Что представляет собой обратный ток

Устройство и принцип работы диода при прямом и обратном включении

Что представляет собой обратный ток

Диоды – самые простые полупроводники с двумя электродами, проводящие ток в одном направлении.

Они способны стабилизировать, выпрямлять, модулировать, ограничивать, преобразовать ток, поэтому установлены почти во всех бытовых электроприборах.

Основные характеристики диода: постоянный прямой и обратный электроток, прямое и обратное напряжение, прямое и обратное сопротивление, их максимально допустимые значения.

При монтаже в любом устройстве учитываются максимально допустимые значения параметров.

Устройство

В корпус, изготовленный в виде вакуумного баллона из керамики, стекла или металла, устанавливается:

  • кристалл;
  • анод;
  • катод;
  • подогреватель.

Кристаллы производятся из кремния или германия. Анод (плюс) и катод (минус) цилиндрической формы, помещаются внутри баллона. Подогреватель – нить внутри катода, которая раскаляется при подаче электротока, нагревая его. После достижения определенного уровня температуры активный слой на катоде генерирует нужные для работы электроны.

Сферы применения и назначение

По выполняемой работе диоды разделяются на универсальные, СВЧ, импульсные, выпрямительные, переключающие, стабилитроны, варикапы.

Они устанавливаются в электрооборудование:

  • преобразователи частоты, детекторы, логарифматоры;
  • выпрямители тока;
  • стабилизаторы;
  • ограничители колебаний вольтажа;
  • переключатели;
  • цепи, проводящие ток в единственном направлении;
  • лампочки индикации;
  • приборы, требующие отображения информации на дисплеях;
  • LED телевизоры.

Справка! Светодиоды монтируется в осветительные матрицы (ленты, лампы).

Работа диода и его вольт амперная характеристика

По конструкции диод является кристаллом с двумя областями, обладающими различной проводимостью (p и n). Область с p-проводимостью анод (+), с n-проводимостью – катод (-). В аноде заряд в дырках, в катоде – в электронах. Кристалл покрыт металлом с выводами.

Строение определяет 2 положения:

В открытом положении проводимость электротока хорошая, в закрытом – очень плохая.

Вольт-амперной характеристикой называется график. На вертикальной оси отражается основной и противоположный ток, на горизонтальной – основной и противоположный вольтаж.

Прямой электроток повышается быстро параллельно увеличению вольтажа. Противоположный ток увеличивается медленнее.

При слишком большом прямом электротоке молекулы кристалла нагреваются. Если нет системы охлаждения, существует вероятность разрушения кристаллической решетки. В схемах прямой поток ограничивается резистором, подключенным последовательно.

Справка! От электротока прямое напряжение не зависит. Для кремневых полупроводников оно не превышает 1,5 В, для изделий из германия – 1 В.

Прямое включение диода

Диод открывается после подключения напряжения, параметры основного тока зависят от характеристик кристалла и вольтажа. Из n-области в p-область устремляются электроны, из p-области в n-область – дырки. Частицы встречаются на границе (p-n переходе), запускается процесс поглощения (рекомбинации), сопротивление и вольтаж снижаются.

  Все о светодиодах Cree Q5

Вокруг p-n образуется поле, которое направляется в противоположную сторону. Электроны перемещаются и возвращаются, появляется дрейфующий ток с неизменными параметрами, зависящими только от количества заряженных частиц. Одновременно растет обратное напряжение, переходя в стадию насыщения.

Основной ток увеличивается стремительнее при повышении температуры во время работы прибора.

Обратное включение диода

Если плюс блока питания присоединяется к минусу полупроводника, а минус – к плюсу, работа диода прекращается (он закрывается). Заряженные частицы начинают отдаляться от области p-n, она расширяется, повышается сопротивление

При увеличении обратного напряжения до 100 В растет электроток в противоположном направлении. Рост резко увеличивается, если вольтаж превышает максимально допустимый для границы p-n. Обратный ток нагревает кристалл в диоде, переход пробивается, нормальная работа прибора прекращается. После выключения напряжения рядом с полюсами образуется диффузия.

Внимание! Во время нормальной работы противоположный электроток небольшой, поэтому им пренебрегают, считая полупроводниковый диод элементом с односторонней проводимостью.

Прямое и обратное напряжение

Во время работы (в открытом состоянии) в диоде основное напряжение, от его величины зависит сопротивление и величина электротока. В процессе закрывания через полупроводник проходит ток в противоположном направлении, создается напряжение, способствующее росту сопротивления до нескольких тысяч кОм.

Если работа полупроводника проходит на переменном напряжении, он открывается на плюсовой полуволне и закрывается на минусовой. Это свойство позволяет использовать полупроводники в выпрямителях.

Основные неисправности диодов

Внимание! Если диодные полупроводники перестали работать, сначала необходимо выяснить, не закончился ли срок их эксплуатации.

Если это не так, неисправность вызвала другая причина:

  • нарушение герметичности;
  • разрыв перехода, превративший прибор в изолятор:
  • тепловой пробой;
  • электрический пробой:
  • туннельный;
  • лавинный.

При нарушении герметичности возникает протечка, мешающая нормальному функционированию.

Пробой p-n перехода

Пробоем называют увеличение электротока в противоположном направлении после достижении во время работы показателя обратного напряжения, являющегося максимально допустимым для прибора. Если он превышается, противоположный поток электротока резко увеличивается при незначительном изменении вольтажа. После обрыва перехода направление потока всего одно, полупроводник превращается в проводник.

  Как проверить работоспособность диода мультиметром

Определить эту неисправность можно при помощи мультиметра, определяющего сопротивление и подающего сигнал при прохождении электротока.

Электрический пробой

Электрический туннельный или лавинный пробой можно устранить, если вовремя принять необходимые меры.

Причина электрического пробоя – сильный электроток в переходе или перегрев при отсутствии отвода тепла.

Туннельный пробой образуется, если во время работы на диод подается слишком высокое напряжение. Растет значение противоположного электротока, вольтаж снижается, электроны проходят через барьер, если его высота меньше их энергии.

Эту неисправность может вызвать:

  • слишком маленькая толщина области p-n (меньше длины пробега электрона);
  • обратный ток насыщения более 108 В/м;
  • наличие свободных мест в области дырок, в которую переходят электроны.

Лавинный пробой – увеличение во время работы противоположного электротока при небольшом увеличении вольтажа. Причина образования – повышение ионизации в p-n области, вызывающее увеличение количества частиц, носящих заряд. Электроны теряют свои обычные характеристики.

Важно! Пробои туннельного и лавинного типа обратимы, так как не повреждают полупроводник (при своевременном уменьшении вольтажа свойства сохраняются).

Тепловой пробой

Эту неисправность чаще всего вызывает недостаточный отвод тепла, способствующего перегреву перехода во время работы.

В результате:

  • в кристалле растет амплитуда колебаний атомов;
  • электроны взаимодействуют с проводимой областью;
  • быстро повышается температура;
  • запускается процесс изменения структуры кристалла.

Полупроводник разрушается, причем процесс необратимый.

Основные выводы

Полупроводниковые диоды – радиоэлементы с единственным p-n переходом, присутствующие практически во всех бытовых электроприборах. Чтобы работа полупроводников длилась дольше, необходимо обладать знаниями о принципе работы диодов, причинах неисправностей и способах их предотвращения.

Чаще всего работа полупроводников нарушается при изменениях температуры в окружающей среде или переходе. Если температура слишком высокая, увеличивается количество энергоносителей в переходе, снижается сопротивление, растет объем противоположного тока. После достижения максимально допустимого уровня запускается процесс разрушения кристалла.

Чтобы предотвратить сокращение сроков работы, необходимо следить за температурой среды и чистотой приборов. При необходимости следует организовать дополнительную систему отвода тепла. Повышение температуры в переходе предотвращается соблюдением требований к уровню вольтажа и тока, определенному для конкретного прибора. Даже при малейшем превышении существует вероятность разрушения кристалла.

ПредыдущаяСледующая

Источник: https://svetilnik.info/svetodiody/printsip-raboty-dioda.html

Разница между «прямым» диодом и «обратным» диодом

Что представляет собой обратный ток

Диоды часто именуются «прямыми» и «обратными». С чем это связано? Чем отличается «прямой» диод от «обратного» диода?

статьи

Диод — это полупроводник, имеющий 2 вывода, а именно — анод и катод. Используется он для обработки различными способами электрических сигналов. Например, в целях их выпрямления, стабилизации, преобразования.

Особенность диода в том, что он пропускает ток только в одну сторону. В обратном направлении — нет. Это возможно благодаря тому, что в структуре диода присутствует 2 типа полупроводниковых областей, различающихся по проводимости. Первая условно соответствует аноду, имеющему положительный заряд, носителями которого являются так называемые дырки. Вторая — это катод, имеющий отрицательный заряд, его носители — электроны.

Диод может функционировать в двух режимах:

В первом случае через диод хорошо проходит ток. Во втором режиме — с трудом.

Открыть диод можно посредством прямого включения. Для этого нужно подключить к аноду положительный провод от источника тока, а к катоду — отрицательный.

Прямым также может именоваться напряжение диода. Неофициально — и сам полупроводниковый прибор. Таким образом, «прямым» является не он, а подключение к нему или же напряжение. Но для простоты понимания в электрике «прямым» часто именуется и сам диод.

Что представляет собой «обратный» диод?

Закрывается полупроводник посредством, в свою очередь, обратной подачи напряжения. Для этого нужно поменять полярность проводов от источника тока. Как и в случае с прямым диодом, формируется обратное напряжение. «Обратным» же — по аналогии с предыдущим сценарием — именуется и сам диод.

Сравнение

Главное отличие «прямого» диода от «обратного» диода — в способе подачи тока на полупроводник. Если он подается в целях открытия диода, то полупроводник становится «прямым». Если полярность проводов от источника тока меняется — то полупроводник закрывается и становится «обратным».

Рассмотрев, в чем разница между «прямым» диодом и «обратным» диодом, отразим основные выводы в таблице.

Таблица

«Прямой» диод «Обратный» диод
Что общего между ними?
Фактически являются не отдельными диодами, а разными состояниями одного и того же полупроводника
В чем разница между ними?
Соответствует открытому состоянию, которое активизируется при прямом подключении источника тока к диоду Соответствует закрытому состоянию, которое активизируется при обратном подключении источника тока к диоду

Источник: https://TheDifference.ru/chem-otlichaetsya-pryamoj-diod-ot-obratnogo-dioda/

Обозначения диодов и принцип работы, ВАХ

Что представляет собой обратный ток

Выпрямительные диоды — это полупроводниковые приборы, которые имеют один p-n переход и два металлических вывода. Вся система заключена в пластмассовом, металлическом, стеклянном или металлокерамическом корпусе. Предназначены для преобразования переменного тока в постоянный.

Обозначение и расшифровка диодов

Обозначение выпрямительного диода на схеме согласно “ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые”. В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:

Существуют различные варианты обозначения диодов.

Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:

  • 1) первая буква или цифра указывает на материал:
    • 1 (Г) — германий Ge
    • 2 (К) — кремний Si
    • 3 (А) — галлий Ga
    • 4 (И) — индий In
  • 2) Вторая буква — это подкласс полупроводникового прибора. Для нашего случая — это буква Д.
  • 3) Третья цифра — функционал элемента в зависимости от класса (диоды, варикапы, стабилитроны и др.).
  • Например, для выпрямительных диодов (Д):

    101199 — диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.

    201299 — диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.

Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.

До 1982 года была другая классификация:

  • первая Д — характеризовала весь класс диодов
  • далее шел цифровой код:
    • от 1 до 100 — для точечных германиевых диодов
    • от 101 до 200 — для точечных кремниевых диодов
    • от 201 до 300 — для плоскостных кремниевых диодов
    • от 301 до 400 — для плоскостных германиевых диодов
    • от 401 до 500 — для смесительных СВЧ детекторов
    • от 501 до 600 — для умножительных диодов
    • от 601 до 700 — для видеодетекторов
    • от 701 до 749 — для параметрических германиевых диодов
    • от 750 до 800 — для параметрических кремниевых диодов
    • от 801 до 900 — для стабилитронов
    • от 901 до 950 — для варикапов
    • от 951 до 1000 — для туннельных диодов
    • от 1001 до 1100 — для выпрямительных столбов
  • третья цифра — разновидность групп однотипных приборов

Система JEDEC (США)

  • первая цифра — число p-n переходов (1 — диод; 2 — транзистор; 3 — тиристор)
  • далее N (типа номер) и серийный номер
  • после может идти пару цифр про номиналы и отдельные характеристики диода

Система Pro Electron (Европа)

По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:

  • 1) первая буква:
    • A — германий Ge
    • B — кремний Si
    • C — галлий Ga
    • R — другие полупроводники
  • 2) Вторая буква — это буква A, указывающая на маломощные импульсные и универсальные диоды.
  • 3) Третья буква отвечает за принадлежность элемента к сфере специального применения (промышленность, военная). “Z”, “Y”, “X” или “W”.
  • 4) Четвертая — это 2х, 3х или 4х-значный серийный номер прибора.
  • 5) Дополнительный код — в нем для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.

Система JIS (Япония)

Применяется в странах Азии и тихоокеанского региона.

  • первая цифра — число переходов (0 транзистор, фотодиод; 1 — диод; 2 — транзистор; 3 — тиристор)
  • затем буква S (semiconductors) — полупроводниковые
  • затем буква, отвечающая за тип прибора:
    • A — ВЧ транзисторы p-n-p
    • B — НЧ транзисторы p-n-p
    • С — ВЧ транзисторы n-p-n
    • D — НЧ транзисторы n-p-n
    • E — диоды
    • F — тиристоры
    • G — диоды Ганна
    • H — однопереходные транзисторы
    • J — полевые транзисторы с p-каналом
    • K — полевые транзисторы с n-каналом
    • M — симметричные тиристоры
    • Q — светоизлучающие диоды
    • R — выпрямительные диоды
    • S — малосигнальные диоды
    • T — лавинные диоды
    • V — варикапы, p-i-n диоды, диоды с накоплением заряда
    • Z — стабилитроны, стабисторы, ограничители
    • В нашем случае будет буква R.

  • Рег. номер прибора
  • Модификация прибора
  • Далее может идти индекс, описывающий специальные свойства

Существуют и специальные обозначения от фирм-изготовителей, которые отличаются от приведенных выше.

Принцип действия выпрямительного диода

Полупроводники по своим электрическим свойствам являются чем-то средним между проводниками и диэлектриками.

Как ведет себя диод при прямом и обратном включении

Прямое направление — направление постоянного тока, в котором диод имеет наименьшее сопротивление.

Обратное направление — направление постоянного тока, в котором диод имеет наибольшее сопротивление.

Рассмотрим поведение тока в цепи при прямом и обратном включении на переменное и постоянное напряжение. Изначально мы будем иметь синусоиду, которая получается от источника переменного тока.

При таких способах подключения отсекается половина синусоиды положительная или отрицательная. На выходе — пульсирующий переменный ток одного знака (считай, постоянный, только загвоздка в том, что им никто не пользуется).

  • анод (для прямого включения подключаем к плюсу), основание треугольника
  • катод (подключаем к минусу для прямого включения) палочка

Ток течет от анода к катоду, некоторые прибегают к сравнению с воронкой. В широкое горлышко жидкость проходит быстрее, чем в узкое. Принцип работы заключается в пропускании тока при прямом включении и запирании диода при обратном включении (отсутствии тока). Всё дело в запирающем слое, который испаряется или расширяется в зависимости от способа подключения диода.

Рассмотрим поведение диода в схеме постоянного тока. На левом изображении ток, напряжение проходит — лампочка горит (черная) — это прямое включение. На правом изображении диод не пропускает достаточно тока и напряжения для загорания лампочки — обратное включение.

Вах выпрямительных диодов (ge, si)

Вольт-амперные характеристики диодов представляют собой графики зависимостей прямых и обратных токов (Y) и напряжений (X) при различных температурах.

При подаче обратного напряжения, превышающего пороговое значение, величина обратного тока возрастает и происходит пробой p-n слоя. Стоит обратить внимание и на порядки чисел по осям. Величины обратного тока на порядок меньше прямого. Значения прямого напряжения на порядок меньше обратного. По достижении порогового значения прямого напряжения прямой ток начинает увеличиваться лавинообразно.

Разница между диодами в том, что обратный ток кремниевых диодов меньше, чем у германиевых. Поэтому, за счет большего тока, у Ge диодов пробой носит тепловой характер, у Si — преобладает электрический пробой. Мощность, рассеиваемая при одинаковых токах у германиевых диодов меньше.

Сохраните в закладки или поделитесь с друзьями

Закон Ома в электротехнике

Последние статьи

Определение температуры термосопротивления по ГОСТ

Расчет тока трансформатора по мощности и напряжению

Выпрямительные диоды: расшифровка, обозначение, ВАХ

Применение линейки в ворде

Самое популярное

Единицы измерения физвеличин

Напряжение смещения нейтрали

Источник: https://pomegerim.ru/electrotehnika-electronika/vypriamitelnye-diody-vah-princip-raboty.php

Прямая и обратная полярность при сварке: что это такое, описания и примеры

При выполнении сварочных работ основное внимание уделяется соединению стыкуемых деталей. Данный фактор во многом зависит от правильных настроек сварочной аппаратуры.

Работая с полуавтоматами, следует настраивать не только силу тока, но и устанавливать нужную полярность при сварке инвертором.

Настройки, установленные по умолчанию, не позволяют в полном объеме решать поставленные задачи, особенно, когда дело касается редких материалов или высоколегированных сталей. Тем не менее любой инвертор можно настроить в нужном режиме и получить качественный шов.

Дуговая сварка — режимы полярности

Для соединительных операций сваркой обычно находит применение ток неизменного значения. Имеется возможность выбирать, как будет осуществлена сварка постоянным током — обратной или прямой полярности.

Установка, предполагающая полярность прямую, позволяет качественно сваривать детали, обладающие немалой толщиной. Сварка током обратной полярности помогает избежать такого трудно исправляемого дефекта, как прожег, часто появляющегося, когда сварке подлежат тонкие металлические листы. Режим, предполагающий применение переменного тока, применяют исключительно редко, поскольку производительность прохождения процесса резко снижается.

При сварке ручным методом выбор режима, в частности, заключен в том, что имеется возможность устанавливать разную полярность, подключая соединение и электрод к разным клеммам, находящимся на лицевой стороне аппарата. Обратная полярность при сварке — это следующий способ подключения — электрод к клемме положительной, а детали — к клемме отрицательной. Такая раскладка определяет понятие, что значит обратная полярность при сварке.

Прямой вариант означает противоположное включение. Тогда интенсивнее электрода начинают плавиться детали соединения, что является преимуществом при сварке толстых элементов конструкции. Эти явления соответствуют законам физики по термодинамике. Электрическая дуга, представляющая собой поток электронов и ионов, служит источником тепла.

Три составные части дуги: столб, область анодная и область катодная. При горении дуги происходит образование активных пятен. То из них, которое находится на аноде, именуется анодным пятном, а на катоде — катодным.

Столб — это плазма, разогретая до сверхвысокой температуры. Энергия тепла в дуге выделяется неравномерным образом. Электроны, достигшие анода, отдают ему собственную энергию. На этом месте появляется анодное пятно, разогретое в значительной степени. Ионы с положительным зарядом двигаются в сторону катода. Достигнув его, они отдают собственную энергию и образуют там катодное пятно. Поскольку электронов, как правило, больше, то анод является более разогретым, чем катод.

Полярность при сварке постоянным током имеет два варианта. Это находится в зависимости от способов подключения. Они являются противоположными. Для получения прямого вида к изделию подсоединят «плюс», а к стержню с обмазкой — «минус». Для получения обратной делают все противоположным способом.

Если процесс происходит с неизменным током при установке прямого варианта, электрод начинает нагреваться медленнее, чем свариваемый металл. Получаемый сварной шов имеет более глубокую величину проплавки. Помимо этого, горение дуги является более устойчивым.

Обратный вариант полярности имеет смысл применять, если слишком большое выделение теплоты ухудшает качество шва. Такая ситуация возможна, когда сварке подлежат материалы, не слишком хорошо переносящие перегрев — высокоуглеродистые, легированные стали, некоторые цветные металлы.

Также, если сварке подлежат тонкие листы.

При распространенном виде процесса — дуговой сварке, существенную роль играют различные параметры, такие как выбранный диаметр электрода, его тип и марка, напряжение на сварной дуге, скорость сварного процесса, положение шва. Одним из самых важных параметров является полярность сварки.

Род тока, который применяется в дуговой сварке, делится на два вида. Сварку дуговым способом на переменном токе осуществляют, когда предстоит совместить детали, выполненные из низколегированной стали. При этом желательно использование электродов, имеющих рутиловое покрытие. Сварку постоянным током можно осуществлять двумя способами — прямым и обратным.

Прямой вариант используют, когда предстоит сварка чугунных изделий или требуется глубокий проплав металла. Обратный вариант применяется, когда требуется сварить нетолстые листы, а сварка происходит с усиленной скоростью расплавки электрода, и еще для сваривания низкоуглеродистой стали.

Полярность влияет на внешний вид шва — его габариты и конфигурацию. При сварке постоянным током обратной полярности величина, которая означает глубину проплавки, почти в два раза значительнее, чем прямой.

Отличия режимов при сварке

Сварка прямой и обратной полярности обладает существенными различиями. Прямая полярность при сварке обладает нюансами, которые рекомендуется принимать к сведению:

  • значительную глубину;
  • небольшую ширину шва;
  • такие подключения осуществляются для сварки металлических изделий из металла, имеющих толщину не менее трех миллиметров;
  • вольфрамовые стержни используют для деталей, изготовленных из цветных металлов;
  • стабильность горения дуги;
  • быстрая расплавка электродов;
  • разбрызгивание увеличивает расход электродов.

Обратный вариант применяют тогда, когда предполагается уменьшить риск появления серьезных дефектов, приводящих к отбраковке. Такой вид также имеет смысл применять, когда сварке подлежат детали, предназначенные для ответственных конструкций. Чтобы предотвратить коробление при значительном нагревании обратный вариант применяют для сварки тонких листов.

Также имеет смысл ее использовать, когда сварке подлежат две стальные детали, обладающие разной степенью легированности. Подобные соединения обладают повышенной чувствительностью к лишнему перегреванию. Обратный способ используют, когда сварка происходит под защитой инертными газами.

Обратная полярность при сварке обладает в свою очередь такими особенностями:

Источник: https://instanko.ru/osnastka/pryamaya-polyarnost.html

Что такое обратный ток — Школа электрика

В прошл ой статье мы с вами разобрали такой важный параметр транзистора, как коэффициент бета (β). Но есть в транзисторе еще один интересный параметр. Сам по себе он ничтожный, но делов может наделать ого-го! Это все равно что галька, которая попала в кроссовок легкоатлету: вроде бы маленькая, а причиняет неудобство  при беге. Так чем же мешает эта самая “галька” транзистору? Давайте разберемся

Прямое и обратное включение PN-перехода

Как мы помним, транзистор состоит из трех полупроводников. PN-переход, который у нас база-эмиттер называется эмиттерным переходом, а переход, который база-коллектор – коллекторным переходом.

Так как в данном случае у нас транзистор NPN, значит ток будет течь от коллектора к эмиттеру, при условии, что мы будем открывать базу, подавая на нее напряжение более чем 0,6 Вольт (ну чтобы транзистор открылся).

Давайте гипотетически возьмем тонкий-тонкий ножик и вырежем эмиттер прямо по PN-переходу. У нас получится как-то вот так:

Стоп! У нас что, получился диод? Да, он самый! Помните, в статье вольтамперная характеристика (ВАХ) мы рассматривали ВАХ диода:

В правой части ВАХ мы с вами видим как веточка графика очень резко взлетела вверх. В этом случае мы подавали на диод постоянное напряжение вот таким образом, то есть это было прямое включение диода.

Диод пропускал через себя электрический ток. Мы с вами даже проводили опыты с прямым и обратным включением диода. Кто не помнит, можно прочитать здесь.

Но если поменять полярность

то диод у нас не будет пропускать ток. Нас всегда так учили, и в этом есть доля правды, но наш мир не идеален).

Помните принцип работы PN-перехода? Мы его представляли как воронку. Так вот, для этого рисуночка

наша воронка будет перевернута горлышком к потоку

Направление потока воды – это направление движения электрического тока. Воронка – это и есть диод. Но вот вода, которая попала через узкое горлышко воронки? Как же ее можно назвать? А называется она обратный ток PN перехода (Iобр).

А как вы думаете, если  прибавить скорость течения воды, увеличится ли количество воды, которое пройдет через узкое горлышко воронки? Однозначно! Значит, если прибавлять напряжение Uобр , то и увеличится обратный ток Iобр , что мы с вами и видим в левой части на графике ВАХ диода:

Но до какого предела можно увеличивать скорость потока воды? Если она будет очень большой, наша воронка не выдержит, стенки треснут и она разлетится по кусочкам, так ведь? Поэтому на каждый диод можно найти такой параметр, как Uобр.макс , превышение которого для диода равнозначно летальному исходу. 

Например, для диода Д226Б:

Uобр.макс = 500 Вольт, а максимальное обратное импульсное Uобр. имп.макс = 600 Вольт. Но имейте ввиду, что электронные схемы проектируют, как говорится “с 30% запасом”.

И если даже в схеме обратное напряжение на диоде будет 490 Вольт,  то в схему поставят диод, который выдерживает более 600 Вольт. С критическими значениями лучше не играть).

Импульсное обратное напряжение – это резкие всплески напряжения, которые могут достигать амплитудой до 600 вольт. Но здесь тоже лучше взять с  небольшим запасом.

Так а что я это все про диод да про диод Мы же вроде как транзисторы изучаем. Но как ни крути, диод – кирпичик для построения транзистора.

Значит, если приложить к коллекторному переходу обратное напряжение, то у нас через переход потечет обратный ток, как в диоде? Именно так. И называется такой параметр в транзисторе  обратный коллекторный ток. У нас он обозначается как IКБО , у буржуев – ICBO .

Расшифровывается как “ток между коллектором и базой, при открытом эмиттере”. Грубо говоря, ножка эмиттера никуда не цепляется и висит в воздухе.

Чтобы замерять обратный ток коллектора, достаточно собрать вот такие простенькие схемки:

                  для NPN транзистора                                                для PNP транзистора

У кремниевых транзисторов обратный ток коллектора меньше, чем 1 мкА, у германиевых: 1-30 мкА. Так как у меня мультиметр замеряет только от 10 мкА,  а германиевых транзисторов под рукой нет, то провести этот опыт я не смогу, так как разрешение прибора не позволяет.

Мы так и не ответили на вопрос, почему обратный ток коллектора имеет такое важное значение и приводится в справочниках? Все дело в том, что при работе транзистор рассеивает какую-то мощность в пространство, значит нагревается. Обратный ток коллектора очень сильно зависит от температуры и на каждые 10 градусов по Цельсию увеличивает свое значение в два раза. Не, ну а что такого? Пусть возрастает, никому же вроде не мешает.

Влияние обратного коллекторного тока

Все дело в том, что в некоторых схемах включения часть этого тока проходит через эмиттерный переход. А как мы с вами помним, через эмиттерный переход течет базовый ток. Чем больше управляющий ток (ток базы) тем больше управляемый (ток коллектора). Это мы с вами рассматривали еще в про шлой статье. Следовательно, малейшее изменение базового тока ведет к большому изменению коллекторного тока и вся схема  начинает работать неправильно.

Как борются с обратным коллекторным током

Значит, самый главный враг транзистора – это температура. Как же с ней борются разработчики радиоэлектронной аппаратуры (РЭА)?

– используют транзисторы, у которых обратный коллекторный ток имеет очень малое значение. Это, конечно же, кремниевые транзисторы. Небольшая подсказка – маркировка кремниевых транзисторов начинается с букв “КТ”, что означает Кремниевый Транзистор.

– использование схем, которые минимизируют обратный ток коллектора.

Обратный ток коллектора – важный параметр транзистора. Он приводится в даташите на каждый транзистор. В схемах, которые используются в экстремальных температурных условиях, обратный ток коллектора будет играть очень большую роль. Поэтому, если собираете схему, где не используется радиатор и вентилятор, то, конечно же, лучше взять транзисторы с минимальным обратным коллекторным током.

Источник: https://1leds.ru/elektrika/chto-takoe-obratnyj-tok.html

Вах диода

Электровакуумный диод представляет собой прибор, работающий за счет контроля интенсивности нагрева положительного и отрицательного полюсов устройства. Вход устройства при подаче электрического тока нагревается, после чего появляется эффект выхода электронов из металла. Если подавать электрический ток с отрицательным напряжением, осуществляется процесс обратный термоэлектронной эмиссии. За счет этого идет выпрямление мощности, которая подается на радиодеталь.

Вах полупроводникового прибора

Вольтамперная характеристика вакуумного диода

Данная характеристика состоит из классических трех ступеней:

  1. Нелинейная часть. Вольт амперная характеристика диода в месте подачи тока возрастает небольшими темпами. Это объясняется эффектом противодействия полю анода отрицательного напряжения свободных электронов. На данном участке ток анода крайне низок. Влияние напряжения на силу экспоненциально.
  2. Вторая часть кривой описывается законом степени 3/2. Влияние электричества на аноде от подаваемого напряжения в данном случае записывается формулой трех вторых, в которой напряжение на аноде умножается на константу, характеристики габаритов электрода.
  3. Напряжение насыщения. Если напряжение на аноде продолжает увеличиваться соразмерно предыдущим показателям, скорость увеличения выходного тока снижается. Повысить мощность на выходе невозможно из-за отсутствия свободных электронов.

Как работает диод

Что такое электрическое сопротивление

Диод – полупроводниковое устройство, которое обладает односторонней проводимостью. Эта характеристика появляется из-за особенностей pn перехода и сопротивления на его концах.

Односторонняя проводимость обозначает, что радиодеталь пропустит электрический ток только в том случае, если на аноде (входе) будет больший потенциал. Если мощность выше на катоде, появляется обратный ток. Однако из-за высокой степени сопротивления величины такого электрического тока критически малы.

Таким образом строится вольт амперная характеристика полупроводникового устройства.

Принцип функционирования диода вакуумного типа

Сопротивление тока: формула

При подаче электричества на выход электровакуумного диода электроны покидают поверхность из-за эффекта термоэлектронной эмиссии. При этом с накоплением свободных заряженных частиц в атмосфере появляется область, которая характеризуется негативным потенциалом.

Характерной особенностью вакуумного прибора является то, что в это время поверхности анода начнут положительно заряжаться. Из-за этого последующим заряженным частицам потребуется более высокий уровень заряда для отрыва.

В результате переходных процессов вокруг катода формируется облако заряженных частиц.

Интересно. Незначительная часть электронов возвращается на выход радиодетали. При температуре, которая соответствует требуемой, и стабилизации облака выход и возврат заряженных частиц из катода уравниваются, чем обеспечивают стабильное движение заряженных частиц.

Электрический ток в вакууме

Чтобы появилась возможность передавать ток в вакууме, требуется добавить в пространство свободные заряженные частицы при помощи явлений эмиссии:

  • Термоэлектронная – представляет собой процесс освобождения заряженных частиц металлами во время нагрева. Скорость процесса зависит от площади, условий нагрева и свойств материала. Когда кинетическая энергия превышает мощь электронных связей, происходит освобождение частиц;
  • Фотоэлектронная – возникает под действием освещения.
  • Автоэлектронная эмиссия происходит из-за влияния электрического поля.

Прямое и обратное напряжение диода

Уровень мощности, при котором прибор открыт, и через него течет электричество, называется ток. Обратное напряжение – отрицательная мощность, которая течет с катода на анод. В случае прямого напряжения уровень препятствия движению заряженных частиц не выше 100 Ом, однако при обратном напряжении уровень сопротивления возрастает в несколько сотен раз и может достигать миллионов Ом.

Прямое и обратное напряжение диода

Обратное включение диода, обратный ток

Обратный ток возникает, когда напряжение на катоде выше, чем на аноде. В такой ситуации заряженные частицы из области n перехода начнут смещаться к положительной части детали и передвигаться к отрицательному полюсу. Это приводит к возникновению области, которая содержит малое количество заряженных частиц, из-за чего повысится сопротивление. Однако течение электронов будет продолжаться.

Прямое включение диода, прямой ток

При подключении к аноду большего напряжения, чем на катоде, возникает прямой ток. В таком случае агрегат находится в открытом состоянии. Итоговое значение на выходе зависит от технических характеристик и уровня напряжения на входе. При этом свободные участки из области n типа передвигаются к заряженным частицам из Р типа и, наоборот. На месте pn перехода происходит встреча дырок и электронов, и осуществляется рекомбинация.

ВАХ и выпрямительный диод

Вах диода состоит из нескольких квадрантов:

  • В первом случае прибору присуща высокая проводимость, которая соответствует приложенному напряжению;
  • Во второй части радиоэлектронное устройство получает ток до состояния насыщения, затем сбрасывается;
  • В последующем сегменте присутствует обратная ветвь Вах диода. Аппроксимация данного состояния свидетельствует о низкой проводимости.

Идеализированная ВАХ полупроводникового диода

Данная характеристика присуща идеальному диоду. Главной задачей такого устройства является пропуск электричества исключительно в одну сторону. В таком случае сопротивление идеального радиоэлемента равно нулю в случае подключения положительного заряда к аноду, и может равняться бесконечности при обратном способе включения в цепь.

Практическое использование выпрямительного диода

Используют устройства в таких узлах:

  • БП силовых агрегатов автомобилей и кораблей;
  • В диодном мосту;
  • В устройствах для выпрямления переменного тока и гальванических емкостей;
  • В трансформаторах для передачи электричества посредством высоковольтной линии.

Выбор выпрямительных диодов

Во время подбора выпрямительных деталей требуется учитывать большое количество факторов:

  • Частота тока;
  • Значения входного тока в амперах;
  • Параметр входного напряжения в вольтах;
  • Устойчивость к условиям внешней среды..

Что обозначает маркировка

Типичная маркировка:

  • Первый символ – Д – диод;
  • Второй – нумерация, которая соответствует типу элемента, материалу и способу применения;
  • Третий – разновидность устройства.

Вольт амперная характеристика диода показывает основные параметры диода. При помощи графика можно получить точную информацию о зависимости значения напряжения на выходе диода от напряжения на входе. Существует несколько видов диодов: идеальный и реальный, выпрямительный и стабилитрон, кремниевый и германиевый, а также светодиод и вакуумный.

Отличия между ними – в выполняемой работе. При этом формула выходного напряжения в цепи будет незначительно отличаться. Так как лабораторные условия встречаются редко, то возможны незначительные погрешности во время включения и последующего выполнения функций устройством.

ВАХ полупроводникового агрегата существенно различается от типа к типу, отличные характеристики могут быть значительными.

Источник: https://amperof.ru/bezopasnost/vax-dioda.html

Обратная полярность при сварке и прямая полярность: отличия и как выбрать для инвертора

Во всех статьях и обзорах, связанных со сваркой, присутствует электрическая тема. Хоть аппараты, хоть электроды, хоть виды швов – в любом сварочном вопросе упоминается и уточняется вид тока. Где-то он постоянный, где-то переменный, а еще у него есть два варианта – прямая и обратная полярность при сварке.

Пора разобраться, что к чему, чтобы правильно выбирать материалы, аппараты, электроды и методы сварки. Знание нюансов об электричестве в сварке помогут вам быстро и правильно настроить инвертор, от чего качество сварочных швов зависит в большой степени.

Пятна анодные, пятна катодные

Конечно, можно всю жизнь проработать на своем инверторном аппарате, в котором по умолчанию постоянный ток настроен на прямую полярность: у вас нет никаких хлопот или проблем с перестройками сварочного электричества.

Эта чудесная идиллия возможна лишь при условии, что вид работ у вас один и тот же, вы не меняетесь, всех возможностей своего аппарата так и не знаете, и вообще зачем про электричество, все и так хорошо, не надо усложнять

Не надо, так не надо, но вот если вам понадобится варить, например, качественную высоколегированную сталь, то ваша идиллия сразу же нарушится: качественного шва со старыми электрическими настройками у вас не получится. Вам придется разбираться с понятием обратной или прямой полярности при сварке, в чем мы прямо сейчас вам поможем.

Во-первых, работа на инверторном аппарате подразумевает постоянный ток. А он, в свою очередь, подразумевает два гнезда для подключения плюсовой и минусовой клемм. Давайте запоминать полярность при сварке инвертором по подключению электрода, так легче. Если электрод подключен к минусовому гнезду, то это прямая полярность при сварке. Если к плюсовому – она обратная.

Прямая и обратная полярность.

В принципе при прямом варианте электрод, который подключен к отрицательной клемме, сам становится катодом. А анодом становится наша металлическая заготовка. При обратном варианте электрод начинает работать анодом, потому что он подключен к плюсовому полюсу. Ну а заготовка, соответственно, превращается в катод.

В обоих случаях образуются анодные и катодные пятна. Анодное облако – погорячее, причем значительно: разница в температурах анодной и катодной областей доходит до 800°С.

Не упустим из внимания важную деталь: если мы говорим о двух вариантах – прямом и обратном, это всегда имеет отношение только к постоянному току. Дело в том, что при переменном токе полярность сама меняется с прямой на обратную с высокой частотой.

Еще раз: переключение прямой и обратной полярностей имеет смысл и возможно только при постоянном токе, это сварка постоянным током. При переменном токе в таком переключении нет ни смысла, ни возможности. Друзья, это физика.

Прямая полярность

Итак, электрод подключен к минусу, металлическая заготовка – к плюсу. Это классическая полярность при сварке инвертором. На стороне плюса распространяет свое тепло чудесное анодное облако.

Прямое подключение постоянного тока имеет некоторые особенности, которые необходимо учитывать в обязательном порядке:

  • при прямом подключении получается стабильная и ровная дуга со всеми вытекающими последствиями в виде швов высокого качества;
  • сварочный шов отличается узостью и глубиной;
  • ни в коем случае не применяется, если на электродах указано, что они предназначены для технологии переменного тока;
  • с некоторыми металлами при работе в инертных газах повышается коэффициент наплавки;
  • состав металла в шве при прямой полярности имеет особенности: в нем практически нет углерода, зато присутствуют кремний и марганец;
  • довольно высокая степень разбрызгивания металла;
  • быстрая плавка расходника с его частой заменой.

Обратная полярность

Обратная полярность при сварке.

Мы помним, что при обратной полярности при сварке постоянным током плюсовое анодное теплое пятно находится на электроде, Таким образом мы исключаем дополнительный нагрев металла, к которому подведена минусовая клемма. Основным видом сварки при обратном подключении является электродуговая с флюсом и метод в среде защитных газов, в частности – в аргоне.

Главными металлами «потребителями» обратного подключения являются высоколегированные стали и тонкие заготовки из любого металла: здесь имеет значение тонкость края, которую легко прожечь при малейшем перегреве. Так что работы при обратном подключении можно назвать вполне себе деликатными. А там, где деликатность, там особенности исполнения и профессиональные советы.

Вот какие технологические особенности использования обратной полярности нужно принять во внимание:

  • шов при обратном подключении шире и меньшей глубины, чем при прямой;
  • великолепно справляется с соединением тонких и средней толщины кромок металлических заготовок;
  • сварочная дуга не такая стабильная, как при прямой полярности, если напряжение низкой силы, дуга начинает скакать и прерываться;
  • если вы варите высоколегированную сталь, то кроме обратного подключения нужно соблюдать дополнительные требования по рабочему циклу и температурному режиму остывания стальных заготовок;
  • ни в коем случае не варить с электродами, чувствительными к перегреву;
  • дополнительное снижение температуры на заготовке можно через снижение потенциала напряжения;
  • то, что дуга не очень стабильна, можно использовать во благо: очень тонкие края лучше варить прерывистым швов – прерывая дугу;
  • если в сварке на постоянном токе обратной полярности вы делаете шов встык, зазор между поверхностями должен быть минимальным, если же шов внахлест, поверхности приживать друг к другу герметично. Иначе вы получите прожог;
  • отбортовка краев свариваемых поверхностей отлично поможет для снижения риска прожога.

Как выбрать правильную полярность

Но если вы работаете с разными металлами и металлическими заготовками разной толщины, вам придется самостоятельно настраивать параметры сварочного тока и, в частности, полярность. Это нетрудно, поехали.

Все дело в перемещении теплого анодного пятна, то есть концентрации нагрева. При прямой полярности плюс идет на металлическую заготовку, как раз она и разогревается. Именно от данного фактора зависит выбор варианта подключения при работе с разными заготовками из разных металлов. Все логично и просто, вот критерии решений по поводу подключения постоянного сварочного тока:

Толщина края металлической заготовки

Постоянный и переменный ток сварки.

Толстые края поверхностей? Конечно же сварка током прямой полярности! Дополнительная концентрация тепла в местах плавки в толстых деталях будет способствовать глубокой проверке и, следовательно, получению качественного прочного шва. Если же края свариваемых поверхностей тонкие, то рассуждать, а затем действовать нужно совсем наоборот.

Тонкие края важно не перегреть, чтобы не допустить прожога. Так что отправляем теплое анодное пятно от греха подальше на другую сторону – к электроду. Так что тонкие детали варим при обратном подключении.

Вид металла

Здесь нам поможет перемещение теплового анодного пятна: каким металлам оно не повредит, а, наоборот, поможет? Правильнее всего будет внимательно читать инструкции по электрической настройке сварочного аппарат, которые сопровождают любой современный сплав.

Но уже сейчас можно запомнить факт, что алюминий вместе со сплавами тепло только приветствуют, оно помогает снизить количество образующихся окислов во время процесса. Так что сварка алюминия постоянным током проводится только при прямом подключении. Официально это будет называться сваркой алюминия постоянным током в среде аргона.

Цветные металлы, как алюминий, варятся неплавящимися вольфрамовыми электродами только при прямом подключении без каких-либо исключений.

Вид электрода

Вы ведь знаете, что современные электроды подразделяются по огромному количеству критериев, они производятся в невероятном разнообразии. Электрические параметры также входит в описание каждого вида электрода. Читать инструкции самым внимательным образом еще никому не помешало.

Но здесь мы вполне можем рассуждать логически, чтобы выбирать правильную полярность для каждого вида электрода. Выбор зависит от того же – теплого анодного пятна, то есть температурного режима. А такие режимы у электродов зависят от типа флюса и многих других факторов.

Невозможно дать короткие рекомендации по полярности тока для разных сварочных расходников – слишком их много. Единственный дельный совет в данном случае – читать инструкции и не пренебрегать ими.

А что делать, если в инструкции к металлу или сплаву требуется одни электрические параметры, а у выбранного электрода требуются совсем другие настройки сварочного тока? Такое бывает, ответ в этом случае только один: пробуйте и ищите оптимальный вариант опытным путем.

Силу тока, рабочие циклы, подключение к полюсам – все придется настраивать вручную. Но ведь голова нам дана, чтобы думать, верно?

Источник: https://tutsvarka.ru/vidy/obratnaya-polyarnost

Варикап: что это какое, применение, маркировка (обозначение )и способы проверки

Варикап – это одна из разновидностей полупроводниковых диодов. Главным его свойством является барьерная емкость при приложении к ней так называемой обратного напряжения. Минусовой полюс подключается в этом случае к плюсовому выходу самого варикапа. Когда подается управляющее напряжение, допусти низкочастотный сигнал, он приводит изменение в величине того самого обратного тока на обоих электродах варикапа.

Используются эти радиодетали при построении схем модуляторов в роли переменной емкости, которая управляется электрическим путем, а не механическим. В статье будут описаны все тонкости устройства варикапов, где они используются и для чего. Также по данной теме содержится видеоролик и подробная статья.

Варикап: вид сверху и снизу.

Что представляет собой варикап

Представленный компонент является полупроводниковым диодом. Его работа основана на применении зависимости между емкостью и обратным напряжением. Важными показателями варикапа считаются добротность, рассеиваемая мощность, общая емкость и коэффициент перекрытия по ней, постоянный обратный ток и напряжение.

При помощи таких элементов производится электронная настройка контуров колебательного типа в радиоприемных устройствах и средствах связи. Для использования их опций в схему обязательно включается обратное напряжение. При его подаче на диод происходит изменение величины емкости барьера. Она может варьироваться в широких пределах, что отличает варикап от компонентов со схожими функциями.

Обозначение варикапа на схеме

Преимущества применения варикапов

Эти элементы используются там, где нужно изменять емкость. Чаще всего они встречаются в схемах приборов, принимающих радиосигналы. Сюда относятся телевизионные тюнеры и традиционные радиоприемники. Наиболее ярким примером действия варикапа является опция «автопоиск каналов», давно ставшая обязательной в современных телевизорах. Разрабатываются варикапы на основании диодов, но по сути они являются конденсаторами. Их основными положительными качествами выступают:

  • низкий уровень потерь электроэнергии;
  • незначительный коэффициент температурной емкости;
  • небольшая стоимость;
  • надежность и продолжительный срок службы.

На практике весьма успешно диоды КВ используются на предельно высоких частотах, в условиях, где емкость конденсатора достигает долей пикофарад. Благодаря им удается избежать изменений частоты колебательного контура, что недопустимо для оборудования. Существует несколько видов варикапов. Таблица с полной справочной информацией по ним представлена ниже:

Таблица основных параметров варикапов.

Помимо обычных компонентов, выпускаются сдвоенные, а также строенные аналоги, которые соединены одним катодом. Найти можно и классические сборки. Это корпуса с несколькими варикапами, отличающиеся отсутствием электрической связи.

Номинальная емкость

Номинальная емкость варикапа представляет его барьерную емкость при заданном напряжении смещения.

На основании зависимости барьерной емкости от приложенного к выводам варикапа обратного напряжения строится так называемая вольт-фарадная характеристика варикапа, имеющая участок, форма которого близка к линейной.

Для того чтобы варикап работал именно на этом участке характеристики, на его электроды следует подать исходное напряжение смещения, величина которого определяет положение рабочей точки варикапа, то есть его номинальную барьерную емкость.

Значение максимальной рабочей частоты определяет граничную частоту, при превышении которой основные параметры варикапа перестают соответствовать паспортным данным. Добротность конденсатора, роль которого выполняет варикап, рассчитывается как отношение реактивного сопротивления на заданной частоте к сопротивлению потерь при заданной емкости варикапа или обратном напряжении.

Особого внимания заслуживает температурный коэффициент варикапа, который характеризует зависимость величины его емкости от температуры окружающей среды. Помимо указанных параметров при выборе варикапа для каскада модуляции миниатюрного радиопередатчика следует обратить внимание на такие параметры, как максимальная рассеиваемая мощность, максимально допустимое обратное постоянное напряжение, а также постоянный обратный ток при этом напряжении.

Материал по теме: Что такое реле контроля.

Основные схемы включения варикапа

Одним из основных способов осуществления модуляции в транзисторных микропередатчиках является воздействие модулирующего НЧ-сигнала на параметры селективного элемента ВЧ-генератора. Селективный элемент обычно представляет собой резонансный контур, образованный параллельно включенными катушкой индуктивности и конденсатором.

Будет интересно➡  Что такое адресная светодиодная лента

Изменение параметров входящей в состав контура катушки индуктивности в миниатюрных радиопередатчиках довольно затруднительно, поскольку соответствующие схемотехнические решения весьма сложны, а их реализация трудоемка.

В то же время применение варикапа, доступного и дешевого полупроводникового элемента, емкость которого можно изменять, непосредственно подавая на его выводы модулирующее напряжение, значительно упрощает решение задачи.

Поэтому схемотехнические решения модуляторов на варикапах, обеспечивающие частотную модуляцию ЧМ-сигнала с весьма приемлемыми параметрами, пользуются особой популярностью.

В транзисторных LC-генераторах варикап в качестве элемента с емкостным характером комплексного сопротивления может быть подключен к резонансному контуру как параллельно, так и последовательно.

Упрощенные принципиальные схемы включения варикапа параллельно резонансному контуру (без цепей формирования напряжения смещения варикапа) приведены на рис. 4.1. Отличительной особенностью схемотехнического решения, изображенного на рис. 4.

1б, является включение варикапа вместо конденсатора параллельного резонансного контура.

При разработке модулятора на варикапе не следует забывать о том, что для функционирования этого полупроводникового прибора в штатном режиме на его выводы следует подавать напряжение смещения определенной величины. Поэтому в состав модулирующего каскада необходимо включить соответствующую цепь формирования напряжения смещения варикапа. Такая цепь в миниатюрных транзисторных передатчиках обычно выполняется на резисторах.

Параллельный колебательный контур образован катушкой индуктивности L1 и емкостью варикапа VD1. Резонансная частота контура может изменяться при изменении величины обратного напряжения на варикапе, которое зависит от положения движка потенциометра R2.

Для того чтобы уменьшить шунтирующее влияние потенциометра R2 на добротность контура, в цепь включен резистор R1, имеющий сравнительно большое сопротивление.

Также в состав цепи включен разделительный конденсатор С1, без которого варикап VD1 оказался бы замкнут накоротко через катушку L1.

Аналогичные схемы включения варикапа используются и в транзисторных трехточечных LC-генераторах.

Широкое распространение получили схемотехнические решения, в которых варикап подключается параллельно катушке индуктивности (в индуктивных трехточках), а также параллельно одному из конденсаторов емкостного делителя ВЧ-генератора (в емкостных трехточках).

Весьма разнообразны схемотехнические решения модуляторов с применением варикапа, предназначенные для модуляции сигнала генераторов с кварцевой стабилизацией частоты.

При создании таких конструкций приходится, с одной стороны, добиваться высокой стабильности частоты генератора с помощью кварцевого резонатора, а с другой – обеспечивать возможность изменения этой частоты по закону модулирующего сигнала.

Обычно при разработке транзисторных микропередатчиков для ВЧ-генератора с кварцевой стабилизацией частоты выбираются осцилляторные схемы, в которых кварцевый резонатор используется в качестве элемента с индуктивным характером комплексного сопротивления в резонансном контуре.

В этом случае варикап, как элемент с изменяемой по закону модуляции емкостью, может быть подключен как последовательно, так и параллельно кварцевому резонатору.

Расчет характеристик

Управляемые напряжением полупроводниковые конденсаторы переменной емкости – варикапы – приборы с сильно выраженной нелинейностью. По этой причине в цепях, где к варикапу приложено переменное напряжение относительно большой амплитуды, он способен преподнести сюрприз.

По сути, варикап – это обратносмещенный полупроводниковый диод. Прямая ветвь его вольт-амперной характеристики, принципиальная для основного назначения диода (выпрямление, детектирование), для варикапа несущественна.

В общем случае в качестве варикапа можно использовать (и на практике это нередко реализуют) диод и даже коллекторный или змиттерный переход биполярного транзистора.

Будет интересно➡  Что такое Диод Зенера

В отличие от полупроводниковых диодов, у варикапов нормируют (и, разумеется, обеспечивают при производстве) емкость р-n перехода при определенном напряжении смещения на нем и добротность. Заметим, что добиться добротности варикапа, заметно превышающей добротность контурной катушки, непросто.

Это объясняется тем, что в варикапе, как и в любом диоде, последовательно с р-n переходом всегда включено сопротивление базовой области полупроводника, а параллельно – эквивалентное сопротивление, обусловленное обратным током через переход.

Относительно низкая добротность варикапа подразумевает, в частности, необходимость учитывать ее при расчете добротности колебательного контура

Зависимость емкости р-n перехода от приложенного к нему обратного напряжения имеет степенной характер вида С-U-n, где значение параметра n может находиться в пределах от 0,33 до 0,5 (определяется технологией изготовления перехода). На рис. 1 показана типовая вольт-фарадная характеристика варикапа Д902, построенная в линейных координатах. Подобные характеристики можно найти в справочной литературе. Они позволяют определить емкость варикапа при различных значениях напряжения смещения.

Материал в тему: Что такое кондесатор

Однако предпочтительнее иметь дело с вольт-фарадной характеристикой варикапа, построенной в “двойном” (т. е. по обеим осям) логарифмическом масштабе. Известно, что степенная функция выглядит в таком масштабе как прямая линия, причем тангенс угла ее наклона к оси ординат численно равен показателю степени функции. На рис.

2 показан этот график для варикапа Д902. Измерив обычной линейкой стороны прямоугольного треугольника ABC, получаем для модуля показателя степени значение 0,5 (АВ/ВС). Падающий характер характеристики говорит о том, что этот показатель имеет минусовой знак.

Таким образом, зависимость емкости варикапа Д902 от приложенного напряжения имеет вид С = U-0.5.

Источник: https://ElectroInfo.net/poluprovodniki/chto-takoe-varikap.html

Вольт-амперная характеристика (ВАХ)

ВАХ – это вольт-амперная характеристика, а если точнее, зависимость тока от напряжения в каком-либо радиоэлементе. Это может быть резистор, диод, транзистор и другие радиоэлементы. Так как транзистор имеет более двух выводов, то он имеет множество ВАХ.

Думаю, не все, кто читает эту статью, хорошо учились в школе. Поэтому, давайте разберемся, что представляет из себя зависимость одной величины от другой. Как вы помните из школы, мы строили графики зависимости игрек (У) от икс (Х). Та переменная, которая зависит от другой переменной, мы откладывали по вертикали, а та, которая независима – по горизонтали. В результате у нас получалась система отображения зависимости “У” от “Х”:

Так вот, мои дорогие читатели,  в электронике, чтобы описать зависимость тока от напряжения, вместо “У”  у нас будет сила тока, а вместо Х – напряжение.  И система отображения у нас примет вот такой вид:

Именно в такой системе координат мы будет чертить вольт-амперную характеристику. И начнем с самого распространенного радиоэлемента – резистора.

Вах резистора

Для того, чтобы начертить этот график, нам потребуется пропускать через резистор напряжение и смотреть соответствующее значение силы тока тока. С помощью крутилки я добавляю напряжение и записываю значения силы тока для каждого значения напряжения. Для этого берем блок питания,  резистор и начинаем  делать замеры:

Вот у нас появилась первая точка на графике. U=0,I=0.

Вторая точка: U=2.6, I=0.01

Третья точка: U=4.4, I=0.02

Четвертая точка: U=6.2, I=0.03

Пятая точка: U=7.9, I=0.04

Шестая точка: U=9.6, I=0.05

Седьмая точка: U=11.3, I=0.06

Восьмая точка: U=13, I=0.07

Девятая точка: U=14.7, I=0.08

Давайте построим график по этим точкам:

Да у нас получилась почти прямая линия! То, что она чуть кривая, связана с погрешностью измерений и  погрешностью самого прибора. Следовательно, так как у  нас получилась прямая линия, то значит такие элементы, как резисторы называются элементами с линейной  ВАХ.

Вах диода

Как вы знаете, диод пропускает электрический ток только в одном направлении. Это свойство диода мы используем в диодных мостах, а также для проверки диода мультиметром.      Давайте  построим ВАХ для диода.  Берем блок питания, цепляем его к диоду (плюс на анод, минус на катод) и начинаем точно также делать замеры.

Первая точка: U=0,I=0.

Вторая точка: U=0.4, I=0.

Третья точка: U=0.6, I=0.01

Четвертая точка: U=0.7, I=0.03

Пятая точка: U=0.8,I=0.06

Шестая точка: U=0.9, I=0.13

Седьмая точка: U=1, I=0.37

 Строим график по полученным значениям:

Ничего себе загибулина :-). Вот это и есть вольт-амперная характеристика диода. На графике мы не видим прямую линию, поэтому такая вольт-амперная характеристика называется НЕлинейной. Для кремниевых диодов она начинается со значения 0,5-0,7 Вольт. Для германиевых диодов ВАХ начинается со значения 0,3-0,4 Вольт.

Вах стабилитрона

Стабилитроны  работают в режиме лавинного пробоя. Выглядят они  также, как и диоды.

Мы подключаем стабилитрон как диод в обратном направлении: на анод минус, а на катод – плюс. В результате, напряжение на стабилитроне остается  почти таким же, а сила тока может меняться в зависимости от  подключаемой нагрузки на стабилитроне. Как говорят электронщики, мы используем  в стабилитроне обратную ветвь ВАХ.

Источник: https://www.RusElectronic.com/vakh/

Читать онлайн Шпаргалка по общей электронике и электротехнике страница 5. Большая и бесплатная библиотека

Очевидно, что при некотором прямом напряжении можно вообще уничтожить потенциальный барьер в р-п-переходе. Тогда сопротивление перехода, т. е. запирающего слоя, станет близко к нулю и им можно будет пренебречь. Прямой ток в этом случае возрастет и будет зависеть от сопротивления объемов пи р-областей. Теперь уже этими сопротивлениями пренебрегать нельзя, так как именно они остаются в цепи и определяют величину тока.

12. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД ПРИ ОБРАТНОМ НАПРЯЖЕНИИ

Пусть источник внешнего напряжения подключен положительным полюсом к области п, а отрицательным – к области р. Под действием такого обратного напряжения через проход протекает очень небольшой обратный ток, что объясняется следующим образом. Поле, создаваемое обратным напряжением, складывается с полем контактной разности потенциалов. Результирующее поле усиливается.

Уже при небольшом повышении барьера диффузионное перемещение основных носителей через переход прекращается, так как собственные скорости носителей недостаточны для преодоления барьера. А ток проводимости остается почти неизменным, поскольку он определяется главным образом числом неосновных носителей, попадающих в область р-п-перехода из объемов п-и р-областей.

Выведение неосновных носителей через р-п-переход ускоряющим электрическим полем, созданным внешним напряжением, называют экстракцией носителей заряда.

Таким образом, обратный ток представляет собой практически ток проводимости, образованный перемещением неосновных носителей. Обратный ток получается очень небольшим, так как неосновных носителей мало и, кроме того, сопротивление запирающего слоя при обратном напряжении очень велико.

Действительно, при повышении обратного напряжения поле в области перехода становится сильнее и под действием этого поля больше основных носителей «выталкивается» из пограничных слоев в глубь пи р– областей. Поэтому с увеличением обратного напряжения увеличивается не только высота потенциального барьера, но и толщина запирающего слоя.

Этот слой еще больше обедняется носителями, и его сопротивление значительно возрастает.

Уже при сравнительно небольшом обратном напряжении обратный ток достигает почти постоянной величины, которую можно назвать током насыщения. Это объясняется тем, что количество неосновных носителей ограничено. С повышением температуры концентрация их возрастает и обратный ток увеличивается, а обратное сопротивление уменьшается.

Рассмотрим несколько подробнее, как устанавливается обратный ток при включении обратного напряжения. Сначала возникает переходный процесс, связанный с движением основных носителей. Электроны в п-области движутся по направлению к положительному полюсу источника, т. е. удаляются от р-п-пере-хода. А в р-области, удаляясь от р-п-перехода, движутся дырки.

У отрицательного электрода они рекомбинируют с электронами, которые приходят из провода, соединяющего этот электрод с отрицательным полюсом источника.

Поскольку из п-области уходят электроны, она заряжается положительно, так как в ней остаются положительно заряженные атомы донорной примеси. Подобно этому р-область заряжается отрицательно, ее дырки заполняются приходящими электронами и в ней остаются отрицательно заряженные атомы акцепторной примеси.

Рассмотренное движение основных носителей в противоположные стороны продолжается лишь малый промежуток времени. Такой кратковременный ток подобен зарядному току конденсатора.

По обе стороны р-п-перехода возникают два разноименных объемных заряда, и вся система становится аналогичной заряженному конденсатору с плохим диэлектриком, в котором имеется ток утечки (его роль играет обратный ток).

Но ток утечки конденсатора в соответствии с законом Ома пропорционален приложенному напряжению, а обратный ток р-п-перехода сравнительно мало зависит от напряжения.

13. ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА ПОЛУПРОВОДНИКОВОГО ДИОДА

Для любого электрического прибора важна зависимость между током через прибор и приложенным напряжением. Зная эту зависимость, можно определить ток при заданном напряжении или, наоборот, напряжение, соответствующее заданному току.

Если сопротивление прибора является постоянным, не зависящим от тока или напряжения, выражается законом Ома: i= u/R, или i= Gu.

Ток прямо пропорционален напряжению. Коэффициентом пропорциональности является проводимость G =1/R.

График зависимости между током и напряжением называется «вольт-амперная характеристика» данного прибора. Для прибора, подчиняющегося закону Ома, характеристикой является прямая линия, проходящая через начало координат.

Приборы, подчиняющиеся закону Ома и имеющие вольт-амперную характеристику в виде прямой линии, проходящей через начало координат, называются линейными.

Существуют также приборы, у которых сопротивление не является постоянным, а зависит от напряжения или тока. Для таких приборов связь между током и напряжением выражается не законом Ома, а более сложным образом, и вольт-амперная характеристика не является прямой линией. Эти приборы называются нелинейными.

Электронно-дырочный переход по существу представляет собой полупроводниковый диод.

Обратный ток при увеличении обратного напряжения сначала быстро возрастает. Это вызвано тем, что уже при небольшом обратном напряжении за счет повышения потенциального барьера в переходе резко снижается диффузионный ток, который направлен навстречу току проводимости. Следовательно, полный ток резко увеличивается.

Однако при дальнейшем повышении обратного напряжения ток растет незначительно, т. е. наступает явление, напоминающее насыщение. Рост тока происходит вследствие нагрева перехода током, за счет утечки по поверхности, а также за счет лавинного размножения носителей заряда, т. е.

увеличения числа носителей заряда в результате ударной ионизации.

Явление это состоит в том, что при более высоком обратном напряжении электроны приобретают большую скорость и, ударяясь в атомы кристаллической решетки, выбивают из них новые электроны, которые в свою очередь разгоняются полем и также выбивают из атомов электроны. Такой процесс усиливается с повышением напряжения.

При некотором значении обратного напряжения возникает пробой p-n-перехода, при котором обратный ток резко возрастает и сопротивление запирающего слоя резко уменьшается. Следует различать электрический и тепловой пробой p-n-перехода.

Электрический пробой является обратимым, если при этом пробое в переходе не происходит необратимых изменений (разрушений структуры вещества). Поэтому работа диода в режиме электрического пробоя допустима.

Могут существовать два вида электрического пробоя, которые нередко сопутствуют друг другу: лавинный и туннельный.

Лавинный пробой объясняется рассмотренным лавинным размножением носителей за счет ударной ионизации. Этот пробой характерен для p-n-перехо-дов большой толщины, получающихся при сравнительно малой концентрации примесей в полупроводниках. Пробивное напряжение для лавинного пробоя обычно составляет десятки или сотни вольт.

Туннельный пробой объясняется весьма интересным явлением туннельного эффекта. Сущность его состоит в том, что при достаточно сильном поле с напряженностью более 105В/см, действующем в p-з-переходе малой толщины, некоторые электроны проникают через переход без изменения своей энергии. Тонкие переходы, в которых возможен туннельный эффект, получаются при высокой концентрации примесей. Пробивное напряжение, соответствующее туннельному пробою, обычно не превышает единиц вольт.

14. ЕМКОСТЬ ПОЛУПРОВОДНИКОВОГО ДИОДА

Р-п-переход при обратном напряжении аналогичен конденсатору со значительной утечкой в диэлектрике. Запирающий слой имеет очень высокое сопротивление и по обе его стороны расположены два разноименных объемных заряда, созданных ионизированными атомами донорной и акцепторной примеси. Поэтому p-n-переход обладает емкостью, подобной емкости конденсатора с двумя обкладками. Эту емкость называют барьерной емкостью.

Барьерная емкость, как и емкость обычных конденсаторов, возрастает при увеличении площади p-n-перехода и диэлектрической проницаемости вещества полупроводника и уменьшении толщины запирающего слоя.

Особенность барьерной емкости состоит в том, что она является нелинейной емкостью, т. е. изменяется при изменении напряжения на переходе. Если обратное напряжение возрастает, то толщина запирающего слоя увеличивается.

А так как этот слой играет роль диэлектрика, то барьерная емкость уменьшается.

Барьерная емкость вредно влияет на выпрямление переменного тока, так как она шунтирует диод и через нее на более высоких частотах проходит переменный ток. Но вместе с тем имеется и полезное применение барьерной емкости.

Специальные диоды, называемые варикапами, используют в качестве конденсаторов переменной емкости для настройки колебательных контуров, а также в некоторых схемах, работа которых основана на применении нелинейной емкости.

В отличие от обычных конденсаторов переменной емкости, в которых изменение емкости происходит механическим путем, в варикапах это изменение достигается регулировкой величины обратного напряжения. Способ настройки колебательных контуров с помощью варикапов называют электронной настройкой.

Источник: https://dom-knig.com/read_239113-5

ЭТО ИНТЕРЕСНО:  Как работает токовая отсечка
Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как использовать контактор

Закрыть