, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 1250 В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова – прерыватель. В технической литературе понижающий преобразователь иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающий, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5 В на выходе можно получить напряжение до 30 В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальный Dc Dc преобразователь – SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 914 В, а требуется получить стабильное напряжение 12 В.

Инвертирующий Dc Dc преобразователь — inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например для питания ОУ (операционных усилителей).

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о Dc Dc преобразователях следует хотя бы в общих чертах разобраться с теорией.

Понижающий Dc Dc преобразователь – преобразователь типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.

   Функциональная схема чопперного стабилизатора

Входное напряжение U in подается на входной фильтр — конденсатор C in. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор. Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр – LC out, с которого напряжение поступает в нагрузку R н.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной.

Как же происходит понижение напряжения?

Широтно-импульсная модуляция – ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке ниже.

   Импульсы управления

Здесь tи время импульса, транзистор открыт, tп – время паузы, — транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется широтно-импульсной модуляцией ШИМ (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Сейчас вернемся к нашему понижающему конвертеру типа buck, полная схема приведена выше.

В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) ключевой транзистор. Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.

   Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе – фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.

   Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Следует заметить, что на самом деле не все так просто, как написано выше: предполагается, что все компоненты идеальные, т.е. включение и выключение происходит без задержек, а активное сопротивление нулевое. При практическом изготовлении подобных схем приходится учитывать многие нюансы, поскольку очень многое зависит от качества применяемых компонентов и паразитной емкости монтажа. Только про такую простую деталь как дроссель (ну, просто моток провода!) можно написать еще не одну статью.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающий Dc Dc преобразователь – преобразователь типа boost 

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 1215 В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

   Функциональная схема повышающего преобразователя

Входное напряжение U in подается на входной фильтр C in и поступает на последовательно соединенные катушку индуктивности L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка R н и шунтирующий конденсатор C out.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы. Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания U in. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе C out. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор C out, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальный Dc Dc преобразователь – SEPIC 

Источник: https://powercoup.by/radioelektronika/dc-dc-preobrazovatel

Сварочный аппарат для TIG сварки AC DC: характеристики, как он работает, где используется

Сварочный аппарат – это электрический прибор, приспособлен для нагрева и расплавления металлов, для современных ремонтных работ незаменимая вещь.

Оборудование можно встретить как на крупных предприятиях, так и в частных небольших мастерских. С образованием различных сплавов появилась потребность в прогрессивном методе сварки, таким стал TIG аппарат.

Преобладающая часть ТИГ-приборов работают по принципу подачи постоянного тока и имеют аббревиатурное обозначение DC.

Можно встретить сварочный инвентарь с комбинированным принципом работы, тогда в названии устройства будет добавлена приставка AC DC, что означает переменный/постоянный ток.

В этой статье мы поможем вам разобраться в широком перечне существующих аппаратов, поведаем, для чего созданы различные виды режимов. Попробуем вместе найти ответы на волнующие вопросы.

А также расскажем о функциях, достоинствах и недостатках сварочных приборов в рамках от 500$ до 800$. Детально рассмотрим инверторную сварочную технику, которая подходить для малообъемных работ, небольших бригад, дачи или дома.

Основная характеристика

Аппарат для сварочных работ TIG носит несколько названий: аргоновые, сварка для алюминия, инверторы. Однако подразумевают один принцип работы.

Все приборы предназначены для применения неплавящегося электрода методом дуговой сварки с использованием аргона.

Инвертор является трансформатором для понижения напряжения до использующего для холостого хода источника, совокупность электрических схем и контролирующего дросселя для уменьшений пульсаций выпрямленного тока.

Инверторы DC – применяются для черных и цветных метало, а АС/DC – для сварки в среде аргона алюминия и его сплавов.

Главным преимуществом сварки TIG- это широкий диапазон использования материалов. Отныне, не только специалист, но и начинающий сварщик сможет разобраться в настройках, испытать практически все типы металлов, и получить швы высокого качества.

Какой аппарат лучше DC или AC/DC

Большая часть сварочного инвентаря предназначены для работы на постоянном токе, так как в режиме DC дуга лучше поджигается, обеспечивает более равномерную подачу газа, позволяет сделать швы крепкими и аккуратными.

ЭТО ИНТЕРЕСНО:  Когда проводится инструктаж по электробезопасности

Однако в отдельных случаях следует применять переменный ток. Например, на предприятиях при объёмных работах мастеру одного режима DC может быть не достаточно, поэтому для полноты аргоновую сварку обеспечивают АС режимом.

Производитель, понимая всю сложность работы, усовершенствует и модернизирует свой товар новыми функциями. Инженерами были созданы сварочное оборудование способное переключаться, с режима АС в DC.

Для мастера это очень удобно, так как расширился диапазон фоновой работы. Например, если на исходном материале образовалась окисная пленка, тогда уместно будет перейти на переменный ток, то есть прибегнуть к аппарату AC/DC.

Как выбрать TIG-прибор для гаража и дома?

VARTEG TIG 160 AC/DC PULSE

Специальная линия сварочных аппаратов Varteg отросли FOXWELD, квалифицируется полупрофессиональным и профессиональным оборудованием.

Это практически универсальное устройство, способное обеспечить работу с разными видами металлов, от черных и цветных, до нержавеющей стали и алюминия.

Модель будет удобна для использования дома или гаража, в небольших мастерских. Аппарат также наделен режимом ручной дуговой сварки с функцией «форсаж дуги», из-за чего процедура поджигания упрощается.

Главным принципом аппарата является внедрение двойного инвертора и создание полуволн прямоугольной формы. Аргонодуговая установка по сравнению с традиционными трансформаторами считается энергосберегающей, уменьшен объем и вес.

В качестве опции предусмотрено дистанционное управление.

СВАРОГ REAL TIG 200P AC/DC

Сварочная техника ТМ «Сварог» разработаны совместно с китайским производителем Jasic и адаптирована под потребности и запросы отечественного населения.

Компания уже более 11 лет предлагает свою продукцию на рынке и закрепила свои позиции как добросовестного производителя.

Приборы REAL TIG 200P AC/DC от сети Сварог – это разумное соотношение стоимости и качества. Трансформатор прост в управление, несмотря на богатый функционал.

Аргоновые сварки данной серии наделены режимами TIG и ММА, работают как на постоянном, так и на переменном токе, плюс в обычном и импульсивном варианте.

Для модели предусмотрено много опций, что позволяет работать с широким перечнем металлов. Стоит отметить высокочастотный поджиг дуги, так швы получаются на высшем уровне даже при минимальной подачи сварочного тока.

Предусмотрено подключение педали управления. Сварочный аппарат дополнили функциями 2Т и 4Т, что позволяет не контролировать кнопку горелки при длительной работе.

Есть возможность наблюдать за тепло вложением, подключена система интеллектуального охлаждения, а также регулируется время продувки газом после сварки.

AURORAPRO INTER TIG 200 AC/DC PULSE

К сварочным аппаратам с высоким рейтингом относится марка Aurora, их ценят за качество и многофункциональность. Они будут удобны как для профессионала, так и для начинающего специалиста.

Цену инвертора не стоит считать высокой, она гармонирует с его техническими возможностями.

Широкий спектр сварочных работ особенно положительно оценивают мастера уже с опытом. Так, модель INTER TIG 200 хорошо вписывается в мастерские.

Аппараты русского бренда имеют длительный срок гарантии, и обеспечивают сварочные швы на достойном уровне.

Для инвертора предусмотрены TIG и ММА вид сварки, переменный и постоянный ток, оснащена дополнительными функциями 2/4 тактным режимом и Mosfet технологией.

Обширная панель управления может немного смущать, однако, это только на первых порах. Параметры выстроены так, что легко усваиваются и запоминаются.

БАРС PROFI TIG-217 DP AC/DC МОД. ІІ

Сварочные аппараты бренда Барс относительно недавно поступили в продажу, однако уже успели оставить положительное впечатление. Широкий спектр сварочных работ и надежность главные достоинства устройства.

Модель PROFI TIG-217 DP AC/DC МОД. ІІ – самая дорогая в представленном списке. Она предназначена для более длительных дневных нагрузок, а также справляется с большим разнообразием металлов.

Экономна в потреблении электроэнергии, отличается малыми габаритами и оснащена пятью режимами: TIG AC, TIG DC, TIG AC Pulse, TIG DC Pulse, MMA DC, где AC/DC Pulse подразумевается импульсивный режим.

Если говорить о характеристики аппарата, тогда следует упомянуть, что он построен на базе IGBT-транзисторов, имеет микропроцессорное управление, питается от стандартной розетки и выдает до 200 Ампер.

Сварочный инструмент наделен последними технологиями и способностью настраиваться в 20 параметрах. Полный потенциал аргоновой сварки смогу оценить профессионалы и мастера с опытом.

Заключение

Сварочные аппараты современной сборки имеют несколько видов функций. Например, в режиме постоянного или переменного тока, комбинированные, где в одной модели совмещают эти два способа.

Последние носят аббревиатуру TIG AC/DC, актуальны как для монтажно-строительных бригад, так и частных случаях. Сам режим «АС» более сложен в применении, где дуга горит менее стабильно, могут возникнуть сложности с ее поджиганием.

Для работы в режиме переменный ток необходим опыт и знания. Однако, в силу расширенных функций аппарата с добавлением режима DC, упрощаются сложности в пользовании, легче становится поджиг дуги и стабилизируется ее горение.

Особенно значимо это для молодого специалиста, который начинает прививать навыки в сварочном деле. Помимо этого, многие ТИГ-аппараты оснащают дополнительными опциями, которые делают труд сварщика легче, а качество выше.

А какое у вас сложилось мнение? Делитесь своими мыслями в комментариях, он будет познавательный для всех. Желаем успеха в труде!

Источник: https://prosvarku.info/apparaty/svarochnyj-apparat-dlya-tig-svarki-ac-dc

DC ток — понятие и виды постоянно тока

Если в инструкции на электрический двигатель, светодиодный прибор или другое устройство указан dc ток, значит, для подключения нужен соответствующий источник питания постоянного напряжения.

Автономность обеспечивают с помощью аккумулятора достаточной емкости. Для функционирования стационарных установок применяют выпрямители.

Асинхронный силовой агрегат или классическую лампу накаливания подключают непосредственно к стандартной сети переменного тока либо через устройство для регулировки напряжения.

Для подключения светодиода применяют электрическую схему преобразования

Что такое dc ток

Специфическое название создано из английского словосочетания «Direct Current» (dc – аббревиатура). Это обозначение в буквальном переводе подтверждает главную особенность такого тока – постоянное направление.

Для практического применения подходит постоянное питание либо синусоидальный сигнал. В этих ситуациях несложно стабилизировать параметры источника и рассчитать корректно электрическую схему, силовой агрегат или другое подключаемое оборудование. Периодически повторяющиеся помехи (пульсации) устраняют фильтрацией. Гораздо сложнее обеспечить длительный рабочий процесс, когда ток и напряжение изменяются произвольным образом.

Определение постоянного тока

Формула мощности электрического тока

Созданием разницы потенциалов на концах металлического проводника обеспечивают перемещение свободных электронов. Аналогичные процессы с иными носителями зарядов (ионами, дырками) происходят в газах, электролитах и полупроводниках.

Необходимая для процесса энергия вырабатывается химическим способом в аккумуляторах и гальванических элементах. Ее создают преобразованием механической силы в электромагнитное поле с применением генератора.

Вне зависимости от природы источника, ток в цепи будет стабильным, если поддерживать определенное dc напряжение.

Причины непостоянства

Экономичный переносной аппарат для измерения артериального давления выполняет свои функции на протяжении нескольких лет без установки новых батареек. Мощность потребления светодиодного освещения зала значительно больше.

Такие устройства подключают к стандартной сети 220V через адаптер, который выравнивает напряжение и уменьшает амплитуду до необходимого уровня. Однако даже качественные преобразователи выполняют свои функции с допустимыми погрешностями. Постепенно уменьшается энергетический потенциал электрохимического источника.

Отмеченные факторы объясняют действительное непостоянство измеряемых параметров в контрольной цепи.

Преобразование переменного напряжения с помощью диодов Единица измерения силы тока

По классическому определению, DC подразумевает неизменное направление движения заряженных частиц. Это значит, что показанный результат трансформации (б) с полуволнами одной полярности также соответствует заданному условию.

Важно! Постоянный ток – это частный случай однонаправленного тока, когда дополнительно обеспечивается стабилизация параметра с определенной точностью.

Основные характеристики тока

Мощность электрического тока

Принято обозначать рассматриваемый параметр через силу. Однако следует понимать, что в действительности речь идет об интенсивности перемещения заряженных частиц в определенном проводящем материале. Величина тока выражается в амперах. Для расчетов применяют формулы, которые могут означать взаимные связи основных электрических параметров и сопротивления цепи.

Формулы для практических расчетов с источником питания постоянного тока

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

https://www.youtube.com/watch?v=dXIMHh4ZfhY\u0026list=RDdXIMHh4ZfhY\u0026start_radio=1

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).

Для измерения постоянного тока переключатель мультиметра нужно перевести в соответствующее положение

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Величина постоянного тока

Определение «сила» не является корректным. Тем не менее, его применяют с учетом общепринятых норм. Вернувшись к сути явления, можно определить силу тока (I) по количеству перемещенных за определенный временной интервал (t) зарядов:

I = Q/t.

По международным стандартам СИ подразумеваются единичные величины: ампер, кулон и секунда. Для работы с большими токами удобнее пользоваться производной (ампер-часом) с повышающим множителем 3 600.

К сведению. Измерения выполняются с помощью универсального мультиметра или специализированного амперметра. Прибор включают непосредственно в цепь либо используют вспомогательный шунт.

Плотность тока

Количество зарядов удобно оценивать с учетом размеров проводника и концентрации энергии в контролируемой области. Для этого пользуются производным параметром, плотностью тока (j). Его значение вычисляют по формуле:

j = I/S, где S – поперечное сечение в мм кв.

По j определяют безопасный диаметр жилы либо соответствующие размеры плавкого предохранителя. В зависимости от целевого назначения предотвращают разрушение материала при нагреве либо используют плановый разрыв токопроводящей цепи при чрезмерных нагрузках.

Постоянная dc-тока

Эту составляющую вычисляют по среднему за определенный временной период значению сигнала. В сложных условиях, при изменении частоты, образуется кривая линия. Если соблюдается периодичность (синусоида, равномерные импульсы), постоянная на графике изображается прямой линией.

Изменяющаяся компонента

Переменная составляющая определяет искажения формы сигнала, при особых условиях – энергетические потери. При значительном уровне такая компонента оказывает влияние на подключенную нагрузку с реактивными характеристиками.

Переменный ток ac выполняет полезные функции только при подсоединении потребителей, совместимых с таким источником питания.

Однако и в этом случае возникают проблемы, если не ограничить помехи при включении контактора или пусковой скачек напряжения на обмотке электродвигателя.

Различия в постоянном и переменном токе

При сохранении определенной разницы потенциалов поток зараженных частиц перемещается равномерно в одном и том же направлении. Если применить ток ас, отмеченная стабильность нарушается. В этой ситуации придется учитывать изменение рабочих параметров с частотой сигнала. Кроме наличия переходных процессов, усложняются правила вычислений.

Однако только переменное напряжение ac обеспечивает функциональность колебательного контура – базового компонента радиотехнической схемы. Электромагнитные волны распространяются на большое расстояние, что необходимо для передачи/приема информации. Отражение сигналов используется для радиолокации, дистанционных методов измерения и контроля. Переменный ток ac применяют для генерации энергии и вращения роторов двигателей.

В некоторых ситуациях определяющее значение приобретают особенности воспроизведения технологического процесса. Уместный пример – серия современных сварочных аппаратов:

  • если номинальный ток постоянный, проще выполнять рабочие операции, однако придется тщательно контролировать безопасный уровень напряжения в режиме холостого хода;
  • с переменным током сложнее сделать качественный шов, но именно такой вариант специалисты рекомендуют для соединения сваркой деталей из цветных металлов.

Какой выбрать вариант источника питания для создания эффективного функционального устройства? Для правильного ответа проект изучают в комплексе. Кроме схемотехники, оценивают энергетические затраты и целевое назначение.

Источник: https://amperof.ru/teoriya/dc-tok-ponyatie-vidy.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Какое сечение провода нужно для 5 квт

Закрыть