Что характеризует плотность тока

Плотность тока проводимости, смещения, насыщения: определение и формулы

Что характеризует плотность тока

В данной статье мы рассмотрим плотность тока и формулы для нахождения различных видов плотности тока: проводимости, смещения, насыщения.

Плотность тока – это векторная физическая величина, характеризующая насколько плотно друг к другу располагаются электрические заряды.

Плотность тока проводимости

Ток проводимости – это упорядоченное движение электрических зарядов, то есть обыкновенный электрический ток, который возникает в проводнике. В большинстве случаев, когда речь заходит о токе, имеют ввиду именно ток проводимости.

В данном случае плотность тока – это векторная характеристика тока равная отношению силы тока I в проводнике к площади S поперечного сечения проводника (перпендикулярному по отношению к направлению тока).

Эта величина показывает насколько плотно заряды располагаются на всей площади поперечного сечения проводника. Она обозначается латинской буквой j.

Модуль плотности электрического тока пропорционален электрическому заряду, который протекает за определенное время через определенную площадь сечения, расположенную перпендикулярно по отношению к его направлению.

Если рассмотреть идеализированной проводник, в котором электрический ток равномерно распределен по всему сечению проводника, то модуль плотности тока проводимости можно вычислить по следующей формуле:

j – Плотность тока [A/м2]

I – Сила тока [A]

S – Площадь поперечного сечения проводника [м2]

Исходя из этого мы можем представить силу тока I как поток вектора плотности тока j, проходящий через поперечное сечение проводникаS. То есть для вычисления силы тока, текущей через определенное поперечное сечение нужно проинтегрировать (сложить) произведения плотности тока в каждой точке проводника jn на площадь поверхности этой точки dS:

I – сила тока [А]

jn — составляющая вектора плотности тока в направлении течения тока (по оси OX) [A/м2]

dS — элемент поверхности площади [м2]

Исходя из предположения, что все заряженные частицы двигаются с одинаковым вектором скорости v, имеют одинаковые по величине заряды e и их концентрация n в каждой точке одинаковая, получаем, что плотность тока проводимости j равна:

j – плотность тока [А/м2]

n – концентрация зарядов [м-3]

e – величина заряда [Кл]

v – скорость, с которой движутся частицы [м/с]

Плотность тока смещения

В классической электродинамике существует понятие тока смещения, который пропорционально равен быстроте изменения индукции электрического поля. Он не связан с перемещением каких-либо частиц поэтому, по сути, не является электрическим током. Несмотря на то, что природа этих токов разная, единица измерения плотности у них одинаковая — A/м2.

Ток смещения – это поток вектора быстроты изменения электрического поля ∂E/∂t через S — некоторую поверхность. Формула тока смещения выглядит так:

JD — ток смещения [А]

ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/(H·м2)

∂E/∂t — скорость изменения электрического поля [Н/(Кл·с)]

ds – площадь поверхности [м2]

Плотность тока смещения определяется по следующей формуле:

для вакуума:

для диэлектрика:

jD — ток смещения [А/м2]

ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/(H·м2)

∂E/∂t — скорость изменения электрического поля [Н/(Кл·с)]

∂D/∂t — скорость изменения вектора эл. индукции [Кл/м2·с)]

Плотность тока насыщения

В физической электронике используют понятие плотности тока насыщения. Эта величина характеризует эмиссионную способность металла, из которого сделан катод, и зависит от его вида и температуры.

Плотность тока насыщения выражается формулой, которая была выведена на основе квантовой статистики Ричардсоном и Дешманом:

j – плотность тока насыщения[А/м2]

R — среднее значение коэффициента отражения электронов от потенциального барьера

A — термоэлектрическая постоянная со значением 120,4 А/(K2·см2)

T— температура [К]

— значение работы выхода из катода электронов [эВ], q – электронный заряд [Кл]

k — постоянная Больцмана, которая равна 1,38·10-23 Дж/К

Источник: https://people-ask.ru/nauki/fizika/plotnost-toka-provodimosti-smescheniya-nasischeniya-opredelenie-i-formuli

Величина и плотность тока

Что характеризует плотность тока

26 марта 2013.
Категория: Электротехника.

Величина тока

Из курса физики известно, что электрический ток есть упорядоченное движение электрических зарядов (Q).

Если через поперечное сечение проводника проходит некоторое количество электрических зарядов (количество электричества) Q за время t секунд, то количество электрических зарядов, прошедшее через поперечное сечение проводника в течение одной секунды, называется величиной тока и обозначается буквой I.

Единицей величины тока является 1 ампер, определяемый как количество зарядов в 1 кулон, прошедших через поперечное сечение проводника в 1 секунду, то есть

Рисунок 1. Внешний вид амперметра

Ток в цепи измеряется электрическим прибором – амперметром, внешний вид которого представлен на рисунке 1.

Тысячные доли ампера – миллиамперы измеряются миллиамперметром. Если количество зарядов, проходящих (протекающих) по проводнику, будет меняться, то величина тока также будет меняться.
В этом случае среднее значение тока за данный промежуток времени определяется по формуле:

где ΔQ – изменение количества зарядов; Δt – изменение времени.

Чем меньше промежуток времени Δt, тем меньше среднее значение тока будет отличаться от истинного мгновенного значения тока в данный момент.

Ток, не изменяющийся по величине и по направлению, называется постоянным током.
Постоянный ток дают нам гальванические элементы, аккумуляторы, генераторы постоянного тока, если условия работы электрической цепи не меняются.

1. Сила электрического тока

Плотность тока

Отношение величины тока I к площади поперечного сечения проводника S называется плотностью тока и обозначается буквой j, ранее плотность тока обозначалась греческой буквой δ (дельта).

так как обычно площадь сечения проводника дается в квадратных миллиметрах, то плотность тока измеряется в а/мм².

2. Плотность тока

Источник: https://www.electromechanics.ru/electrical-engineering/481-the-current-value-current-density.html

Сила и плотность тока. Линии тока

Что характеризует плотность тока

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Определение 1

Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S.

Определение 2

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков (dq+ и dq−), справедливым будет заключение о том, что сила тока равна следующему выражению:

I=dq+dt+dq-dt.

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

I=q∆t,

где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе СИ роль основной единицы измерения силы тока играет Ампер (А).

1A=1 Кл1 с.

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем dV случайной формы. С помощью следующего обозначения υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку dS, которая расположена ортогонально скорости υ (рис. 1).

Рисунок 1

Проиллюстрируем на поверхности площадки dS очень короткий прямой цилиндр, имеющий высоту υdt. Весь массив частиц, которые располагались внутри такого цилиндра за время dt пересекут плоскость dS и перенесут через нее, в направлении скорости υ, заряд, выражающийся в виде следующего выражения:

dq=n0qeυdSdt,

где qe=1,6·10-19 Кл является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на dSdt и получим:

j=dqdSdt,

где j представляет собой модуль плотности электрического тока.

j=n0qeυ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j=∑niqiυii,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1. Пускай n→ представляет собой единичный перпендикуляр к плоскости dS. В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

dqdt=j→n→dS=jndS.

Формула приведенная выше справедлива также в том случае, когда плоскость площадки dS неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j→, направленная под прямым углом к нормали, через сечение dS электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j=n0qeυ в таком виде:

j→=-n0qeυ→.

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

j=IS∆t,

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника (S1,S2) с постоянным током справедливо следующее равенство:

j1j2=S2S1.

Основываясь на законе Ома для плотности токов можно записать такое выражение:

j→=λE→,

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

I=∫SjndS,

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока Aм2.

Линии тока

Определение 3

Линии, вдоль которых движутся заряженные частицы, носят название линий тока.

Направления движения положительных зарядов также определяются в качестве направлений линий тока. Изобразив линии тока, можно получить наглядное представление о движении электронов и ионов, которые формируют собой ток.

Если внутри проводника выделить трубку с током, у которой боковая поверхность состоит из линий тока, то движущиеся заряженные частицы не будут пересекать боковую поверхность данной трубки. Такую трубка представляет собой так называемую трубку тока.

К примеру, поверхность металлической проволоки в изоляторе будет определяться как труба тока.

Пример 1

Сила тока в проводнике равномерно возрастает от 0 до 5 А на протяжении 20 с. Определите заряд, который прошел через поперечное сечение проводника за данный отрезок времени.

Решение

В качестве основы решения данной задачи возьмем формулу, которая характеризует собой силу тока, то есть:

I=dqdt.

Таким образом, заряд будет найден как:

q=∫t1t2Idt.

В условии задачи сказано, что сила тока изменяется равномерно, а это означает то, что мы можем записать закон изменения силы тока в следующем виде:

I=kt.

Найдем коэффициент пропорциональности в приведенном выражении, для чего необходимо запишем закон изменения силы тока еще раз для момента времени, при котором сила тока эквивалентна I2=3А (t2):

I2=kt2→k=I2t2.

Подставим выражение выше в I=kt и проинтегрируем в соответствии с q=∫t1t2Idt, получим формулу такого вида: q=∫t1t2ktdt=∫t1t2I2t2tdt=I2t2∫t1t2tdt=t22t1t2=I22t2t22-t12.

В качестве начального момента времени возьмем момент, когда сила тока эквивалентна нулю, другими словами t1=0, I1=0 A; t2=20, I2=5 А. Проведем следующие вычисления:

q=I22t2t22=I2t22=5·202=50 (Кл).

Ответ: q=50 Кл.

Пример 2

Определите среднюю скорость движения электронов в проводнике, молярная масса вещества которого эквивалентна μ, поперечное сечение проводника S. Сила тока в проводнике I. Примем, что на каждый атом вещества в проводнике приходится два свободных электрона.

Решение

Силу тока (I) в проводнике можно считать постоянной, что позволяет нам записать следующее выражение:

I=q∆t=Nqe∆t,

где заряд q определим как произведение числа электронов проводимости в проводнике, на заряд одного электрона qe, представляющего собой известную величину. ∆t играет роль промежутка времени, за который через поперечное сечение проводника проходит заряд q. Найти N можно, если применять известное в молекулярной физике соотношение:

Источник: https://Zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/sila-i-plotnost-toka/

Что такое плотность тока

Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения.

Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий.

Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

ЭТО ИНТЕРЕСНО:  Что характеризует реактивная мощность в цепи переменного тока

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.

Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток.

Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Закон Ома для полной цепи

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом.

Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными.

Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2.

В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2.

В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S.

Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника.

Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Источник: https://electric-220.ru/news/chto_takoe_plotnost_toka/2017-04-10-1226

Плотность тока в проводнике формула

Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.

Алгоритм расчетных действий следующий:

  • для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
  • затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
  • предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².

Все округления «направляем» в сторону увеличения. В принципе суммировать можно и силу тока, указанную в техпаспортах. Расчеты и округления по току производятся аналогичным образом.

Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки.

Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.

Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:

  • 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
  • 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.

Предлагаем ознакомиться  Что постелить на пол в предбаннике

Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.

Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.

Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

  • кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
  • он же бесконечно долго сможет передавать ток в 15А.

Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.

Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.

  • Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
  • Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45А, округляем до целого числа, как положено, в большую сторону.
  • Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
  • Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
  • Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².

Предлагаем ознакомиться  Баня с террасой под одной крышей

Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.

Какой кабель лучше купить?

Следуя жестким рекомендациям ПУЭ, покупать для обустройства личной собственности будем кабельную продукцию с «литерными группами» NYM и ВВГ в маркировке. Именно они не вызывают нареканий и придирок со стороны электриков и пожарников. Вариант NYM – аналог отечественных изделий ВВГ.

Лучше всего, если отечественный кабель будет сопровождать индекс НГ, это означает, что проводка будет пожароустойчивой. Если предполагается прокладывать линию за перегородкой, между лагами или над подвесным потолком, купите изделия с низким дымовыделением. У них будет индекс LS.

Вот таким нехитрым способом рассчитывается сечение токопроводящей жилы кабеля. Сведения о принципах вычислений помогут рационально подобрать данный важный элемент электросети. Необходимый и достаточный размер токоведущей сердцевины обеспечит питанием домашнюю технику и не станет причиной возгорания проводки.

10. Дайте определение магнитной проницаемости вещества. Чему равна магнитная проницаемость вещества , если магнитная восприимчивость равна 0, 1?

Вектор намагниченности – количественная картина магнитного поля в веществе; магнитный момент элементарного объема , используемый для описания магнитного состояния вещества (аналог вектора

поляризации Р в диэлектрике)

Если Pmi ориентированы хаотически , то их сумма равна 0 и =0 , то есть не имеет внутреннего магнитного

поля.

Напряженность м.п. (H) – векторная физическая величина, равная разности вектора магнитной индукции В и вектора намагниченности

.

М
это

  • = χH (χ- магнитная восприимчивость (безразмернаявеличина)).

H= B*1/µ0- χH

следует µ0(1 χ)H=B

B=Hµµ0

µ-магнитная
проницаемость вещества,

Предлагаем ознакомиться  Правильный дымоход через стену в гараже

Н-
определяется только макротоками.

9. Сформулируйте теорему о циркуляции вектора напряженности магнитного поля постоянных токов. Поясните все величины и дайте рисунок

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции. Эта теорема, особенно в иностранной или переводной литературе, называется также теоремой Ампера или

законом Ампера о циркуляции

=
Σ I

2. Что такое напряженность? нарисуйте однородный участок электрической схемы. Напишите закон Ома для данной цепи

Электрическое напряжение между точками A и В электрической цепи или электрического поля – физическая величина, значение которой равно отношению работы эл. поля, совершаемой при переносе пробного электрического заряда из т. А в т. В, и

величине пробного заряда.

Напряжение численно равно работе эл. поля по перемещению единичного положительного заряда вдоль силовых линий поля внутри

проводника.

Однородный участок цепи- участок цепи, на котором не действуют сторонние силы, приводящие

к возникновению ЭДС.

Закон
Ома для однородного участка цепи: I=U/R

3. Как связаны эдс , разность потенциалов и напряжение в неоднородной электрической цепи? Нарисуйте электрическую схему и напишите закон Ома для данной цепи

U=A/q=(Aэл/q) (Aст/q)=
φ1-φ2 ؏

ЭТО ИНТЕРЕСНО:  Как включается в электрическую цепь ваттметр

Знак для ؏ в зависимости от направления (помогает

или мешает заряду)

Закон
ома для цепи (рис.)

I=U/R= φ1-φ2 R/؏

Где R-общее

сопротивление на этом участке.

Рис.

Источник: https://24dub.ru/plotnost-toka-provodnike-formula/

Плотность тока

> Теория > Плотность тока

Важным аспектом в электродинамике является практическое применение и изучение движущихся зарядов. Передвижение зарядов в веществе подразделяется на два вида: хаотичное движение и упорядоченное движение.

Хаотичное и ориентированное движение зарядов

 Электрический ток

Ориентированное, или упорядоченное, перемещение электрических зарядов называется электрическим током. Направление передвижения электрического тока совпадает с направлением перемещения положительных зарядов и противоположно направлению движения отрицательных зарядов.

Ориентированное движение электронов в проводнике

Виды электрического тока

  1. Электрические токи, которые были вызваны электрическими полями, называются токами проводимости.

    Для разных видов проводников свойственны свои частицы для переноса заряда, а именно:

  • электроток металлов представляет собой направленное перемещение свободных электронов;
  • в некоторых твердых телах и полупроводниках электроток образован за счет ориентированного передвижения ионов;
  • в электролитах или жидких проводниках электроток основан на движении положительно заряженных и отрицательно заряженных ионов в разносторонних направлениях.
  1. Электрические токи, спровоцированные инерционным перемещением свободных электронов, называются конвекционными или переносными токами;
  2. Существуют также электротоки в вакууме, представляющие собой потоки электронов в электронных лампах.

Ключевыми параметрами электрического тока выступают сила и плотность тока. Силой тока называется скалярная физическая величина, прямо пропорциональная заряду, проходящему через поперечное сечение проводника за небольшой промежуток времени, и обратно пропорциональная длительности этого отрезка времени. А именно:

I=Δq/Δt, где:

  • q – элементарный заряд;
  • t – время (при условии, что отрезок времени Δt стремиться к нулю).

В природе существует два типа электрического тока: постоянный и переменный электроток.

Постоянным током называется такой электрический ток, при котором через любое сечение провода за равные промежутки времени проходит одинаковое количество электричества, и направление движения зарядов при этом не меняется. Согласно международной системе СИ, Ампер является единицей, в чем измеряется сила тока.

Требования для существования постоянного электрического тока:

  1. Наличие свободных носителей заряда;
  2. Наличие электрического поля;
  3. Наличие замкнутой цепи, предназначенной для циркуляции носителей заряда по замкнутой траектории.

Дополнительная информация. Для существования постоянного (непрерывного) электротока необходимо обеспечить на одном конце проводника постоянный избыток отрицательных зарядов, а на другом конце проводника – постоянный недостаток отрицательных зарядов.

Поскольку в нормальном состоянии заряды являются нейтральными, то необходимо прилагать некую стороннюю силу для осуществления данного условия. Устройства, в которых сторонние силы переносят заряд против сил электростатического поля, называются источниками электротока.

Расчет сечения провода по мощности и по плотности тока: формулы и примеры

Грамотный подбор кабеля для восстановления или прокладки электропроводки гарантирует безупречную работу системы. Приборы будут получать питание в полноценном объеме. Не случится перегрева изоляции с последующими разрушительными последствиями. Разумный расчет сечения провода по мощности избавит и от угроз воспламенения, и от лишних затрат на покупку недешевого провода. Давайте разберемся в алгоритме расчетов.

Упрощенно кабель можно сравнить с трубопроводом, транспортирующим газ или воду. Точно так же по его жиле перемещается поток, параметры которого ограничены размером данного токоведущего канала. Следствием неверного подбора его сечения являются два распространенных ошибочных варианта:

  • Слишком узкий токоведущий канал, из-за которого в разы возрастает плотность тока. Рост плотности тока влечет за собой перегрев изоляции, затем ее оплавление. В результате оплавления по минимуму появятся «слабые» места для регулярных утечек, по максимуму пожар.
  • Излишне широкая жила, что, в сущности, совсем неплохо. Причем, наличие простора для транспортировки электро-потока весьма положительно отражается на функционале и эксплуатационных сроках проводки. Однако карман владельца облегчится на сумму, примерно вдвое превышающую по факту требующиеся деньги.

Первый из ошибочных вариантов представляет собой откровенную опасность, в лучшем случае повлечет увеличение оплаты за электроэнергию. Второй вариант не опасен, но крайне нежелателен.

«Протоптанные» пути вычислений

Все существующие расчетные способы опираются на выведенный Омом закон, согласно которому сила тока, помноженная на напряжение, равняется мощности. Бытовое напряжение – величина постоянная, равная в однофазной сети стандартным 220 В. Значит, в легендарной формуле остаются лишь две переменные: это ток с мощностью. «Плясать» в расчетах можно и нужно от одной из них. Через расчетные значения тока и предполагаемой нагрузки в таблицах ПУЭ найдем требующийся размер сечения.

Обратите внимание, что сечение кабеля рассчитывают для силовых линий, т.е. для проводов к розеткам. Линии освещения априори прокладывают кабелем с традиционной величиной площади сечения 1,5 мм².

Если в обустраиваемом помещении нет мощного диско-прожектора или люстры, требующей питания в 3,3кВт и больше, то увеличивать площадь сечения жилы осветительного кабеля не имеет смысла. А вот розеточный вопрос – дело сугубо индивидуальное, т.к. подключать к одной линии могут такие неравнозначные тандемы, как фен с водонагревателем или электрочайник с микроволновкой.

Тем, кто планирует нагрузить силовую линию электрической варочной поверхностью, бойлером, стиральной машиной и подобной «прожорливой» техникой, желательно распределить всю нагрузку на несколько розеточных групп.

Если технической возможности разбить нагрузку на группы нет, бывалые электрики рекомендуют без затей прокладывать кабель с медной жилой сечением 4-6 мм².

Почему с медной токоведущей сердцевиной? Потому что строгим кодексом ПУЭ прокладка кабеля с алюминиевой «начинкой» в жилье и в активно используемых бытовых помещениях запрещена.

Сопротивление у электротехнической меди гораздо меньше, тока она пропускает больше и не греется при этом, как алюминий. Алюминиевые провода используются при устройстве наружных воздушных сетей, кое-где они еще остались в старых домах.

Обратите внимание! Площадь сечения и диаметр жилы кабеля – вещи разные. Первая обозначается в квадратных мм, второй просто в мм. Главное не перепутать!

Для поиска табличных значений мощности и допустимой силы тока можно пользоваться обоими показателями. Если в таблице указан размер площади сечения в мм², а нам известен только диаметр в мм, площадь нужно найти по следующей формуле:

Расчет размера сечения по нагрузке

Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.

Алгоритм расчетных действий следующий:

  • для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
  • затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
  • предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².

Все округления «направляем» в сторону увеличения. В принципе суммировать можно и силу тока, указанную в техпаспортах. Расчеты и округления по току производятся аналогичным образом.

Как рассчитать сечение по току?

Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки. Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчетаразмера сечения провода по току. Точнее по его плотности.

Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.

Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:

  • 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
  • 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.

Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.

Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.

Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

  • кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
  • он же бесконечно долго сможет передавать ток в 15А.

Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.

Изучение схемы расчета

Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.

  • Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
  • Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45А, округляем до целого числа, как положено, в большую сторону.
  • Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
  • Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
  • Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².

Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.

руководство для точных расчетов

Следуя жестким рекомендациям ПУЭ, покупать для обустройства личной собственности будем кабельную продукцию с «литерными группами» NYM и ВВГ в маркировке. Именно они не вызывают нареканий и придирок со стороны электриков и пожарников. Вариант NYM – аналог отечественных изделий ВВГ.

Лучше всего, если отечественный кабель будет сопровождать индекс НГ, это означает, что проводка будет пожароустойчивой. Если предполагается прокладывать линию за перегородкой, между лагами или над подвесным потолком, купите изделия с низким дымовыделением. У них будет индекс LS.

Вот таким нехитрым способом рассчитывается сечение токопроводящей жилы кабеля. Сведения о принципах вычислений помогут рационально подобрать данный важный элемент электросети. Необходимый и достаточный размер токоведущей сердцевины обеспечит питанием домашнюю технику и не станет причиной возгорания проводки.

Источник: https://stroy-banya.com/provodka/raschet-secheniya-provoda.html

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, по которому течет ток, малый объем dV произвольной формы. Обозначим через $\left\langle v\right\rangle $— среднюю скорость, с которой движутся носители заряда в проводнике. пусть $n_0\ $— концентрация носителей заряда. Выберем бесконечно малую площадку dS на поверхности проводника, которая перпендикулярно скорости $\left\langle v\right\rangle $ (рис.1).

Рис. 1

Построим на площадке dS очень короткий прямой цилиндр с высотой $\left\langle v\right\rangle dt.$ Все частицы, которые находились внутри этого цилиндра за время dt пройдут через площадку dS и перенесут через нее в направлении скорости $\left\langle v\right\rangle \ $заряд равный:

\[dq=n_0q_e\left\langle v\right\rangle dSdt\left(4\right),\]

где $q_e=1,6\cdot {10}{-19}Кл$ — заряд электрона, то есть отдельной частицы — носителя тока. Разделим выражение (4) на $dSdt$ получим:

\[j=\frac{dq}{dSdt}\left(5\right),\]

где $j$ — модуль плотности электрического тока.

\[j=n_0q_e\left\langle v\right\rangle \left(6\right),\]

где $j$ — модуль плотности электрического тока в проводнике, где заряд переносят электроны.

Если ток образуется в результате движения нескольких типов зарядов, то плотность тока можно определить как:

\[j=\sum\limits_i{n_iq_i\left\langle v_i\right\rangle \left(7\right)},\]

где i — определяет носитель заряда.

Плотность тока — векторная величина. Обратимся вновь к рис.1. Пусть $\overrightarrow{n}$ — единичная нормаль к площадке dS. Если частицы, которые переносят заряд положительные, то переносимый ими заряд в направлении нормали больше нуля. В общем случае элементарный заряд, который переносится в единицу времени, можно записать как:

\[\frac{dq}{dt}=\left(\overrightarrow{j}\overrightarrow{n}\right)dS=j_ndS\ \left(8\right).\]

Формула (8) справедлива и в том случае, когда площадка dS неперпендикулярная вектору плотности тока. Так как составляющая вектора $\overrightarrow{j}$, перпендикулярная нормали, через площадку dS электричества не переносит. Таким образом, плотность тока в проводнике окончательно запишем, используя формулу (6) следующим образом:

\[\overrightarrow{j}=-n_0q_e\left\langle \overrightarrow{v}\right\rangle \left(9\right).\]

И так, плотность тока равна количеству электричества (заряду), который протекает за одну секунду через единицу сечения проводника. Для однородного цилиндрического проводника можно записать, что:

\[j=\frac{I}{S\triangle t}\left(10\right),\]

где S — площадь сечения проводника.

Плотность постоянного тока одинакова по всему сечению проводника. Для двух разных сечений проводника ($S_1{,S}_2$) с постоянным током выполняется равенство:

\[\frac{j_1}{j_2}=\frac{S_2}{S_1}\left(11\right).\]

Из закона Ома для плотности токов можно записать:

\[\overrightarrow{j}=\lambda \overrightarrow{E}\left(13\right),\]

где $\lambda $ — коэффициент удельной электропроводности.

Зная плотность тока, можно выразить силу тока как:

\[I=\int\limits_S{j_ndS\ \left(14\right),}\]

где интегрирование проводят по всей поверхности S любого сечения проводника.

Единица плотности тока $\frac{A}{м2}$.

Линии тока

Определение

Линии, вдоль которых движутся заряженные частицы, называют линиями тока.

Направлениями линий тока являются направления движения положительных зарядов. Нарисовав линии тока, получают наглядное представление о движении электронов и ионов, которые образуют ток.

Если внутри проводника выделить трубку с током, у которой боковая поверхность состоит из линий тока, то движущиеся заряженные частицы не будут пересекать боковую поверхность такой трубки. Подобную трубку называют трубкой тока.

Например, поверхность металлической проволоки в изоляторе будет являться трубой тока.

Пример 1

Задание: Сила тока в проводнике увеличивается равномерно от 0 до 5 А в течении 20 с. Найдите заряд, который прошел через поперечное сечение проводника за это время.

Решение:

За основу решения задачи примем формулу, которая определяет силу тока, а именно:

\[I=\frac{dq}{dt}\left(1.1\right).\]

В таком случае заряд будет найден как:

\[q=\int\limits{t_2}_{t_1}{Idt\ \left(1.2\right).}\]

В условии задачи сказано, что сила тока изменяется равномерно, это значит, что можно записать закон изменения силы тока как:

\[I=kt\ \left(1.3\right).\]

Найдем коэффициент пропорциональности в (1.3), для этого запишем закон изменения силы тока еще раз для момента времени при котором сила тока равна $I_2=$3А ($t_2$):

\[I_2=kt_2\ \to k=\frac{I_2}{t_2}\left(1.4\right).\]

Подставим (1.4) в (1.3) и проинтегрируем в соответствии с (1.2), получим:

\[q=\int\limits{t_2}_{t_1}{ktdt=\int\limits{t_2}_{t_1}{\frac{I_2}{t_2}tdt}=\frac{I_2}{t_2}\int\limits{t_2}_{t_1}{tdt}={\left.\frac{t2}{2}\right|}{t_2}_{t_1}=\frac{I_2}{{2t}_2}({t_2}2-{t_1}2)\left(1.5\right).}\]

За начальный момент времени примем момент, когда сила тока равна нулю, то есть $t_1=0,$ $I_1=0\ А.$ $t_2=20,$ $I_1=5\ А.$

Проведем вычисления:

\[q=\frac{I_2}{{2t}_2}{t_2}2=\frac{I_2t_2}{2}=\frac{5\cdot 20}{2}=50\ \left(Кл\right).\]

Ответ: $q=50$ Кл.

Пример 2

Задание: Найдите среднюю скорость движения электронов в проводнике молярная масса вещества, которого равна $\mu $, поперечное сечение проводника S. Сила тока в проводнике I. Считать, что на каждый атом вещества в проводнике приходится два свободных электрона.

Решение:

Силу тока (I) в проводнике можно считать постоянной и соответственно записать, что:

\[I=\frac{q}{\triangle t}=\frac{Nq_e}{\triangle t}\left(2.1\right),\]

где заряд q найдем как произведение числа электронов проводимости в проводнике, на заряд одного электрона $q_e$, который является известной величиной. $\triangle t$ — промежуток времени за который через поперечное сечение проводника проходит заряд q.

Найти N можно, если использовать известное соотношение из молекулярной физики:

Источник: https://spravochnick.ru/fizika/postoyannyy_elektricheskiy_tok/sila_i_plotnost_toka_linii_toka/

Плотность тока – что это такое и в чем измеряется

Проходя по длине проводникового элемента, электроток распределяется по его поверхности неравномерно. Плотность электрического тока характеризует распределение токовых зарядов по поперечному сечению проводящего материала.

Неравномерное распределение электротока по проводнику

Виды электротока, условия протекания

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Хаотичное и направленное перемещение заряженных частиц

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений. Во втором – имеют место синусоидальные колебания с определенной частотой.

Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит.

Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду.

Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток.

Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов.

В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы.

В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Направленное перемещение электронов в проводнике

Плотность тока и мощность

Что такое электрическое сопротивление

Работа, которую электрополе совершает над источниками токового движения, может быть охарактеризована плотностью мощности (она равна энергии, деленной на произведение объема проводника и временного периода).

Самый распространенный путь данной мощности – рассеивание во внешнее пространство в качестве тепловой энергии. Но некоторая ее доля может превращаться в механическую энергию (например, при работе электрического двигателя) или в разные типы излучения.

Закон Ома

Сопротивление тока: формула

Для токопроводящей среды, обладающей изотропными характеристиками, данный закон имеет следующий вид:

j=E* σ,

где j – плотность идущего электротока, Е – полевая напряженность в рассматриваемой точке (скалярная величина, как и предыдущая), а σ – удельная проводимость средового окружения.

Что касается работы электрополя для такой среды (w), то она может быть выражена следующими формулами:

w= E2* σ=j2/σ=p*j2 (p здесь – удельное сопротивление).

Выражение для работы в этом случае примет вид:

w=E* σ *E=j*p*j (E и j в данном случае – скалярные величины).

В матрице справа налево умножают столбчатый вектор на строчной и на матрицу. Тензорные величины р и σ генерируют релевантные им квадратичные формы.

Единица измерения плотности электротока

Электрическое поле — что это такое, понятие в физике

Для выражения плотностной величины применяется производная от единиц измерения токовой силы (Ампер) и площади поперечного разреза (квадратный метр), а также дольных и кратных указанным. Обычно плотность измеряется в амперах, разделенных на квадратный метр (А/м2). Вместо слова «плотность» иногда используют «насыщенность электрического тока».

Важно! Поскольку величина имеет направление, она относится к категории векторных (или скалярных). Этот вектор проходит вдоль оси электрического тока.

Формула вычисления

Рассматриваемая величина находится в обратной зависимости от размеров сечения (чем больше площадь, тем меньше плотность тока) и временного периода прохождения электрозаряда и в прямой – от величины этого заряда.

Это можно записать так:

j=Δq/ΔtΔS (q тут – элементарно малый заряд, t – бесконечно малый промежуток времени, а S – площадь сечения).

Так как токовая сила выражается как частное заряда и временного промежутка его прохода, формулу можно записать и так:

j= I/ΔS.

Формула плотности тока с опорой на параметры перемещающихся зарядов будет выглядеть так:

j=q*n*V (V тут – скорость, а n – концентрация электронных частиц).

4-вектор плотности тока

Данное обозначение из теории относительности призвано обобщать явление плотности на пространственно-временной континуум, оперирующий четырьмя измерениями. Такой четырехвектор включает в себя трехвекторное выражение токовой плотности (скалярной величины) и имеющей объем плотности электрического заряда. Использование четырехвектора дает возможность формулировать электродинамические уравнения ковариантным образом.

Рассматриваемая величина необходима для описания концентрации и равномерности распределения заряженных микрочастиц по проводниковому материалу, в котором существует та или иная форма электротока. При оперировании с выражениями, содержащими величину, нужно не забывать о ее скалярности.

Источник: https://amperof.ru/teoriya/plotnost-toka-chto-eto-takoe-i-v-chem-izmeryaetsya.html

Что такое плотность тока — Советы электрика

У этого термина существуют и другие значения, см. Плотность (значения).

Связь между током и плотностью тока

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы электрического тока, протекающего через элемент поверхности единичной площади[1]. При равномерном распределении плотности тока и сонаправленности её с нормалью к поверхности, через которую протекает ток, для величины вектора плотности тока выполняется:

j = | j → | = I S , {\displaystyle j=|{\vec {j}}|={\frac {I}{S}},}

где I — сила тока через поперечное сечение проводника площадью S (также см. рисунок).

Иногда речь может идти о скалярной[2] плотности тока, в таких случаях под ней подразумевается именно та величина j, которая приведена в формуле.

В общем случае:

I = | ∫ S ( j → , d S → ) | = | ∫ S j n d S | {\displaystyle I=|\int \limits _{S}({\vec {j}},{\vec {dS}})|=|\int \limits _{S}j_{n}dS|} ,

где j n {\displaystyle j_{n}}  — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу поверхности площадью d S {\displaystyle dS} ; вектор d S → {\displaystyle {\vec {dS}}}  — специально вводимый вектор элемента поверхности, ортогональный элементарной площадке и имеющий абсолютную величину, равную её площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение.

Как видим из этого определения, сила тока есть поток вектора плотности тока через некую заданную фиксированную поверхность.

В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости v → {\displaystyle {\vec {v}}} и имеют одинаковые заряды q {\displaystyle q} (такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их n {\displaystyle n} ,

j → = n q v → {\displaystyle {\vec {j}}=nq{\vec {v}}}

или

j → = ρ v → , {\displaystyle {\vec {j}}=\rho {\vec {v}},}

где ρ {\displaystyle \rho }  — плотность заряда этих носителей.

Направление вектора j → {\displaystyle {\vec {j}}} соответствует направлению вектора скорости v → {\displaystyle {\vec {v}}} , с которой движутся заряды, создающие ток, если q положительно.

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под v → {\displaystyle {\vec {v}}} следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

j → = ∑ i n i q i v → i , {\displaystyle {\vec {j}}=\sum _{i}n_{i}q_{i}{\vec {v}}_{i},}

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где n i {\displaystyle n_{i}}  — концентрация частиц каждого типа, q i {\displaystyle q_{i}}  — заряд частицы данного типа, v → i {\displaystyle {\vec {v}}_{i}}  — вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

j → = ∑ i q i v → i {\displaystyle {\vec {j}}=\sum _{i}q_{i}{\vec {v}}_{i}}

Сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны.

Примечания

Источник: https://ns-sts.ru/bazovye-znaniya/chto-takoe-plotnost-toka.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Сколько вольт в милливольт

Закрыть