Что характеризует реактивная мощность

Что такое реактивная мощность и её компенсация

Что характеризует реактивная мощность
17.08.2017

Асинхронные двигатели, трансформаторы, газоразрядные и люминесцентные лампы, индукционные и дуговые печи и т.д.

в силу своих физических свойств вместе с активной энергией потребляют из сети также и реактивную энергию, которая необходима для создания электромагнитного поля.

В отличие от активной энергии, реактивная не преобразуется в другие виды – механическую или тепловую – и не выполняет полезной работы, однако вызывает потери при ее передаче. На Рис.1 изображены направления протекания тока при работе с реактивными нагрузками.

Рис.1. Полная мощность.

Наличие в сети реактивной мощности (Q, Вар) характеризуется коэффициентом мощности (PF, cos ф) и является соотношением активной (P, Вт) к полной (S, ВА). Ниже можно увидеть зависимость полной мощности от ее составляющих как на векторной диаграмме, так и на более житейском уровне – бокале пива, где пиво является активной составляющей, а пена – реактивной. Никто же не хочет иметь бокал только с пеной?

Рис.2. Треугольник мощностей. Расчет коэффициента мощности.

При низких значениях коэффициента мощности в сети будет возникать ряд нежелательных явлений, которые могут привести к существенному уменьшению срока службы оборудования. Рекомендуется иметь cos ф не менее 0,9 (например, в Чехии за cos ф менее 0,95 штрафуют). Для этого разработан ряд мероприятий по регулированию баланса реактивной мощности в сети – компенсация реактивной мощности.

Компенсация реактивной мощности (КРМ).

Следует понимать, что реактивная мощность бывает двух характеров – индуктивная и емкостная. Нас интересует компенсация только первого типа, т.к. второй встречается редко. В нашем случае – сетях с индуктивной нагрузкой – для увеличения cos ф требуется устанавливать компенсационные конденсаторы. Но как это сделать?

Выбор способа компенсации предполагает определение места установки конденсаторов (зачастую в составе конденсаторной установки (далее КУ)). Существует три основных варианта:

  • Индивидуальная компенсация

Размещение конденсаторов у устройств с низким cos ф и включение одновременно с последними.

Размещение конденсаторов у группы устройств (например, пожарных насосов).

  • Централизованная компенсация

Предусматривает установку КУ на главном распределительном щите. Если предыдущие варианты могли быть как регулируемыми, так и нет, то этот, как правило, регулируемый.

Рис.3. Способы компенсации.

При правильном подборе КУ мероприятия по компенсации реактивной мощности позволяют:

  • существенно уменьшить нагрузку на трансформаторах, а следовательно уменьшить их нагрев и увеличить срок службы
  • при включении КУ в расчет при проектировании новых объектов, существенно уменьшить сечение проводников
  • при включении КУ в уже существующие сети, разгрузить их, повышая пропускную способность без реконструкции
  • снизить расходы на электроэнергию за счет снижения потери в проводниках
  • повысить стабильность напряжения (все) и качество электроэнергии (при использовании ФКУ)

Где мы можем сэкономить видно невооруженным глазом, но для начала придется и потратиться.

Во-первых, необходимо заказать проект, который следует доверить проверенной организации. Которая в свою очередь проведет ряд измерений или сделает расчеты для новых объектов и исходя из них даст рекомендации по способу компенсации, типу КУ и их параметрам.

Во-вторых, следует выбрать организацию-сборщика, которая соберет, установит и настроит наши КУ.

Что может входить в состав КУ?

Рассмотрим максимально возможную комплектацию конденсаторной установки:

  1. Вводное устройство – автоматический выключатель, разъединитель предохранительный или выключатель нагрузки (при наличии еще одного вводного устройства, например, в ГРЩ).

  2. Защитные устройства ступеней – большинство производителей (например, ZEZ Silko) рекомендуют использовать плавкие вставки с характеристикой gG (см. таблицу ниже), но нередко можно встретить и защиту автоматическими выключателями.

  3. Коммутационное устройство (для статической компенсации НН) – контактор с токоограничевающей приставкой (контакты предварительного включения с сопротивлениями). Важно выбрать качественного производителя, т.к. через контактор при включении ступени проходят огромные токи (до 200Iе), обусловленные зарядом конденсатора, например, Benedict-Jager или Eaton (Moeller).

  4. Антирезонансные дроссели (реакторы) – используются для защиты от перегрузки токами конденсаторов при наличии в сети высших гармоник.

  5. Компенсационные конденсаторы – главный компонент всей установки – емкостной элемент. о применении, конструкции и монтаже низковольтных цилиндрических компенсационных конденсаторов в предыдущей статье.

  6. Регулятор реактивной мощности – своего рода анализатор сети с функцией управления ступенями. В зависимости от модели разные регуляторы кроме основных параметров (U, I, P, cos ф, количество подключенных ступеней) контролируют и ряд дополнительных (нелинейные искажения, температура и т.д). Также могу быть и дополнительные функции, например, коммуникация или автонастройка.

* Рассмотрена только основная комплектация без оболочек и микроклимата, защиты вторичных цепей.

Номинальный ток 3-фазного конденсатора [A]3-фазн. компенсационная мощность при 400 V[kvar]Рекомендуемое сечение Cu проводников [mm2]Номинальный ток предохранителя[A]
2,9 2 2,5 8
3,6 2,5 2,5 8
4,5 3,15 2,5 10
5,8 4 2,5 10
7,2 5 2,5 16
9 6,25 2,5 16
11,5 8 4 20
14,4 10 4 25
18,1 12,5 6 32
21,7 15 6 40
28,8 20 10 50
36,1 25 10 63
43,4 30 16 80
50,5 35 16 100
57,7 40 25 100
72,2 50 25 125
86,6 60 35 160
115,5 80 70 200
144,3 100 95 250

Таблица 1. Подбор предохранителей и проводников.

В заключение хочется напомнить, что неверно спроектированные, собранные и настроенные компенсационные установки или из материалов сомнительного происхождения имеют обыкновение громко выходить из строя.

Коммерческое предложение действительно на 02.05.2020 г.

Источник: https://lsys.by/news/articles/chto-takoe-reaktivnaya-moshchnost-i-eye-kompensatsiya.html

Что такое реактивная мощность? Компенсация реактивной мощности. Расчет реактивной мощности

Что характеризует реактивная мощность

В квартирах и частных домах установлен один электросчетчик, по которому производится расчет оплаты за потребленную энергию. Упрощенно считается, что в быту используется только ее активная составляющая, хотя это не совсем так.

Современное жилище насыщено устройствами, в схемах которых присутствуют элементы, сдвигающие фазу.

Однако реактивная мощность, которую потребляют бытовые приборы, несравнимо меньше, чем у промышленных предприятий, поэтому при расчете оплаты ею традиционно пренебрегают.

Завод или фабрика, руководство которых не следит за расходом паразитных токов, проходящих по цепи нагрузки, наносит большой вред энергосистемам региона и страны в целом. Совершенно бесполезно нагревается атмосферный воздух вокруг ЛЭП; обмотки трансформаторов, установленных в подстанциях, могут не выдерживать нагрузки, особенно в пиковые периоды.

Нагрузка индуктивная и емкостная

Если взять обычный нагревательный прибор или электрическую лампочку, то мощность, указанная в соответствующей надписи на колбе или табличке-шильдике, будет соответствовать произведению величин тока, проходящего через это устройство, и напряжения сети (у нас это 220 Вольт). Ситуация меняется, если прибор содержит трансформатор, другие элементы, содержащие катушки индуктивности, или конденсаторы.

Эти детали обладают особыми свойствами, график протекающего в них тока отстает или опережает синусоиду питающего напряжения — другими словами, происходит сдвиг фазы. Идеальная емкостная нагрузка сдвигает вектор на -90, а индуктивная — на +90 градусов. Мощность в этом случае становится результатом не только произведения тока на напряжение, добавляется некий поправочный коэффициент.

К чему это приводит?

Из школьного курса геометрии всем известно, что гипотенуза длиннее любого из катетов в прямоугольном треугольнике.

Если активная, реактивная и полная мощность образуют его стороны, то токи, потребляемые катушкой и емкостью, будут находиться под прямым углом к резистивной составляющей, но с направлениями в противоположные стороны.

При сложении (или, если угодно, вычитании, они разнознаковые) величин суммарный вектор, то есть полная реактивная мощность, в зависимости от того, какой характер нагрузки преобладает в схеме, будет направлен вверх или вниз. По его направлению можно судить, какой характер нагрузки преобладает.

ЭТО ИНТЕРЕСНО:  Как вычислить количество ампер

Реактивная мощность при векторном сложении с активной составляющей даст полную величину потребляемой мощности. Она графически изображается как гипотенуза треугольника мощности. Чем более эта линия будет полого располагаться по отношению к оси абсцисс, тем лучше.

Косинус фи

На графике видно, что угол φ образуют два вектора, полной и активной мощности. Чем их величины меньше отличаются, тем лучше, но полному их слиянию мешает реактивная мощность, считающаяся паразитной. Чем больше угол, тем выше нагрузка на линии электропередач, повышающие и понижающие трансформаторы системы энергоснабжения, и наоборот, чем ближе вектора наклонены друг к другу, тем меньше будут греться провода на всем протяжении цепи.

Естественно, что с этой проблемой что-то нужно было делать. И решение нашлось, простое и изящное. Взаимная компенсация реактивной мощности позволяет уменьшить угол φ и максимально приблизить его косинус (который также называют коэффициентом мощности) к единице.

Для этого следует удлинить вектор емкостной составляющей так, чтобы добиться резонанса токов, при котором они «погасят» друг друга (в идеале полностью, а на практике — наибольшим образом).

Теория и практика

Все теоретические выкладки имеют ценность тем большую, чем применимее они на практике. Картина на любом развитом промышленном предприятии следующая: большая часть электроэнергии потребляется двигателями (синхронными, асинхронными, однофазными, трехфазными) и прочими машинами. А ведь есть еще и трансформаторы. Вывод простой: в реальных производственных условиях преобладает реактивная мощность индуктивного характера.

Следует отметить, что на предприятиях устанавливают не один электросчетчик, как в домах и квартирах, а два, один из которых активный, а другой — несложно догадаться какой. И за перерасход напрасно «гоняемой» по линиям электропередач энергии соответствующие органы беспощадно штрафуют, так что администрация кровно заинтересована в том, чтобы произвести расчет реактивной мощности и принять меры к ее снижению.

Ясно, что без электрической емкости при решении этой задачи не обойтись.

Компенсация по теории

Из приведенного графика вполне ясно, как добиться уменьшения паразитных токов вплоть до полного их устранения, по крайней мере, теоретически. Для этого следует параллельно с индуктивной нагрузкой включить конденсатор соответствующей величины емкости. Векторы при сложении дадут ноль, и останется только полезная активная составляющая.

Расчет производится по формуле:

  • C = 1 / (2πFX), где X – полное реактивное сопротивление всех включенных в сеть устройств; F – частота напряжения питания (у нас – 50 Hz);

Вроде бы — чего проще? Перемножить «X» и число «пи» на 50 да поделить. Однако все несколько сложнее.

А как на практике?

Формула несложна, но определить и рассчитать X не так-то просто. Для этого нужно взять все данные об устройствах, узнать их реактивное сопротивление, причем в векторном виде, и уже тогда На самом деле, никто этим не занимается, кроме студентов на лабораторных работах.

Определить реактивную мощность можно и иначе, при помощи специального прибора — фазометра, указывающего косинус фи, или сравнив показания ваттметра, амперметра и вольтметра.

Осложняется дело тем, что в условиях реального производственного процесса величина нагрузки постоянно меняется, так как одни машины в процессе работы включаются, другие, напротив, отключаются от сети, как того требует технологический регламент.

Соответственно, необходимы постоянные меры по отслеживанию ситуации. Во время ночных смен работает освещение, зимой в цехах может осуществляться нагрев воздуха, а летом — его охлаждение.

Так или иначе, но компенсация реактивной мощности производится на основе теоретических расчетов с большой долей практических замеров cos φ.

Подключая и отключая конденсаторы

Наиболее простой и очевидный способ решить проблему – посадить возле фазометра специального работника, который бы включал или выключал нужное количество конденсаторов, добиваясь минимальной величины отклонения стрелки от единицы. Так вначале и делали, но практика показала, что пресловутый человеческий фактор не всегда позволяет добиваться нужного эффекта.

В любом случае компенсация реактивной мощности, имеющей чаще всего индуктивный характер, производится подключением электрической емкости соответствующей величины, но делать это лучше в автоматическом режиме, иначе нерадивый работник может подвести родное предприятие под крупный штраф. Опять же, труд этот квалифицированным назвать нельзя, автоматизации он вполне поддается.

Простейшая схема включает оптическую электронную пару из излучателя и приемника света. Стрелка перекрыла минимальное значение – значит, нужно добавить емкости.

Автоматика и интеллектуальные алгоритмы

В настоящее время есть системы, позволяющие надежно удерживать cos φ в пределах от 0,9 до 1. Так как подключение конденсаторов в них происходит дискретно, то идеального результата добиться невозможно, но экономический эффект автоматический компенсатор реактивной мощности все равно дает очень хороший.

В основе работы этого прибора лежат интеллектуальные алгоритмы, обеспечивающие работу сразу после включения, чаще всего даже без дополнительных настроек. Технологические достижения в области вычислительной техники позволяют добиваться равномерного подключения всех ступеней конденсаторных батарей для того, чтобы избежать преждевременного выхода из строя одной или двух из них.

Время срабатывания также минимизировано, а дополнительные дроссели снижают величину перепада напряжения во время переходных процессов. Современный щит управления питанием предприятия обладает соответствующей эргономической компоновкой, которая создает условия для быстрой оценки оператором ситуации, а в случае аварии или выхода из строя он получит немедленный тревожный сигнал.

Цена такого шкафа немалая, но заплатить за него стоит, пользу он приносит.

Устройство компенсатора

Обычный компенсатор реактивной мощности представляет собой металлический шкаф стандартных размеров с панелью контроля и управления на лицевой панели, обычно открываемой. В нижней части его располагаются наборы конденсаторов (батареи).

Такое расположение обусловлено простым соображением: электрические емкости довольно тяжелые, и вполне логично стремление сделать конструкцию более устойчивой.

В верхней части, на уровне глаз оператора, находятся необходимые контрольные приборы, в том числе и фазоуказатель, при помощи которого можно судить о величине коэффициента мощности. Имеется также различная индикация, в том числе и аварийная, органы управления (включения и выключения, перехода на ручной режим и проч.).

Оценку сравнения показаний измерительных датчиков и выработку управляющих воздействий (подключение конденсаторов нужного номинала) выполняет схема, основой которой служит микропроцессор. Исполнительные устройства работают быстро и бесшумно, они, как правило, построены на мощных тиристорах.

Примерный расчет конденсаторных батарей

На относительно небольших предприятиях реактивная мощность цепи может примерно оцениваться по количеству подключенных устройств с учетом их фазосдвигающих характеристик. Так, обычный асинхронный электродвигатель (главный «работяга» фабрик и заводов) при нагрузке, равной половине его номинальной мощности, обладает cos φ, равным 0,73, а люминесцентный светильник – 0,5.

Параметр контактного сварочного аппарата колеблется в пределах от 0,8 до 0,9, дуговая печь работает с косинусом φ, равным 0,8. Таблицы, имеющиеся в распоряжении практически каждого главного энергетика, содержат сведения о практически всех видах промышленного оборудования, и предварительная установка компенсации реактивной мощности может производиться при помощи них.

Однако такие данные служат лишь базой, на основании которой необходимо вносить коррективы, добавляя или отключая конденсаторные батареи.

В масштабах страны

Может сложиться впечатление о том, что всю заботу о параметрах электросетей и равномерности нагрузки на нее государство возложило на фабрики, заводы и прочие промышленные предприятия. Это не так.

ЭТО ИНТЕРЕСНО:  Что такое линейно интерактивный ибп

Энергосистема страны контролирует сдвиг фаз в общегосударственном и региональном масштабе, прямо на выходе своего особого товара из электростанций. Другой вопрос в том, что компенсация реактивной составляющей осуществляется не подключением конденсаторных батарей, а иным методом.

Для обеспечения качества отпускаемой потребителям энергии в роторных обмотках регулируется ток подмагничивания, что в синхронных генераторах не составляет большой проблемы.

Источник: https://FB.ru/article/143473/chto-takoe-reaktivnaya-moschnost-kompensatsiya-reaktivnoy-moschnosti-raschet-reaktivnoy-moschnosti

Активная, реактивная и полная мощность: формула, измерение, в чём измеряются показатели

Что характеризует реактивная мощность

Мощность является важным фактором для оценки эффективности работы электрооборудования в сети энергосистемы. Использование её предельных значений может привести к перегрузкам сети, аварийным ситуациям и выходу оборудования из строя. Для того чтобы обезопасить себя от этих негативных последствий, необходимо понимать, что такое активная реактивная и полная мощность.

Мощность, которая фактически потребляется или используется в цепи переменного тока, называется активной, в кВт или МВт. Мощность, которая постоянно меняет направление и движется, как по направлению в цепи, так и реагирует сама на себя, называется реактивной, в киловольт (kVAR) или MVAR.

Очевидно, что мощность потребляется только при сопротивлении. Чистый индуктор и чистый конденсатор её не потребляют.

В чистом резистивном контуре ток находится в фазе с приложенным напряжением, тогда как в чистом индуктивном и ёмкостном контуре ток смещён на 90 градусов: если индуктивная нагрузка подключена в сеть, он теряет напряжение на 90 градусов. При подключении ёмкостной нагрузки происходит смещение тока на 90 градусов в обратную сторону.

В первом случае создаётся активная мощность, а во втором — реактивная.

Силовой треугольник

Полная мощность — это векторная сумма активной и реактивной мощности. Элементы полной мощности:

  • Активная, P.
  • Реактивная, Q.
  • Полная, S.

Реактивная мощность не работает, она представлена как мнимая ось векторной диаграммы. Активная мощность работает и является реальной стороной треугольника. Из этого принципа разложения мощностей понятно, в чём измеряется активная мощность. Единицей для всех видов мощности является ватт (W), но это обозначение обычно закрепляется за активной составляющей. Полная мощность условно выражается в ВА .

Единица для Q составляющей выражается как var, что соответствует реактивному вольт-амперу. Она не передаёт никакой чистой энергии нагрузке, тем не менее она выполняет важную функцию в электрических сетях. Математическая связь между ними может быть представлена векторами или выражена с использованием комплексных чисел, S = P + j Q (где j — мнимая единица).

Расчёт энергии и мощности

Средняя мощность P в ваттах (W) равна энергии, потребляемой E в джоулях (J), делённой на период t в секундах (секундах): P (W) = E (J) / Δ t (s).

Когда ток и напряжение находятся на 180 градусов по фазе, PF отрицательный, нагрузка подаёт электроэнергию в источник (примером может служить дом с солнечными батареями на крыше, которые подают питание в энергосистему). Пример:

  • P составляет 700 Вт, а фазовый угол составляет 45, 6;
  • PF равен cos (45, 6) = 0, 700. Тогда S = 700 Вт / cos (45, 6) = 1000 В⋅А.

Отношение активной к полной мощности называется коэффициентом мощности (PF). Для двух систем, передающих такое же количество активной нагрузки, система с более низким PF будет иметь большие оборотные токи из-за электроэнергии, которая возвращается обратно.

Эти большие токи создают большие потери и снижают общую эффективность передачи. Схема с более низким PF будет иметь большую полную нагрузку и более высокие потери для одинакового количества активной нагрузки. PF = 1, 0, когда есть фазный ток.

Он равен нулю, когда ток приводит или отстаёт от напряжения на 90 градусов.

Например, PF =0,68 и означает, что только 68 процентов от общего объёма поставленного тока фактически выполняют работу, остальные 32 процента являются реактивными. Производители коммунальных услуг не берут с потребителей плату за её реактивные потери.

Однако если в источнике нагрузки клиента есть неэффективность, которая приводит к тому, что PF падает ниже определённого уровня, коммунальные услуги могут взимать плату с клиентов, чтобы покрыть увеличение использования топлива на электростанциях и ухудшение линейных показателей сети.

Характеристики полной S

Формула полной мощности зависит от активной и реактивной мощности и представлена как энергетический треугольник (Теорема Пифагора). S = (Q 2 + P 2) 1 / 2, где:

  • S = полная (измерение в киловольт-ампер, кВА);
  • Q = реактивная (реактивность на киловольтах, kVAR);
  • P = активная (киловатт, кВт).

Она измеряется во вольт-амперах (В⋅А) и зависит от напряжения, умноженного на весь поступающий ток. Это векторная сумма P и Q составляющих, которая подсказывает, как найти полную мощность. Однофазная сеть: V (V) = I (A) x R (Ω).

P (W) = V (V) x I (A) = V 2 (V) / R (Ω) = I 2 (A) x R (Ω).

Трёхфазная сеть:

Напряжение V в вольтах (V) эквивалентно току I в амперах (A), умноженному на импеданс Z в омах (Ω):

V (V) = I (A) x Z (Ω) = (| I | x | Z |) ∠ ( θ I + θ Z ).

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/izmerenie-aktivnoy-reaktivnoy-i-polnoy-moschnosti.html

Электрическая мощность

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).

Мгновенная электрическая мощность[ | ]

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A {\displaystyle A} в точку B {\displaystyle B} , к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки A {\displaystyle A} в точку B {\displaystyle B} .

Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени.

Введём обозначения:

U {\displaystyle U}  — напряжение на участке A − B {\displaystyle A-B} (принимаем его постоянным на интервале Δ t {\displaystyle \Delta t} ), Q {\displaystyle Q}  — количество зарядов, прошедших от A {\displaystyle A} к B {\displaystyle B} за время Δ t {\displaystyle \Delta t} , A {\displaystyle A}  — работа, совершённая зарядом Q {\displaystyle Q} при движении по участку A − B {\displaystyle A-B} , P {\displaystyle P}  — мощность.

Записывая вышеприведённые рассуждения, получаем:

P A − B = A Δ t {\displaystyle P_{A-B}={\frac {A}{\Delta t}}}

Для единичного заряда на участке A − B {\displaystyle A-B} :

P e ( A − B ) = U Δ t {\displaystyle P_{e(A-B)}={\frac {U}{\Delta t}}}

Для всех зарядов:

P A − B = U Δ t ⋅ Q = U ⋅ Q Δ t {\displaystyle P_{A-B}={\frac {U}{\Delta t}}\cdot {Q}={U}\cdot {\frac {Q}{\Delta t}}}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть I = Q Δ t {\displaystyle I={\frac {Q}{\Delta t}}} по определению, в результате получаем:

P A − B = U ⋅ I {\displaystyle P_{A-B}=U\cdot I} .

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p ( t ) {\displaystyle p(t)} , выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u ( t ) {\displaystyle u(t)} и силы тока i ( t ) {\displaystyle i(t)} на этом участке:

p ( t ) = u ( t ) ⋅ i ( t ) . {\displaystyle p(t)=u(t)\cdot i(t).}

Если участок цепи содержит резистор c электрическим сопротивлением R {\displaystyle R} , то

p ( t ) = i ( t ) 2 ⋅ R = u ( t ) 2 R {\displaystyle p(t)=i(t){2}\cdot R={\frac {u(t){2}}{R}}} .

Дифференциальные выражения для электрической мощности[ | ]

Мощность, выделяемая в единице объёма, равна:

w = d P d V = E ⋅ j {\displaystyle w={\frac {dP}{dV}}=\mathbf {E} \cdot \mathbf {j} } ,

где E {\displaystyle \mathbf {E} }  — напряжённость электрического поля, j {\displaystyle \mathbf {j} }  — плотность тока. Отрицательное значение скалярного произведения (векторы E {\displaystyle \mathbf {E} } и j {\displaystyle \mathbf {j} } противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.

ЭТО ИНТЕРЕСНО:  Какую функцию выполняет заземление

В случае изотропной среды в линейном приближении:

w = σ E 2 = E 2 ρ = ρ j 2 = j 2 σ {\displaystyle w=\sigma E{2}={\frac {E{2}}{\rho }}=\rho j{2}={\frac {j{2}}{\sigma }}} ,

где σ = d e f 1 ρ {\displaystyle \sigma \,{\overset {\underset {\mathrm {def} }{}}{=}}\,{\frac {1}{\rho }}}  — удельная проводимость, величина, обратная удельному сопротивлению.

В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:

w = σ α β E α E β {\displaystyle w=\sigma _{\alpha \beta }E_{\alpha }E_{\beta }} ,

где σ α β {\displaystyle \sigma _{\alpha \beta }}  — тензор проводимости.

Мощность постоянного тока[ | ]

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

P = I ⋅ U {\displaystyle P=I\cdot U} .

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

P = I 2 ⋅ R = U 2 R {\displaystyle P=I{2}\cdot R={\frac {U{2}}{R}}} , где R {\displaystyle R}  — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

P = I ⋅ E {\displaystyle P=I\cdot {\mathcal {E}}} , где E {\displaystyle {\mathcal {E}}}  — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p = I 2 ⋅ r {\displaystyle p=I{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока[ | ]

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно.

Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода.

На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ {\displaystyle \varphi } (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность[ | ]

Единица измерения в СИ — ватт[1].

P = U ⋅ I ⋅ cos ⁡ φ {\displaystyle P=U\cdot I\cdot \cos \varphi } .

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%A0%D0%B5%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D0%BC%D0%BE%D1%89%D0%BD%D0%BE%D1%81%D1%82%D1%8C

Активная и реактивная мощность генератора

Потребители, приобретая ДГУ, зачастую не задумываются о многих технических характеристиках оборудования. Касается это и такого понятия, как коэффициент мощности генератора. Параметр является важным, поскольку самым серьезным образом влияет на подачу электроэнергии.

Что представляет собой мощность генератора?

Электроприборы, подключенные к генератору, потребляют активную и реактивную мощность, которые в сумме образуют общую мощность.

  1. Активная мощность используется для работы всех приборов. Ее называют «полезной».
  2. Реактивная мощность, называемая «пустой», возникает вследствие особенности оборудования и законов физики. Мощность циркулирует между источником электроснабжения и подключенными потребителями.

Каждый генератор имеет свой коэффициент мощности, демонстрирующий количество активной мощности от полной. При выборе ДГУ для собственных нужд важно обратить внимание на этот параметр, убедившись в том, что оборудование справится с возложенными на него задачами.

Оптимальным коэффициентом мощности можно считать показатель 0.8. Это значит, что электроприборы получают 80% активной мощности от 100% общей мощности, вырабатываемой генератором.

Что такое компенсация реактивной мощности?

Чрезмерное большое количество реактивной мощности ухудшает работу всей электросети. Так, генератор потребляет слишком много топлива, быстро изнашивается и в электросети требуется задействовать провода с увеличенным сечением.

Закажите дизельный генератор в ООО «ЭК Прометей» оформив заявку онлайн или позвонив по контактному телефону:

(812) 748-27-22

Для снижения реактивной мощности используется компенсация. Она может быть нескольких видов:

  • Индивидуальная. В данном случае задействуются конденсаторные установки для определенных потребителей.
  • Групповая. Применение общей конденсаторной установки позволяет компенсировать реактивную мощность сразу для нескольких приборов.
  • Централизованная. Это наиболее удобный способ компенсации, применяемый для широкого диапазона изменений мощности.

Главное преимущество компенсации реактивной мощности в том, что таким образом удается значительно сократить расходы топлива. Также это позволяет снизить нагрузку на оборудование.

Способ компенсации мощности в электросети следует подбирать грамотно. В некоторых случаях может потребоваться комплексное решение, включающее улучшение тока при помощи фильтров гармоник.

Особенно важная компенсация реактивной мощности на промышленных предприятиях. Она необходима для эффективного использования существующего электроснабжения.

Источник: https://prometey-energy.ru/articles/chto-takoe-reaktivnaya-moschnost-generatora.html

Проблема реактивной мощности и ее решение

Проблема роста реактивной мощности в электрических сетях пока коснулась не многих. Но с увеличение количества используемой техники она стремительно появляется.

Сегодня компании из различных секторов экономики сталкиваются с проблемой роста реактивной мощности в электрических сетях. Использование специальных устройств для компенсации или сглаживания этих эффектов позволяет не только продлить срок службы дорогостоящей техники, но и снизить энергопотребление. Увеличение числа разнородных нагрузок в современных электросетях приводит к росту реактивной мощности, а также увеличению нелинейных искажений.

Реактивная мощность

  • Причина возникновения реактивной мощности
  • Устройства компенсации реактивной мощности
  • Активные фильтры
  • Оценка энергоэффективности
  • Заключение

Помехи способствуют увеличению затрат на электроснабжение, а также могут причинить вред дорогостоящей технике, сокращая срок ее службы. Именно поэтому такие учреждения и организации, как заводы «Николь Пак» в Учалы, TAKEDA по производству лекарств в Ярославле и железнодорожный вокзал Уфы, используют системы компенсации реактивной мощности стоимостью несколько миллионов рублей.

Причина возникновения реактивной мощности

Простые потребители электроэнергии, такие как нагреватели или лампы накаливания, не создают искажений и не влияют на качество электропитания. Но чем чаще в сетях встречаются инверторы, электрические двигатели, частотные преобразователи, импульсные источники питания, ИБП, люминесцентные и светодиодные лампы, тем сильнее увеличивается потреб-ление реактивной мощности, растут токи в проводниках, полезная энергия уходит в нагрев и вибрации.

По статистике Legrand, из-за наличия гармонических помех в сети и большого количества реактивной составляющей тока в электросетях теряется до 40 % полезной мощности. А поскольку сегодня как на промышленных объектах, так и в обычных офисах и жилых комплексах появляется все больше разнообразных устройств, с проблемой реактивных мощностей приходится бороться практически во всех сферах.

Многие организации устанавливают мощные ИБП, обеспечивая резервирование питания для критически важных нагрузок, однако низкое качество электроэнергии может нанести вред даже хорошо защищенному оборудованию. Поэтому критически важно применять целый комплекс необходимых мер, включающий в себя компенсацию реактивных мощностей и сглаживание гармоник высшего порядка.

Устройства компенсации реактивной мощности

Самый экологичный и эффективный способ борьбы с реактивной мощностью – это использование устройств компенсации реактивной мощности (УКРМ). Они могут представлять собой автоматические конденсаторные установки, которые уравновешивают реактивную нагрузку, сводя ее к минимуму. Практика показывает, что установка УКРМ позволяет снизить потребление реактивной мощности до 90 %. Это становится возможным за счет уменьшения потерь в силовых кабелях и трансформаторах.

Источник: https://econet.ru/articles/problema-reaktivnoy-moschnosti-i-ee-reshenie

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Что такое работа источника тока

Закрыть