Что характеризует реактивная мощность в цепи переменного тока

Активная и реактивная мощность. За что платим и работа

Что характеризует реактивная мощность в цепи переменного тока

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности.

В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет.

Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке.

Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения.

Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному).

Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга.

Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи.

Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники.

Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности.

Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем.

Но бес, как известно, кроется в деталях.

Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку.

За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnaia-i-reaktivnaia-moshchnost/

Мощность: цепи переменного и постоянного тока коэффициент мощности

Что характеризует реактивная мощность в цепи переменного тока

В статье мы расскажем про мощность в цепи переменного и постоянного тока, а также мгновенную, активную, реактивную и полную мощность, а также что такое коэффициент мощности. Всех их формулы и примеры на нахождение мощности.

Мощность, генерируемая потоком через проводник тока I с напряжением U на его концах, выражается следующей формулой: 

Используя закон Ома, можно определить формулу для мощности с известными сопротивлением и напряжением: 

Аналогично, формула мощности может быть определена в зависимости от сопротивления и тока:

Задачи на нахождение мощности

Задача 1

Напряжение 5 В было измерено на концах резистора 10 Ом. Какая будет мощность? 

Решение:

Применить второе уравнение: Р = 5 2 /10 = 25/10 = 2,5 Вт 

Задача 2

Держатель лампы, несущий опорной мощности P = 21Вт при напряжении U = 12 В для подачи питания накала питания может быть использован со следующим параметры: U = 12В I max= 1А. Какой ток протекает при нормальной работе лампы? 

Решение:

Давайте посчитаем, какой ток протекает при нормальной работе лампы: 

P = U * I I = P / U I = 21 Вт / 12 В 

I = 1,75 A 

Это означает, что источник питания с заданными параметрами не подходит для питания этой лампы.

Мощность в цепи переменного тока

Мощность в цепи переменного тока в физики и обычной жизни одно из базовых понятий, которое нужно понимать перед началом работы с электроприборами. Далее вы увидите основные формулы мощности и их применение в задачах.

Мгновенная мощность

При рассмотрении энергетических процессов в цепях переменного тока удобно использовать разные типы энергии. Мгновенная мощность равна произведению мгновенных значений тока и напряжения на части цепи:

где: U и I — эффективные значения напряжения и тока, а φ и ω — соответственно разность фаз между током и напряжением и угловой частотой (пульсация).

Активная мощность

Активная мощность характеризуется текущими потерями энергии в течение 1 секунды в активных компонентах цепи (для нагрева, излучения или механических работ). Он измеряется в ваттах и ​​определяется мгновенным значением мощности за период:

Реактивная мощность

Реактивная мощность связана с реактивными сопротивлениями, которые периодически накапливают энергию, а затем возвращают ее источнику, но сами не поглощают энергию. Единица реактивной мощности вар. Реактивная мощность может быть определена по формуле:

Реактивная мощность положительна при токе, задержанном по отношению к напряжению (φ>0), и отрицательна при токе, который обгоняет напряжение (φ

Источник: https://meanders.ru/moshhnost-v-cepi-peremennogo-i-postojannogo-toka.shtml

Реактивная мощность

Что характеризует реактивная мощность в цепи переменного тока

Реактивная мощность – часть электрической энергии, возращенная нагрузкой источнику. Явление возникновения ситуации считается вредным.

Возникновение реактивная мощность

Допустим, цепь содержит источник питания постоянного тока и идеальную индуктивность. Включение цепи порождает переходный процесс.

Напряжение стремится достичь номинального значения, росту активно мешает собственное потокосцепление индуктивности. Каждый виток провода согнут круговой траекторией. Образуемое магнитное поле будет пересекать соседствующий сегмент.

Если витки расположены один за другим, характер взаимодействия усилится. Рассмотренное называется собственным потокосцеплением.

Характер процесса таков: наводимая ЭДС препятствует изменениям поля. Ток пытается стремительно вырасти, потокосцепление тянет обратно. Вместо ступеньки видим сглаженный выступ. Энергия магнитного поля потрачена, чтобы воспрепятствовать процессу создавшему. Случай возникновения реактивной мощности. Фазой отличается от полезной, вредит. Идеально: направление вектора перпендикулярно активной составляющей. Подразумевается, сопротивление провода нулевое (фантастический расклад).

При выключении цепи процесс повторится обратным порядком. Ток стремится мгновенно упасть до нуля, в магнитном поле запасена энергия. Пропади индуктивность, переход пройдет внезапно, потокосцепление придает процессу иную окраску:

  1. Уменьшение тока вызывает снижение напряженности магнитного поля.
  2. Произведенный эффект наводит противо-ЭДС витков.
  3. В результате после отключения источника питания ток продолжает существовать, понемногу затухая.

Графики напряжения, тока, мощности

Реактивная мощность некое звено инерции, постоянно запаздывающее, мешающее. Первый вопрос: зачем тогда нужны индуктивности? О, у них хватает полезных качеств. Польза заставляет мириться с реактивной мощностью. Распространенным положительным эффектом назовем работу электрических двигателей. Передача энергии идет через магнитный поток. Меж витками одной катушки, как было показано выше. Взаимодействию подвержены постоянный магнит, дроссель, все, способное захватить вектором индукции.

Случаи нельзя назвать в смысле описательном всеобъемлющими. Иногда применяется поток сцепления в виде, показанном для примера. Принцип используют пускорегулирующие аппараты газоразрядных ламп.

ЭТО ИНТЕРЕСНО:  Что такое коммутация

Дроссель снабжен несметным количеством витков: отключение напряжения вызывает не плавное снижение тока, но выброс большой амплитуды противоположной полярности. Индуктивность велика: отклик поистине потрясающий. Превышает исходные 230 вольт на порядок.

Достаточно, чтобы возникла искра, лампочка зажглась.

Реактивная мощность и конденсаторы

Реактивная мощность запасается энергией магнитного поля индуктивностями. А конденсатор? Выступает источником возникновения реактивной составляющей. Дополним обзор теорией сложения векторов. Поймет рядовой читатель. В физике электрических сетей часто используются колебательные процессы. Всем известные 220 вольт (теперь принятые 230) в розетке частотой 50 Гц. Синусоида, амплитуда которой равна 315 вольт. Анализируя цепи, удобно представить вращающимся по часовой стрелке вектором.

Анализ цепей графическим методом

Упрощается расчет, можно пояснить инженерное представление реактивной мощности. Угол фазы тока считают равным нулю, откладывается вправо по оси абсцисс (см. рис.). Реактивная энергия индуктивности совпадает фазой с напряжением UL, опережает на 90 градусов ток. Идеальный случай.

Практикам приходится учитывать сопротивление обмотки. Реактивной на индуктивности будет часть мощности (см. рис.). Угол меж проекциями важен. Величина называется коэффициентом мощности. Что означает на практике? Перед ответом на вопрос рассмотрим понятие треугольника сопротивлений.

Треугольник сопротивлений и коэффициент мощности

Чтобы проще вести анализ электрических цепей, физики предлагают использовать треугольник сопротивлений. Активная часть откладывается, как ток, – вправо оси абсцисс. Договорились, индуктивность направлять вверх, емкость – вниз. Вычисляя полное сопротивление цепи, значения вычитаем. Исключено комбинированный случай. Доступно два варианта: реактивное сопротивление положительное, либо отрицательное.

Получая емкостное/индуктивное сопротивление, параметры элементов цепи домножают коэффициентом, обозначаемым греческой буквой «омега». Круговая частота – произведение частоты сети на удвоенное число Пи (3.14). Еще одно замечание по поводу нахождения реактивных сопротивлений укажем.

Если индуктивность просто домножается указанным коэффициентом, для емкостей берутся величины обратные произведению. Понятно из рисунка, где приведены указанные соотношения, помогающие вычислять напряжения. После домножения берем алгебраическую сумму индуктивного, емкостного сопротивлений.

Первые рассматриваются положительными величинами, вторые – отрицательными.

Формулы реактивных составляющих

Две составляющие сопротивления – активная и мнимая – являются проекциями вектора полного сопротивления на оси абсцисс и ординат. Углы сохраняются при переносе абстракций на мощности. Активная откладывается по оси абсцисс, реактивная – вдоль сои ординат. Емкости и индуктивности являются основополагающей причиной возникновения в сети негативных эффектов. Было показано выше: без реактивных элементов становится невозможным построение электротехнических устройств.

Коэффициентом мощности принято называть косинус угла меж полным вектором сопротивления и горизонтальной осью. Столь важное значение параметру приписывают, поскольку полезная часть энергии источника является долей полных трат. Доля высчитывается умножением полной мощности на коэффициент. Если векторы напряжения и тока совпадают, косинус угла равен единице. Мощность теряется нагрузкой, улетучиваясь теплом.

Сказанному верить! Средняя мощность периода при подключении к источнику чисто реактивного сопротивления равна нулю. Половину времени индуктивность принимает энергию, вторую отдает. Обмотка двигателя обозначается на схемах прибавлением источника ЭДС, описывающего передачу энергии валу.

Практическое истолкование коэффициента мощности

Многие замечают неувязку в случае практического рассмотрения реактивной мощности. Для снижения коэффициента рекомендуют параллельно обмоткам двигателя включать конденсаторы большого размера. Индуктивное сопротивление уравновешивает емкостное, ток вновь совпадает с напряжением фазой. Сложно понять вот по какой причине:

  1. Допустим, к источнику переменного напряжения подключили первичную обмотку трансформатора.
  2. В идеале активное сопротивление равно нулю. Мощность должна быть реактивной. Но это плохо: угол между напряжением и током стремятся сделать нулевым!

Коэффициент мощности

Величина энергии, запасаемой полем, определяется размером индуктивности или емкости. Прочитаете в любом учебнике физики для ВУЗов (Курс физики Жданова и Маранджяна, т. 2, стр. 234), точнее – пропорциональна квадрату величины.

Теория реактивной мощности предполагает: некая энергия запасается каждый период паразитной индуктивностью, емкостью, потом уходит во внешнюю цепь. Получается своеобразная циркуляция внутри колебательного контура.

Сильно нагреваются соединительные провода, если индуктивность находится слишком далеко от ёмкости.

Но! Колебательный процесс безучастен работе двигателей, трансформаторов. Теория реактивной мощности предполагает: колебания совершает вся энергия. До последней капли. В трансформаторе, двигателе из поля происходит активная “утечка” энергии на совершение работы, наведение тока вторичной обмотки. Энергия циркулировать между источником и потребителем не может.

Реальная цепь процесс согласования отдельных участков затрудняет. Для перестраховки поставщики требуют установить параллельно обмотке двигателя конденсаторы, чтобы энергия циркулировала в локальном сегменте, не выходила наружу, нагревая соединительные провода. Важно избежать перекомпенсации. Если емкость конденсаторов будет слишком велика, батарея станет причиной увеличения коэффициента мощности.

Что касается сдвига фаз, возникает на вторичной обмотке трансформатора подстанции. Роль играет не это. Двигатель работает, часть энергии не преобразована в полезную работу, отражается назад. В результате возникает коэффициент мощности. Участвующая составляющая индуктивности – технологический, конструкционный дефект. Часть, не приносящая пользы. Скомпенсируем, добавляя конденсаторные блоки.

Проверка правильности согласования ведется по факту отсутствия сдвига фаз между напряжением и током работающего электродвигателя. Лишняя энергия циркулирует меж избыточной индуктивностью обмоток, установленным конденсаторным блоком. Достигнута цель мероприятия – избежать нагрева проводников питающей устройство сети.

Что предлагают под видом экономии электроэнергии

В сети предлагают купить устройства экономии электроэнергии. Компенсаторы реактивной мощности. Важно не перегнуть палку.

Допустим, компенсатор будет уместно смотреться рядом с включенным компрессором холодильника, коллекторным двигателем пылесоса, обременять квартиру мерами при работающих лампочках накала – предприятие сомнительное.

До установки потрудитесь узнать сдвиг фаз меж напряжением и током, согласно информации, правильно рассчитайте объем блока конденсаторов. Иначе попытки сэкономить таким образом потерпят неудачу, разве случайно удастся навести палец в небо, попасть в точку.

Вторым аспектом компенсации реактивной мощности является учет. Делается для крупных предприятий, где стоят мощные двигатели, создающие большие углы сдвига фаз. Внедряют специальные счетчики учета реактивной мощности, оплачиваемой согласно тарифу. Для расчетов коэффициента оплаты применяется оценка тепловых потерь проводов, ухудшение режима эксплуатации кабельной сети, некоторые другие факторы.

Перспективы дальнейшего изучения реактивной энергии, как явления

Реактивная мощность выступает явлением отражения энергии. Идеальные цепи явления лишены. Реактивная мощность проявляется выделенным теплом на активном сопротивлении кабельных линий, искажает синусоидальную форму сигнала. Отдельная тема разговора. При отклонениях от нормы двигатели работают не столь гладко, трансформаторам – помеха.

Источник: https://VashTehnik.ru/enciklopediya/reaktivnaya-moshhnost.html

Мощность переменного тока — виды, формула, примеры вычисления

Электрическое напряжение определяется как отношение работы поля по переброске пробного заряда из одной заданной точки в другую к размеру потенциала. При дислокации единичного резерва выполняется работа, которая равняется напряжению на искомом участке. Общая мощность получают умножением работы электрического поля для единичного заряда на число потенциалов за определенную единицу времени.

В переменной электрической цепи выделяется 3 вида мощности:

  • активный P;
  • реактивный Q;
  • полного типа S.

В цепи переменного электричества формула для расчета постоянного тока применяется только для вычисления мгновенной мощности. Этот показатель претерпевает изменения во времени и почти не имеет практического смысла для всех остальных расчетов. Среднезначимый показатель мощности требует временной интеграции. Мгновенная мощность объединяется в течение определенного промежутка для расчета величины в магистрали с периодическим изменением силы переменного потока и синусоидального напряжения.

Применяется концепция комплексных чисел для связывания всех трех видов мощности. Это понятие обозначает, что в переменной цепи нагрузка выражается подобным числом так, что активная разновидность представляется действительной составляющей. Реактивный показатель выступает мнимым показателем, а полная мощность показывается в форме модуля. В этих расчетах принимает участие угол сдвига фаз φ, который является аргументом баланса мощностей в цепи переменного тока.

Реактивная характеристика

Для обозначения применяется дополнительно единица вольт-ампер реактивный (вар). В русских аналогах используется вар, а международные специалисты применяют var. В РФ единица допускается для электротехнических расчетов в форме внесистемного значения.

Нахождение производится по формуле P = U . I . sin φ (синус), где:

  1. U — среднеквадратичная мощность.
  2. I — среднеквадратичная сила потока.
  3. φ — угол фазного смещения, значения синуса, определяются по таблицам.

При диапазоне показателя от 0 до 90º (ток отстает от напряжения, а нагрузка носит активно-индуктивный вид) синус φ будет иметь положительное значение.

При угловом сдвиге от 0 до -90º (поток электронов опережает нагрузку, мощность отличается активно-емкостным свойством) константа всегда показывает отрицательный знак.

Реактивная мощность характеризует напряженность, которая возникает в электромеханических приборах и цепях при изменении энергетических волн поля в магистрали переменного синусоидального потока.

В физическом смысле реактивная нагрузка показывает энергию, которая перекачивается от источника тока на конденсаторы, индукторы, двигательные обмотки, а впоследствии возвращается к источнику за один колебательный период. Реактивная мощность не принимает участия в работе электротока. В случае положительной характеристики устройство потребляет, а нагрузка с отрицательным знаком говорит о производстве энергии.

Это обстоятельство рассматривается в условном контексте, т. к. почти все энергопотребляющие приборы, например, двигатели асинхронной работы, а также полезная нагрузка, подаваемая через трансформатор, относятся к активно-индуктивным видам.

Синхронные двигатели электростанций одновременно производят и потребляют энергию в зависимости от максимальной величины электротока возбуждения в роторных обмотках.

Эта особенность применяется для координации уровня нагрузки в магистрали в электротехнике.

С помощью современных преобразователей производится компенсация реактивной нагрузки во избежание перегрузок и для увеличения коэффициента мощности электроустановок. Приборы более точно оценивают размер энергии, которая поступает в обратном направлении от индуктора к источнику переменного тока.

Полная нагрузка

Показатель используется в физике для описания потребляемой мощности, которая прилагается к подводящим агрегатам электросети с использованием резисторов. Суммируются параметры ЭДС распределительных щитков, кабелей, проводов, ЛЭП, трансформаторов.

Полную нагрузку можно рассчитать по формуле S = U . I, где:

  1. S — параметр полной нагрузки (В/а).
  2. U — расчетная нагрузка в генераторе.
  3. I — комплексный показатель силы тока в сочетании с обмоточным значением.

Параметр темпа преобразований зависит от характеристик применяемого тока, а не от свойств фактически использованной нагрузки. По этой причине полная мощность распределительных электрощитов и трансформаторных агрегатов измеряется в вольт-амперах, а значение ватт к ней не применяется.

Работа в различных условиях

Модуль комплексного показателя интенсивности передвижения равняется показателю полной нагрузки. Действительная составляющая часть приравнивается к активной силе, а мнимая считается реактивным видом. Имеет место положительный или отрицательный знак, что зависит от интенсивности загруженности цепи. Комплексная мощность должна соответствовать сопряженному электрическому сопротивлению. Положительная нагрузка характеризуется соотношением Р > 0, а знак минус проявляется в случае Р < 0.

Измерение мощностных характеристик переменного потока электронов проводится при пропускании равного по значению тока по фазным проводникам. Показатели силы течения заряженных частиц с применением нулевого проводника имеют ничтожную размерность.

Равномерная или симметричная фазовая нагрузка в трехфазной магистрали зависит от величины протекающих токов. Неравномерная или несимметричная нагрузка зависит от прохождения потока по нейтральным или нулевым кабелям.

Общий мощностной уровень находится суммированием.

Если присутствует фазовый сдвиг между напряжением и силой тока, то он совпадает с углом смещения между векторными радиусами показателей электротока. В условиях переменного напряжения совпадение векторных радиусов тока и вольтажа отмечается только при отсутствии в цепи конденсаторов и катушек индукции. Установка индукторов не мешает совпадению фазных значений. При этом происходит векторное вращение равной интенсивности. График смещения внутреннего угла остается постоянным.

Если в магистрали происходит сдвиг напряжения и переменного тока, то мощностные показатели представляются значением с отрицательным знаком, так как калькулятор перемножает положительные и отрицательные величины. Продолжительность периодов зависит от уровня смещения фаз. При этом длительность отрицательных нагрузок определяет характеристики сдвига. При расчетах используются показатели сопротивления, которые знакомы из физического закона Ома.

Коэффициент скорости преобразования

Мощностной коэффициент является показателем потребления тока при присутствии реактивного компонента и искажающей нагрузки. Значение коэффициента отличается от понятия косинуса сдвигаемого угла. Второе понятие характеризуется смещением протекающего переменного тока, напряжения и используется только при синусоидальном токе и силе равного значения.

Коэффициент равняется отношению расходуемой нагрузки к ее полному значению. При этом работа совершается за счет активного вида преобразования. При синусоидальном токе и вольтаже полная нагрузка находится в виде суммы реактивной и активной форм.

Активная нагрузка приравнивается к усредненному произведению силы тока и напряжения и не может быть выше произведения аналогичных среднеквадратических размерностей.

Мощностной коэффициент показывается в диапазоне от 0 до 1 или ставится в процентах от 0 до 100.

При математическом расчете числовой множитель интерпретируется в качестве косинуса угла между токовыми векторами и направлением приложения вольтажа. Поэтому при синусоидальных характеристиках размерность коэффициента может совпадать с косинусом угла. Если применяется только синусоидальный вольтаж, а ток используется несинусоидальный с нагрузкой без реактивного компонента, то числовой переходник равняется части нагрузки при первых искажениях потребительского тока.

Если реактивный элемент присутствует в нагрузке, то, помимо мощностного коэффициента, указывается характер работы (емкостно-активный или индуктивно-активный). Коэффициент в этих случаях отличается и является отстающим или опережающим значением.

Практическое применение и коррекция

Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.

Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.

КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.

Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.

Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии.

Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя.

При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.

ЭТО ИНТЕРЕСНО:  Сколько киловатт тянет электрокотел в месяц

Источник: https://nauka.club/fizika/moshchnost-peremennogo-toka.html

Что такое активная, реактивная и полная мощность

В отличии от сетей постоянного тока, где мощность имеет выражение    и не изменяется во времени, в сетях переменного тока это не так.

Мощность в цепи переменного тока также есть переменной величиной. На любом участке цепи в любой момент времени t она определяется  как  произведение мгновенных значений напряжения и тока.

Рассмотрим, что представляет активная мощность

В цепи с чисто активным сопротивлением она равна:

Если принять  и  тогда выйдет:

Где 

Исходя из выражений выше — активная энергия состоит из двух частей — постоянной  и переменной  , которая меняется с двойной частотой. Среднее ее значение 

График Р(ωt)

Отличие реактивной мощности от активной

В цепи, где есть реактивное сопротивление (возьмем для примера индуктивное) значение мгновенной мощности равно:

Соответственно  и  в итоге получим:

Данное выражение показывает, что реактивная энергия содержит только переменную часть, которая изменяется с двойной частотой, а ее среднее значение равно нулю

График q(ωt)

Если ток и напряжение имеют синусоидальную форму и сеть содержит элементы типа R-L или R-C, то в таких сетях кроме преобразования энергии в активном элементе R вдобавок еще и изменяется энергия электрического и магнитного полей в реактивных элементах L и C.

В таком случае полная мощность сети будет равна сумме:

Что такое полная мощность на примере простой R-L цепи

Графики изменения мгновенных значений u,i:

Графики изменения мгновенных значений u,i:

φ — фазовый сдвиг между током и напряжением

Уравнение для S примет следующий вид 

Подставим вместо  и заменим амплитудные значения на действующие:

Значение S рассматривается как сумма двух величин , где

 и  — мгновенные активные и реактивные мощности на участках R-L.

Графики p,q,s:

Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.

Итоговые выражения для действующих значений:

Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).

Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:

Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения Iн, Uн.  Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).

Также энергию сети можно выразить через каждую составляющую отдельно:

Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:

Треугольник мощностей с преобладающей индуктивной нагрузкой

Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:

Реактивная составляющая в треугольнике является положительной (QL), когда ток отстает от напряжения, и отрицательной (QC), когда опережает:

Треугольник мощностей с преобладающей емкостной нагрузкой

Для реактивной составляющей сети справедливо алгебраическое выражение:

Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :

Схема компенсации реактивной составляющей

Векторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ2> cosφ1 и  Iл

Источник: https://elenergi.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html

Активная реактивная и полная мощность

Активная, реактивная и полная мощность напрямую связаны с током и напряжением в замкнутой электрической цепи, когда включены какие-либо потребители. Для проведения вычислений применяются различные формулы, среди которых основной является произведение напряжения и силы тока. Прежде всего это касается постоянного напряжения. Однако в цепях переменного тока мощность разделяется на несколько составляющих, отмеченных выше. Вычисление каждой из них осуществляется с помощью формул.

Формулы активной, реактивной и полной мощности

Основной составляющей считается активная мощность. Она представляет собой величину, характеризующую процесс преобразования электрической энергии в другие виды энергии. То есть по-другому является скоростью, с какой потребляется электроэнергия. Именно это значение отображается на электросчетчике и оплачивается потребителями. Вычисление активной мощности выполняется по формуле: P = U x I x cosф.

В отличие от активной, которая относится к той энергии, которая непосредственно потребляется электроприборами и преобразуется в другие виды энергии – тепловую, световую, механическую и т.д., реактивная мощность является своеобразным невидимым помощником. С ее участием создаются электромагнитные поля, потребляемые электродвигателями. Прежде всего она определяет характер нагрузки, и может не только генерироваться, но и потребляться.

Расчеты реактивной мощности производятся по формуле: Q = U x I x sinф.

Полной мощностью является величина, состоящая из активной и реактивной составляющих. Именно она обеспечивает потребителям необходимое количество электроэнергии и поддерживает их в рабочем состоянии. Для ее расчетов применяется формула: S = .

Как найти активную, реактивную и полную мощность

Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.

В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени.

Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления.

Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.

Электрический ток — сила тока

При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.

Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в ваттах, реактивная мощность измеряется в вар – вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.

Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).

Источник: https://electric-220.ru/news/aktivnaja_reaktivnaja_i_polnaja_moshhnost/2017-01-14-1156

Мощность переменного тока: измерение, формула

Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.

Нормы мощности в сети переменного тока

Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт. Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром. При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.

Что такое мощность переменного тока

Мощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.

Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.

Мощностные нормы в сети переменного тока

Характеристики

Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.

Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.

Вам это будет интересно  Как узнать амперы и ватты

Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.

Характеристики переменного тока

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Вам это будет интересно  Определение силы тока в цепи

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Комплексная разновидность

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения.

Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой.

Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.

Формула мощности в цепи переменного тока

В однофазной цепи

Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока.

В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения.

Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.

В однофазной цепи

В трехфазной цепи

В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.

Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.

Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.

Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости.

Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение.

Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.

В трехфазной цепи

В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.

Источник: https://rusenergetics.ru/polezno-znat/moschnost-peremennogo-toka

Мощность активная, реактивная и полная

Перечисленные понятия рассматривают с учетом особенностей нагрузки. Активная мощность потребляется обычным проводником. При увеличении силы тока энергия расходуется на повышение температуры (ТЭН чайника) или световое излучение (нить лампы накаливания).

Индуктивная нагрузка и конденсатор потребляют реактивную мощность. Энергия в этих вариантах преобразуется в магнитное (электрическое) поле, соответственно. Суммарная величина – полная мощность.

Смысл реактивной нагрузки

Любая реактивная нагрузка создает временной сдвиг между фазами тока и напряжения. Эту величину измеряют в градусах. Наиболее наглядным является векторное представление электрических параметров. Если подключить индуктивность, напряжение будет опережать ток. Угол между ними обозначают в формулах буквой «ϕ» («Фи» греч.).

Временные и векторные диаграммы показывают, как изменяются основные параметры при подключении индуктивных (емкостных) элементов

На картинке показано, что при подключении емкостной нагрузки вектора «меняются» местами. В идеальных условиях сдвиг между векторами равен 90°.

В действительности следует учитывать влияние электрического сопротивления цепи, несовершенство конструкций.

С учетом особенностей элементов следует напомнить, что в индуктивности (емкости) при сохранении параметров источника питания плавно изменяется ток (напряжение), соответственно.

Почему в сети напряжение переменное

Для объяснения настоящей ситуации надо сделать краткий экскурс в историю. Электричество известно человеку сотни (по некоторым данным, тысячи лет). Однако действительно массовое использование этой энергии началось сравнительно недавно – в конце 19 века. Именно тогда (1879 г.) Эдисон запатентовал первый функциональный прибор, который помогал решать проблемы освещения. Для питания лампочек он стал монтировать сети постоянного тока.

Через десять лет Тесла создал генераторы переменного тока. После ожесточенной конкурентной борьбы именно его способ передачи энергии на расстояния одержал победу. Этот результат был обеспечен скорее рыночными методами, чем внимательным сравнением потребительских характеристик.

К сведению. Метрополитен Нью-Йорка до сих пор функционирует с подключением к сети постоянного тока.

Выгода от переменного напряжения

Важные для потребителей преимущества этого варианта приведены в следующем перечне:

  • простая конструкция генераторов/ электродвигателей;
  • минимальные потери при передаче электроэнергии на сравнительно небольшие расстояния;
  • простота преобразования напряжения с применением трансформатора;
  • поддержание стабильности оборотов электрических приводов без лишних трудностей;
  • отсутствие полярности.

Каждый из пунктов можно рассмотреть подробно. Генератор (электромотор) переменного тока, например, нетрудно создать без токосъемных щеток и постоянных магнитов. Простота конструкции обеспечивает:

  • разумную стоимость;
  • минимальные затраты при обслуживании и ремонте;
  • долговечность;
  • надежность.
ЭТО ИНТЕРЕСНО:  В чем смысл заземления

Обороты мощных электродвигателей регулируют изменением частоты. Это значит, что в обычных условиях эксплуатации обеспечивается поддержание расчетных параметров без дополнительных схем управления и контроля. В частности, отмеченные особенности идеально подходят для создания насосной станции.

Для повышения/ уменьшения напряжения в сетях переменного тока используют типовые сравнительно недорогие конструкции. Изменяя количество витков обмотки на едином сердечнике, можно получить необходимый коэффициент трансформации с высокой точностью. В процессе работы дополнительная настройка не требуется.

Постоянное напряжение снижают с применением электрического сопротивления, которое в данном случае не выполняет никаких полезных функций. Для повышения – применяют сложные схемы с промежуточным преобразованием в переменный сигнал.

Какой из способов предпочтительнее, можно определить после перечисления преимуществ сетей постоянного тока:

  • возможность подключения непосредственно к источнику питания светодиодов, гальванических ванн, иных потребителей;
  • простая зарядка аккумуляторных батарей;
  • отсутствие необходимости согласования нагрузок;
  • высокая точность измерений;
  • минимальные потери при передаче электроэнергии на большие расстояния;
  • применение «однопроводной» линии питания (метро, трамвай).

Убытки от переменного напряжения

Формулы расчетов активной и реактивной мощностей подробно рассмотрены в следующих разделах статьи. Однако для изучения потерь в сетях переменного тока необходимо привести определение поправочного коэффициента cosϕ (косинус Фи). Это значение производители указывают в технических паспортах и на бирках корпусов мощных моторов, сварочных аппаратов, другой техники.

Потери в электрической схеме а) с диаграммой полной б) и частичной в) компенсации

В этом примере рассмотрена приближенная к реальной ситуация, когда подключены активные нагрузки вместе с реактивными. Если cosϕ=0,75, то при одной и той же потребляемой мощности номинальный ток в цепи (100 А) увеличится следующим образом:

I = Ia/ cosϕ = 100/0,75 ≈ 133 А.

При этом на повышение температуры будет расходоваться мощность, пропорциональная квадрату тока. Считать ее можно по формуле:

Pнагр = I2 * Rc.

Соответствующие потери увеличатся в 1,77 раза.

Следует отметить! Изменения силы тока сопровождаются колебаниями напряжения. Иные потребители, подключенные к этой же сети, будут работать в неблагоприятных режимах. При этом счетчик будет показывать неизменное потребление энергетических ресурсов.

Понятной является ситуация, когда ИБП или другой источник питания начинает выдавать ток, превышающий расчетные параметры. Перегревается не только генератор, но и проводка. Значительно возрастает риск аварий, поломок.

Активная, реактивная и полная мощности в формулах

Чтобы рассчитать или измерить мощность: полную, активную и реактивную, служат основные формулы:

  • активная мощность = полная * cosϕ;
  • реактивная = напряжение * ток * sinϕ.

Для упрощения можно начать с примера на основе цепи постоянного тока, где действительна известная формула:

Pa = U * I.

Это активная (рабочая, полная) мощность. Единицы измерения – ватт (Вт), киловатт (кВт), другие производные. При подключении сопротивления (R) ее можно вычислить следующим образом:

  • Pa = I2 * R;
  • Pa = U2 / R.

Простота исчезает при рассмотрении сигналов синусоидальной формы. Именно такими параметрами отличаются стандартные сети питания (220/380V). Активная мощность в этом случае зависит от фазового сдвига между векторами тока и напряжения.

Соответствующие зависимости выражают следующим образом:

Pa = U * I * cosϕ.

Эта формула подходит для расчета обычной сети 220V, которой пользуется большинство рядовых потребителей. Мощные насосы и станки подключают к трехфазным источникам питания 380 V. Для этого варианта нужна коррекция:

Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.

Реактивная мощность (Pq) не только потребляется нагрузкой, но и возвращается обратно в источник питания. Ее значение определяют следующим образом:

Pq = U * I * sinϕ.

К сведению. Измеряется эта величина в реактивных вольт-амперах (вар).

Для вычисления полной мощности формула содержит перечисленные выше компоненты:

Источник: https://amperof.ru/teoriya/reaktivnaya-moshhnost.html

Реактивная мощность кратко и понятно: что такое, формулы

Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.

Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.

Что такое реактивная мощность?

Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.

Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.

Строго говоря, приведённая выше формула справедлива только для постоянного тока. Однако, в цепях синусоидального тока формула работает лишь тогда, когда нагрузка потребителей чисто активная. При резистивной нагрузке вся электрическая энергия расходуется на выполнение полезной работы. Примерами активных нагрузок являются резистивные приборы, такие как кипятильник или лампа накаливания.

При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.

На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.

К устройствам с индуктивными нагрузками относятся:

  • электромоторы;
  • дроссели;
  • трансформаторы;
  • электромагнитныереле и другие устройства, содержащие обмотки.

Ёмкостными сопротивлениями обладают конденсаторы.

Физика процесса

Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.

Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).

При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.

Рис. 1. Сдвиг фаз индуктивной нагрузкой

Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.

Важно запомнить:

  • резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
  • катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
  • Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.

Треугольник мощностей и cos φ

Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.

Рис. 2. коэффициент мощности

Применяя теорему Пифагора, вычислим модуль вектора S:

Отсюда можно найти реактивную составляющую:

Источник: https://www.asutpp.ru/reaktivnaya-moschnost.html

Активная, реактивная и полная мощность в цепи переменного тока

В цепях постоянного тока не разделяют мощность на разные составляющие, такие как активная и реактивная, поэтому используют простое выражение P=U*I. Но с переменным током дело обстоит иначе. В этой статье мы рассмотрим, что такое активная, реактивная и полная мощность электрической цепи.

Определение

Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:

P=U*I

P=I2*R

P=U2/R

По этой же формуле определяется полная мощность в цепи переменного тока.

Нагрузку разделяют на два основных типа:

  • Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
  • Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).

Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.

Смысл реактивной нагрузки

В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости).

Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока).

Давайте рассмотрим каждый из них.

В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».

Источник: https://www.remontostroitel.ru/aktivnaya-reaktivnaya-i-polnaya-moshhnost-v-tsepi-peremennogo-toka.html

Что такое активная и реактивная мощность переменного электрического тока?

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

Q = U⋅I⋅sinφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

Источник: https://odinelectric.ru/knowledgebase/aktivnaja-i-reaktivnaja-moshhnost-peremennogo-toka

Что такое активная, реактивная и полная мощность — простое объяснение

В цепях постоянного тока не разделяют мощность на разные составляющие, такие как активная и реактивная, поэтому используют простое выражение P=U*I. Но с переменным током дело обстоит иначе. В этой статье мы рассмотрим, что такое активная, реактивная и полная мощность электрической цепи.

Понравилась статья? Поделиться с друзьями:
Электрогенератор