Чему равно Номинальное напряжение

Допустимое отклонение напряжения по ГОСТ: допустимые значения

Чему равно Номинальное напряжение

При проектировании электроприборов, в том числе и бытовой техники, учитываются номинальные характеристики сети, от которой они будут работать. Но в системах электроснабжения могут происходить процессы, вызывающие отклонения от номинальных параметров.

Допустимое отклонение напряжения в сети, частоты, а также других характеристик, регулируется требованиями ГОСТ 13109-97 (международный стандарт, принятый в России, Республике Беларусь, Украине и в большинстве других стран СНГ).

Приведем информацию о допустимых нормах отклонений и вызывающих их причинах.

Нормы напряжения в электросети по ГОСТу

В нормативном документе определено несколько показателей, позволяющих характеризовать качество электроэнергии в точках присоединения (ввод в сети потребителей). Перечислим наиболее значимые параметры и приведем допустимые диапазоны отклонений для каждого из них:

  • Для установившегося отклонения напряжения не более 5,0% от номинала (допустимая норма) при длительном временном промежутке и до 10% для краткосрочной аномалии (предельно допустимая норма). Заметим, что данные показатели должны быть прописаны в договоре о предоставлении услуг, при этом указанные нормы должны отвечать действующим нормам. Например, для бытовых сетей (220 В) быть в пределах 198,0-220,0 В, а для трехфазных (0,40 кВ) – не менее 360,0 В и не более 440 Вольт.
  • Перепады напряжения, такие отклонения характеризуются амплитудой, длительностью и частотой интервалов. Нормально допустимый размах амплитуды не должен превышать 10,0% от нормы. К перепадам также относят дозу фликера (мерцание света в следствии перепадов напряжения, вызывают усталость), это параметр измеряется специальным прибором (фликометром). Допустимая краткосрочная доза – 1,38, длительная – 1.Пример устоявшегося отклонения и колебания напряжения
  • Броски и провалы. К первым относятся краткосрочные увеличения амплитуды напряжения, превышающие 1,10 номинала. Под вторым явлением подразумевается уменьшение амплитуды на величину более 0,9 от нормы, с последующим возвращением к нормальным параметрам. Ввиду особенностей природы процессов данные отклонения не нормируются. При частом проявлении рекомендуется установить ограничитель напряжения (для защиты от бросков) и ИБП (при частых провалах).
  • Перенапряжение электрической сети, под данным определением подразумевается превышение номинала на величину более 10% длящееся свыше 10-ти миллисекунд.Примеры перенапряжения и провала (А), бросков (В)
  • Несимметрия напряжения. Допустимое отклонение коэффициента несимметрии от нормы – 2,0%, предельное – 4,0%.
  • Несинусоидальность напряжения. Определяется путем расчета коэффициента искажения, после чего полученное значение сравнивают с нормативными значениями.Пример нарушения синусоидальности напряжения
  • Отклонения частоты. Согласно действующим требованиям нормально допустимое отклонение этого параметра 0,20 Гц, предельно допустимое – 0,40 Гц.

Основные причины возникновения отклонения напряжения в сети

Теперь рассмотрим, что могло вызвать изменение характеристик сети:

  • Установившиеся отклонения напряжения связывают со следующими причинами:
  1. Увеличение величины нагрузки из-за подключения одного или нескольких мощных потребителей. Характерный пример – сезонное увеличение нагрузки на энергосистемы ввиду подключения обогревательного оборудования, а также суточные пики.
  2. Увеличение числа потребителей без модернизации энергосистемы.
  3. Обрыв или недостаточное качество контакта нулевого кабеля в трехфазных системах.

При ситуациях, описанных в первом пункте, поставщик нормализует напряжение, используя специальные средства регулирования. В остальных случаях производятся ремонтные работы.

  • Причина перепадов напряжения связана с потребителями электрической энергии, с резко изменяющейся нагрузкой (как правило, при этом изменяется и реактивная мощность). В качестве примера можно привести металлургические предприятия, оборудованные дуговыми печами. Подобный эффект можно наблюдать при работе сварочного электрооборудования или поршневых компрессорных установок.
  • Причины минимального напряжения (провалы) в большинстве случаев связаны с КЗ, которые могут возникнуть в сети дома, на линиях ввода или ЛЭП. Длительность провалов варьируется от миллисекунд до секунд, при этом напряжение может уменьшаться до 90% от нормы. Наиболее чувствительна к таким изменениям электроника, нормализовать ее работу можно при помощи ИБП.
  • Возникновение импульсных напряжений может быть вызвано коммутационными процессами, ударом молнии в ВЛ, а также другими причинами. При этом величина импульса может многократно превышать стандартное напряжение в квартире по ГОСТу. Естественно, что существенное увеличение максимальных значений этого параметра приведет к выходу из строя подключенного к сети оборудования, чтобы не допустить этого, следует использовать ограничитель перенапряжения. Принцип работы этого защитного устройства и схему установки можно найти на нашем сайте.Конструкция ограничителя перенапряжения (ОПН)
  • При кратковременных перенапряжениях уровень отклонений значительно ниже, чем при бросках, но, тем не менее, это может стать причиной выхода из строя оборудования, включенного в розетки. ОПН в этом случае не спасет, но поможет реле напряжения, которое произведет защитное отключение и после нормализации ситуации восстановит подключение. Пределы изменения срабатывания (диапазон регулирования) можно задать самостоятельно или использовать настройки по умолчанию. Что касается причин, вызывающих перенапряжение, то они связаны с коммутационными процессами и КЗ.
  • Несимметрия происходит вследствие перекоса нагрузки между фазами. Ситуация исправляется путем транспозиции питающих линий.
  • Нарушение синусоидальности возникает в тех случаях, когда к энергосистеме подключается мощное оборудование, для которого характерна нелинейная ВАХ. В качестве такового можно привести промышленные преобразователи напряжения с тиристорными элементами.
  • Частота сети напрямую связана с равновесием активных мощностей источника и потребителя. Если происходит дисбаланс, связанный с недостаточной мощностью генераторов, наблюдается снижение частоты в энергосистеме до тех пор, пока не будет установлено новое равновесие. Соответственно, при избыточных мощностях, происходит обратный процесс, вызывающий повышение частоты.

Последствия отклонения от стандартов

Отклонение от номинальных напряжений может вызвать много нежелательных последствий, начиная от сбоев в работе бытовой техники и заканчивая нарушениями производственных техпроцессов и созданием аварийных ситуаций. Приведем несколько примеров:

  • Долгосрочные отклонения напряжения сверх установленной нормы приводят к снижению срока эксплуатации электрооборудования.
  • Броски с большой вероятностью могут вывести из строя электронные приборы и другую технику, подключенную к сети.
  • При провалах происходят сбои в работе вычислительных мощностей, что увеличивает риски потери информации.
  • Перекос фаз приводит к критическому повышению напряжения, что вызовет, в лучшем случае, срабатывание защиты в оборудовании, а в худшем – полностью выведет его из строя.
  • Изменение частоты моментально отразится на скорости вращения асинхронных двигателей, а также приведет к снижению активной мощности. Помимо отклонения приведут к изменению ЭДС генераторов, что вызовет лавинный процесс.

Мы привели только несколько примеров, но и их вполне достаточно, чтобы стало понятно насколько важно придерживаться норм, указанных в настоящих стандартах и ПУЭ.

Обсудить на форуме

Источник: https://www.asutpp.ru/dopustimoe-otklonenie-naprjazhenija.html

Допустимое отклонение напряжения по гост: допустимые значения — Электрик

Чему равно Номинальное напряжение

Несоответствие параметров электрической сети требуемым параметрам качества электроэнергии, установленных ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная.

Нормы качества электрической энергии в системах электроснабжения общего назначения», негативно влияет на работу электрооборудования. В быту чаще всего это отражается на сроке службы лампочек (быстрее перегорают), а также работе бытовой техники, в частности, холодильников, телевизоров, микроволновых печей.

В этой статье мы рассмотрим допустимое и предельное отклонение напряжения в сети по ГОСТ, а также причины возникновения такой проблемы.

Нормы в соответствии с ГОСТом

Итак, руководствоваться мы будем, ГОСТ 32144-2013, согласно которому предельное отклонение (как положительное, так и отрицательное) в России не должно превышать отметку в 10% от номинального. Итого получаем такие значения:

  • для сети 230в – от 207 до 253 Вольта;
  • для сети 400в – от 360 до 440 Вольт.

Что касается допустимого отклонения напряжения у потребителей, в ГОСТе указано, что данную величину в точках общего подключения устанавливает непосредственно сетевая организация, которая в свою очередь должна удовлетворять нормы, указанные в настоящих стандартах.

Помимо этого хотелось бы отметить, что при нормальном режиме работы сети допустимое отклонение напряжения на зажимах электрических двигателей находится в диапазоне от -5 до +10%, а других аппаратов не больше, чем 5%. В то же время после возникновения аварийного режима допускается понизить нагрузку не больше, чем на 5%.

Кстати, хотелось бы дополнительно отметить, что на источнике питания в электросетях 0,4 кВ согласно нормам отклонение не должно превышать отметку в 5%, собственно, как и у самих потребителей. Итого, 5% на источнике + 5% у потребителей, имеем 10% предельно допустимого.

Немаловажно знать о причинах возникновения отклонения напряжений. Так вот основной причиной считается сезонное или суточное изменение электрической нагрузки самих потребителей. К примеру, в зимнее время все резко включают обогреватели, в результате чего параметры электросети заметно падают. О том, что делать, если низкое напряжение в сети, мы рассказывали в соответствующей статье!

Негативное влияние отклонения параметров

Чтобы вы понимали всю опасность отклонения напряжения в сети, предоставляем к прочтению следующие факты:

  1. Когда значение понижается ниже нормы, значительно снижается срок службы используемого электрооборудования и в то же время повышается вероятность возникновения аварии. Помимо этого, в технологических установках увеличивается длительность самого производственного процесса, что влечет за собой увеличение показателей себестоимости продукции.
  2. В бытовой сети, как мы уже говорили, отклонения напряжения сокращает срок службы лампочек. При повышении напряжения на 10% срок эксплуатации обычных лампочек сокращается в 4 раза. В свою очередь энергосберегающие лампы при снижении напряжения на 10% начинают мерцать, что также негативно влияет на продолжительность их работы. Об остальных причинах мерцания люминесцентных ламп вы можете узнать из нашей статьи.
  3. Что касается электрических приводов, то из-за снижения напряжения увеличивается потребляемый двигателем тока. В свою очередь это уменьшает срок службы двигателя. Если же напряжение будет даже на незначительных казалось бы 1% выше нормы, реактивная мощность, которую потребляет электродвигатель, может увеличиться до 7%.

Подведя итог, хотелось бы отметить, что существует несколько современных способов решения проблемы: снижение потерь напряжения в электрической сети, о чем мы писали в соответствующей статье, а также регулирование нагрузки на отходящих линиях и шинах подстанций.

Вот мы и рассмотрели нормы отклонения напряжение в сети по ГОСТ. Теперь вы знаете, насколько низкого или же высокого значения может достигать этот параметр в трехфазной и однофазной сети переменного тока!

Рекомендуем также прочитать:

Источник: https://orensbyt.ru/elektrosnabzhenie/dopustimoe-otklonenie-napryazheniya-po-gost-dopustimye-znacheniya.html

Номинальное напряжение

Чему равно Номинальное напряжение

Номинальное напряжение – действующее его значение в рассматриваемой цепи.

Благодарности

Сердечно благодарим Джеймса Кинга за рассказ об истории развития гальванических источников напряжения.

Стандартные номиналы

В РФ использовалось сетевое напряжение со средним действующим значением 220 В и частотой 50 Гц. Сказанное означает, что амплитуда напряжения переменная, но допустимо заменить постоянным, равным 220 В при расчётах потребляемой мощности и прочих параметров.

В быту распространены лампочки на 12 В переменного напряжения, которые по правилам (ГОСТ 50571.11) применяются на территории ванных комнат и санузлов. А постоянные 12 В царят среди автомобильных аккумуляторов. Заметим, что батарею с таким номиналом уже пора отдать на свалку. Рабочий аккумулятор заряжается до 14 В.

В литературе часто приходится сталкиваться с понятиями линейного и фазного напряжений. Это номиналы. Первый измеряется между двумя фазами, второй между любой фазой и нейтралью. Для сети 220 В цифры, соответственно, равны 380 и 220 В. Это средние действующие значения, амплитуда в корень из двух раз больше.

Согласно новым стандартам страна переходит сейчас на напряжение 230 В. Ни 380 В, ни 220 В в розетке больше обнаружить нельзя. Это противозаконно, согласно ГОСТу, поставщик отвечает за качество поставляемой энергии.

Шаги предприняты правительством, чтобы бесперебойно работала импортная техника. В 10-х годах XXI века стали запрещать использование лампочек накала. Повышение напряжения сети лишь на 10% снижает срок их службы примерно вдвое.

Нарушители, втихую использовавшие приборы, теперь платить станут чаще.

Переходите на светодиодное освещение! Одновременно плата за свет снизится вдесятеро.

Обозначенная спецификация

Эталон напряжения

14 июля 1729 года произошло великое событие: Стивен Грей догадался проводить статическое электричество по шёлковым нитям и прочим материалам, создав первую цепь. До внедрения электричества предприятиям приходилось располагаться прямо на берегах рек. Что неудобно. Гораздо проще строить заводы вблизи ресурсов.

Сложно вести разработку природных ресурсов вдали от источников энергии. Людская сила не заменит электричество. Первой попыткой передать энергию на расстояние стал коммерческий телеграф в 1837 году длиной линии 20 км. Этим доказано, что возможно передавать энергию на дальние расстояния и выполнять там при помощи неё работу. Пятью годами ранее сэр Джозеф Генри демонстрировал устройство с бухтой провода в милю. Электромагнит поднимал весьма солидный даже по нынешнему времени груз.

Все совершалось при помощи вольтова столба – набора из кружков меди и цинка, разделённых слоем мокрой ткани, пропитанной солёной водой. Первая серьёзная конструкция появилась в 1836 году. Она стала первым эталоном номинального напряжения, измерявшего прочие источники, к примеру, термоэлектрические генераторы. Джон Фредерик Дэниэл пытался решить затруднение выделения газа (водорода) гальваническим источником при работе. Это привело его к идее использования двух электролитов вместо одного.

Дэниэл основывался на докладе профессора Дэви за 1801 год о химической природе вольтова столба, как результата оксидирования металла. Позднее тема затрагивалась Беккерелем. Дэниэл решил проверить электрохимические опыты Фарадея и искал подходящий источник. Как результат, появился новый тип гальванического элемента:

  1. В центре чаши находился цинковый стержень, окружённый бычьим пищеводом. Внутрь заливался слабый раствор цинковой кислоты.
  2. Вкруг пищевода шёл полый медный цилиндр диаметром 3,5 дюйма, заполненный слабым раствором сульфата меди. Цилиндр покрывался перфорированным диском, сквозь который в центре проходили пищевод быка и цинковый стержень.
  3. На нижней грани медного диска находились крупные кристаллы сульфата меди, не дававшие раствору выйти из насыщения.
  • Реконструкция (см. рис.):
  1. В центре чаши находится медный полый цилиндр (см. рис.), погруженный в раствор сульфата меди.
  2. Конструкция умещается внутри мембраны из пищевода быка.
  3. Снаружи располагался цинковый полый цилиндр, покрытый амальгамой и чуть меньшей высоты, окружённый слабым раствором серной кислоты.

Неизвестно, что привело учёного к столь экзотической конструкции, но она действовала потрясающе. За сто лет до события учёного точно обвинили бы в колдовстве. В 1881 году на Международной конференции электриков решено, что напряжение, выдаваемое одной ячейкой Дэниэла, станет называться 1 В. Эта величина и сегодня используется для измерения номинального напряжения. С оговоркой: действительный потенциал ячейки Дэниэла при температуре 25 градусов Цельсия равен 1,1 В.

Конструктор отмечал, что бычий пищевод возможно заменить фаянсом, но эксплуатационные характеристики ячейки становились хуже. Позже Джон Гасьё предложил использовать неглазированный фарфор в качестве пористой мембраны.

Высокое внутреннее сопротивление ячейки обуславливало малый ток, но постоянность потенциала (1,1 В) оказалась быстро замечена, и гальванический элемент использовался в качестве эталона до официального признания таковым в 1881 году.

С этого времени говорят о номинальном напряжении.

Поставки энергии

Уже в 1843 году Луис Делеуи при помощи ячеек Бунзена и электрической дуги осветил Площадь Согласия в Париже. Это важный момент, как видно дальше, на французские шоу равнялись прочие видные деятели того времени.

Считается, что первый магнето построен Пикси в 1832 году, но массового применения ток не нашёл. В 1844 году пару ручных генераторов создал Вулрич для гальванизации металлов, и это первые промышленные образцы. В середине 50-х энергию стали использовать, получая её из пара и преобразуя при помощи коленвала и подобных штуковин в электричество. Уже были известны двигатели Пейджа, совершавшие прямо противоположное, толкая составы поездов.

Двухтонный двигатель на 600 оборотов, построенный по проекту Блэквэлла считается первой попыткой создания полностью автоматического парового генератора тока. В паре с ним использовался механический коммутатор для спрямления переменной составляющей. В 1858 году подобные генераторы начали использоваться в качестве оборудования английских маяков. Результат не превзошёл ожидания, но совершился первый шаг к поставкам энергии для нужд человечества.

Параллельно шли демонстрации электрического освещения во Франции. Там новинка служила скорее для развлечения публики. К началу 70-х годов отдельные маяки прочно перешли на электричество, включая одесский.

На сцену выходят немцы, прежде остававшиеся в тени английских и французских экспериментов. Организатору и затейнику Оскару фон Миллеру захотелось превзойти иностранцев. Он заказал организовать передачу электрической энергии на расстояние 35 миль.

ЭТО ИНТЕРЕСНО:  Как вырабатывается ток на электростанции

Что стало первой высоковольтной сетью в мире.

Номинал всегда обозначен

Зачем повышать номинал напряжения

о двухполюсных автоматах дан краткий экскурс в развитие цепей передачи. Показано, что вольтаж постоянно стремились повысить. Это требуется для обеспечения приемлемого КПД, который сегодня не опускается ниже 90%. Объясняется это через закон Ома для участка цепи:

  1. При прохождении тока по линии теряется энергия.
  2. Это происходит согласно закону Джоуля-Ленца.
  3. Величина потерь определяется током.

Согласно закону Ома эти величины, включая напряжение, связаны. Чем больше напряжение, тем меньше ток при аналогичной переданной мощности. Следовательно, пониже и потери.

Получается, при передаче энергии на большие расстояния сечение провода требуется повышать, как и номинальное напряжение. Уже в 1923 году по линии пропускали 220 кВ. Все 20-е немецкая компания RWE AG строила такие трассы.

Одна пересекает Рейн, переброшенная через два пилона высотой 138 метров в районе Фёрде. С 20-х годов необходимость располагать предприятия рядом с электростанциями отпала окончательно.

Параллельно шёл процесс электрификации США. Первая ГЭС на Ниагаре построена ещё в 90-х годах XIX века, не трёхфазная. Система Николы Теслы состояла из 4-х проводов и легко могла быть переоборудована. За описанными событиями номиналы напряжений линий передач росли:

  1. Германская линия в Роммерскирхене оказалась первой на номинальное напряжение 380 кВ. Одновременно аналогичная трасса, проложенная через Мессинский пролив, введена в эксплуатацию в Италии.
  2. США, СССР и Канада одновременно вводят в эксплуатацию линии номинальным напряжением 750 кВ в 1967 году.
  3. В 1982 году самая высоковольтная линия введена между Электросталью и Экибастузом. Три фазы переменного тока номинальным напряжением 1,2 МВ.
  4. В 1999 году Япония строит линию Кита-Иваки номинальным напряжением 1 МВ.

С начала XXI века за постройку высоковольтных линий взялся Китай.

Известные номиналы напряжений

Все функционирующие сегодня ЛЭП большой протяжённости работают на номинальных напряжениях 115 – 1200 кВ трёхфазного тока.

Дальнейшее повышение вольтажа неэффективно, приводит к появлению обильных коронных разрядов, обнаруживающих тенденцию перерастать в дугу. Самые большие потери возникают на низковольтной части.

К примеру, во Франции ежегодные потери оцениваются в 325 ГВт часов, что составляет 2,5%, в США они достигают 7,5%. Это объясняется разницей номинального напряжения – 220 В против 110.

На 1980 год экономически эффективная длина линии составляла 7000 км, но реально существующие намного короче указанной цифры. На значительных расстояниях начинают играть роль ёмкостное и индуктивное сопротивление. Вместе они образуют реактивный импеданс, не дающий поставить энергию пользователям. Это блуждающие туда и сюда токи, представляющие собой целиком паразитный эффект. Этим определяется фактор мощности линии, не слишком большой.

Сегодня доказано, что выгоднее на больших дистанциях поставлять постоянный ток, не затекающий в индуктивные сопротивления – ёмкостное, образованное проводом и землёй, и индуктивное. Отсутствует понятие реактивной мощности. Доказывается факт, что Никола Тесла вёл борьбу за переменный ток преимущественно для причинения ущерба Эдисону.

Учитывая сэкономленное, выгодно строить на концах мощных линий преобразовательные станции для перевода токов. Одновременно уходят потери на излучение, просачивание сквозь экран в землю, снижается уровень коронного разряда.

Уже сегодня кабели для подзарядки аккумуляторов подводных лодок питаются постоянным током, передавать по ним переменный нецелесообразно уже на расстоянии 30 км. Сегодняшние линии имеют в 20 раз большую протяжённость, успешно эксплуатируются.

Для передачи переменного тока ограничения зависят от расстояния:

  1. На малых линиях – тепловые потери, призванные не разрушить изоляцию провода.
  2. На средних дистанциях учитывается падение напряжения, нельзя брать слишком высокое.
  3. На дальних дистанциях в силу вступают факторы реактивной мощности, определяющие устойчивость системы.

Источник: https://VashTehnik.ru/enciklopediya/nominalnoe-napryazhenie.html

«220 В» или «230 В» — стандартное напряжение в России?

И так вопрос: «Какое напряжение должно быть в нашей сети 220В или 230В?» На первый взгляд, очень простой вопрос. И очень простой ответ: «В сети должно быть 220В». Действительно, мы с детства знаем, что в розетке 220 Вольт и это опасно для жизни. На заводе, фабрике и в офисе на каждой розетке должна быть надпись «220В». На двери трансформаторной будки: «Не влезай — Убьет! 220В/380В».

Однако это не совсем верный ответ. В настоящее время в России стандартным напряжением в сети является напряжение 230В, но для поставщиков электроэнергии действует 220В. Действительно, ранее в Советском союзе стандартным напряжением было 220В, однако в последствии были приняты решения о переходе на общеевропейский стандарт — 230В.

Согласно требований межгосударственного стандарту ГОСТ 29322-92 сетевое напряжение должно составлять 230В при частоте 50 Гц. Переход на этот стандарт напряжения должен был завершиться в 2003 году. В ГОСТ 30804.4.30-2013 так же есть упоминание о необходимости проведения измерений при стандартном напряжении 230В. ГОСТ 29322-2014 определяет стандартное напряжение 230В с возможностью использовать 220В.

Электросети поставляют электроэнергию согласно действующего на сегодняшний день ГОСТ 32144-2013, устанавливающего напряжение 220В.

Изменение стандартного значения напряжения было проведено для получения полного соответствия европейским стандартам качества электроэнергии. Из всех бывших республик СССР к стандарту «230В» перешли Россия, Украина, страны Балтии.

При этом следует понимать, что электрическое оборудование, выпускаемое в России и для России должно нормально работать и при напряжении 220В, и при напряжении 230В. Для приборов, как правило, закладывается диапазон по напряжению от -15 % до +10 % от номинального.

География стран со стандартными напряжениями: 100В, 110В, 115В, 120В, 127В, 220В, 230В, 240В

В разных странах мира приняты различные стандарты сетевого напряжения. Можно встретить следующие стандарты: 

  • 100В в Японии
  • 110В в Ямайке, Гаити, Гондурасе, Кубе
  • 115В в Барбадосе, Сальвадоре,Тринидаде
  • 120В в США, Канаде, Венесуэле, Эквадоре
  • 127В в Бонайре, Мексике,
  • 220В во многих странах Азии и Африки
  • 230В во многих странах Европы и части стран Азии
  • 240В в Афганистане, Гайане, Гибралтаре, Катаре, Кении, Кувейте, Ливане, Нигерии, Фиджи.

География стран, в которых приняты напряжения 220В и 230В

Наибольшее распространение получили стандарты 220В и 230В, эти стандарты приняты более чем в 150 странах мира. Ниже приводится таблица стран, в которых приняты стандарты напряжения 220В и 230В. В левой колонке находятся страны, в которых стандартное сетевое напряжение 220В, в правой колонке — страны, где напряжение 230В.

Таблица стран, в которых принято напряжение 220В и 230В

Страна Напряжение Страна Напряжение
Азербайджан 220В Австралия 230В
Азорские острова 220В Австрия 230В
Албания 220В Алжир 230В
Ангола 220В Андорра 230В
Аргентина 220В Антигуа 230В
Балеарские острова 220В Армения 230В
Бангладеш 220В Бахрейн 230В
Бенин 220В Белоруссия 230В (ранее 220В)
Босния 220В Бельгия 230В
Буркина-Фасо 220В Ботсвана 230В
Бурунди 220В Бутан 230В
Восточный Тимор 220В Вануату 230В
Вьетнам 220В Великобритания 230В
Габон 220В Венгрия 230В
Гвинея 220В Гамбия 230В
Гвинея-Бисау 220В Гана 230В
Гонконг 220В Гваделупа 230В
Гренландия 220В Германия 230В
Грузия 220В Гренада 230В
Вжибути 220В Греция 230В
Египет 220В Дания 230В
Зимбабве 220В Доминика 230В
Индонезия 220В Замбия 230В
Иран 220В Западное Самоа 230В
Кабо-Верде 220В Израиль 230В
Казахстан 220В Индия 230В
Камерун 220В Иордания 230В
Канарские острова 220В Ирак 230В
Киргизия 220В Ирландия 230В
Китай 220В Исландия 230В
Коморы 220В Испания 230В
Конго 220В Италия 230В
Корфу 220В Камбоджа 230В
Лесото 220В Лаос 230В
Литва 220В Латвия 230В (ранее 220В)
Мавритания 220В Лихтенштейн 230В
Мадейра 220В Люксембург 230В
Макао 220В Маврикий 230В
Македония 220В Малави 230В
Мартиника 220В Мальдивские острова 230В
Мозамбик 220В Мальта 230В
Нигер 220В Молдавия 230В (ранее 220В)
Новая Каледония 220В Монголия 230В
ОАЭ 220В Мьянма 230В
Парагвай 220В Непал 230В
Перу 220В Нидерланды 230В
Португалия 220В Новая Зеландия 230В
Реюньон 220В Норвегия 230В
Сан-Томе 220В Пакистан 230В
Северная Корея 220В Польша 230В
Сербия 220В Россия 230В (220В)
Сирия 220В Румыния 230В
Сомали 220В Сенегал 230В
Таджикистан 220В Сингапур 230В
Таиланд 220В Словакия 230В
Тенерифе 220В Словения 230В
Того 220В Судан 230В
Туркменистан 220В Сьерра-Леоне 230В
Узбекистан 220В Танзания 230В
Фарерские острова 220В Тунис 230В
Филиппины 220В Турция 230В
Французская Гвиана 220В Украина 230В (ранее 220В)
Чад 220В Уругвай 230В (ранее 220В)
Черногория 220В Финляндия 230В
Чили 220В Франция 230В
Экваториальная Гвинея 220В Хорватия 230В
Эфиопия 220В Чехия 230В
ЮАР 220В Швейцария 230В
Южная Корея 220В Швеция 230В
Шри Ланка 230В
Эритрея 230В
Эстония 230В

Примечание: при составлении таблицы использованы данные энциклопедии «Википедия»

Какое напряжение походит для электроприборов 220В или 230В

Нам удалось выяснить, что стандартным напряжением в России сегодня является напряжение 230В. На практике конечно напряжение в сети постоянно изменяется и зависит от многих факторов. Какое же напряжение является удовлетворительным для электроприборов, применяемых в нашем доме? Однозначного ответа на этот вопрос нет. Диапазон допустимых напряжений для каждого прибора определяется техническими данными паспорта изделия.

Часто допустимый диапазон напряжений указывается на тыльной стороне изделия или на электрической вилке прибора. Так современные компьютеры могут работать при напряжении от 140 до 240 Вольт, зарядное устройство для телефона от 110 Вольт до 250 Вольт. Наиболее требовательны к качеству электропитания приборы, имеющие электродвигатели (холодильники, кондиционеры, стиральные машины, котлы отопления, насосы).

Ясно, что для любых приборов, используемых в России и напряжение 220В и напряжение 230В является хорошим.

Какие бывают отклонения в качестве электроэнергии

Хорошо известно, что в наших сетях часто бывают значительные отклонения от стандартов качества электроэнергии. И напряжение может быть значительно ниже 220В или значительно выше 230В.

Причины этого явления тоже известны: старение действующих электрических сетей, плохое обслуживание сетей, высокий износ сетевого оборудования, ошибки в планирование сетей, большой рост потребления электроэнергии.

К проблемам в сетях можно отнести: низкое и пониженное напряжение, высокое и повышенное напряжение, скачки напряжения. провалы напряжения, перенапряжение, изменение частоты тока.

Купить по выгодной цене стабилизаторы напряжения можно в нашем магазине с бесплатной доставкой в города: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Самара, Казань, Омск, Челябинск, Ростов-на-Дону, Уфа, Волгоград, Красноярск, Пермь, Воронеж, Саратов, Краснодар, Тольятти, Ижевск, Барнаул, Ульяновск, Тюмень, Иркутск, Владивосток, Ярославль, Хабаровск, Махачкала, Оренбург, Новокузнецк, Томск, Кемерово, Рязань, Астрахань, Пенза, Набережные Челны, Липецк, Тула, Киров, Чебоксары, Калининград, Курск, Брянск, Улан-Удэ, Магнитогорск, Иваново, Тверь, Ставрополь, Белгород, Сочи, Нижний Тагил, Архангельск, Владимир, Смоленск, Курган, Волжский, Чита, Калуга, Орёл, Сургут, Череповец, Владикавказ, Мурманск, Вологда, Саранск, Тамбов, Якутск, Грозный, Стерлитамак, Кострома, Петрозаводск, Нижневартовск, Комсомольск-на-Амуре, Таганрог, Йошкар-Ола, Новороссийск, Братск, Дзержинск, Нальчик, Сыктывкар, Шахты, Орск, Нижнекамск, Ангарск, Балашиха, Старый Оскол, Великий Новгород, Благовещенск, Химки, Прокопьевск, Бийск, Энгельс, Псков, Рыбинск, Балаково, Подольск, Северодвинск, Армавир, Королёв, Южно-Сахалинск, Петропавловск-Камчатский, Сызрань, Норильск, Люберцы, Мытищи, Златоуст, Каменск-Уральский, Новочеркасск, Волгодонск, Абакан, Уссурийск, Находка, Электросталь, Березники, Салават, Миасс, Альметьевск, Рубцовск, Коломна, Ковров, Майкоп, Пятигорск, Одинцово, Копейск, Железнодорожный, Хасавюрт, Новомосковск, Кисловодск, Черкесск, Серпухов, Первоуральск, Нефтеюганск, Новочебоксарск, Нефтекамск, Красногорск, Димитровград, Орехово-Зуево, Дербент, Камышин, Невинномысск, Муром, Батайск, Кызыл, Новый Уренгой, Октябрьский, Сергиев Посад, Новошахтинск, Щёлково, Северск, Ноябрьск, Ачинск, Новокуйбышевск, Елец, Арзамас, Жуковский, Обнинск, Элиста, Пушкино, Артём, Каспийск, Ногинск, Междуреченск, Сарапул, Ессентуки, Домодедово, Ленинск-Кузнецкий, Назрань, Бердск, Анжеро-Судженск, Белово, Великие Луки, Воркута, Воткинск, Глазов, Зеленодольск, Канск, Кинешма, Киселёвск, Магадан, Мичуринск, Новотроицк, Серов, Соликамск, Тобольск, Усолье-Сибирское, Усть-Илимск, Тимашевск, Тихорецк, Ухта, Севастополь, Симферополь, Ялта, Судак, Саки, Феодосия, Старый Крым, Алупка, Алушта.


Подробнее об этих проблемах читайте также в статьях:

Источник: https://skat-ups.ru/articles/220v-ili-230v-standartnoe-naprajenie/

Максимально допустимые отклонения напряжения сети 220в

Добрый день, друзья. Всем известно, что в каждой стране есть индивидуальная сила и частота тока, поэтому нормы отклонения будут для каждого уголка Земли отличаться от других. Наше государство имеет силу тока 220В и, согласно прописанным в ГОСТе правилам, отклонение может быть не более 10%.

Всё остальное считается неправильным, и должно подвергаться диагностике и ремонту, поэтому защитная техника будет реагировать на резкие перепады энергии. Все электрические приборы, используемые неправильное напряжение также будут подвержены его воздействию и могут не эффективно работать, и быстро ломаться.

Узнайте, как выявить отклонение в своей электрической сети и что с этим делать! Приятного чтения!

Какое считается предельно допустимое напряжение в сети 220 В по ГОСТу

Допустимое напряжение в сети в большинстве сооружений составляет 220 В. До совсем недавнего времени в России, как и близлежащих странах СНГ действовали технические нормативно-правовые акты в сфере подачи и обслуживания электроэнергии времени существования СССР. Так, известными в этой области являются ГОСТ 29322-92 и ГОСТ 21128-83 в новой редакции 2014 года.

Такие акты приняты также в Украине и странах Балтии, в том числе Беларуси.

К чему привело изменение стандарта:

  • Изменилось рабочее напряжение на кабеле электросети;
  • Колебания стали чуть более значимыми, нежели ранее, но все также в допустимых нормах 5% и максимальных – 10%;
  • Потенциальная оплата услуг поставки электроэнергии выросла не совершенно символическую сумму;
  • Частота подачи напряжения – 50 Гц.

Нормы напряжения в электросети зависят от типа назначения постройки

Таким образом, напряжение в сети должно считаться несколько возросшим в бытовой практике.

Но на деле же все иначе и это сулит наличие подводных камней в сфере поставки организациями электроэнергии. Несмотря на общепринятый стандарт, организации, поставляющие напряжение в квартиры домов, подают все по тем же меркам, принятым еще в советское время и равным 220 В. Все это происходит официально по ГОСТу 32144-2013, которым и руководствуются поставщики.

Стандартные параметры электрической сети

Нормы общепринятых стандартов регламентируют также основные параметры, присущие для электроэнергии, поставляемой в дома. С учетом того, что технический ГОСТ – это десятки и десятки страниц сложной терминологии и расчетов, здесь будут приведены общая оценка приводимых категорий.

Стандартные параметры электрической сети включают в себя:

  • Коэффициент временного напряжения;
  • Импульсное напряжение;
  • Отклонение частоты напряжения на кабеле электросети;
  • Диапазон изменения напряжения;
  • Длительность потери напряжения и прочие.

Все перечисленные показатели так или иначе оказывают влияние на потерю или превышение установленных норм подачи энергии в сети.

Максимальное отклонение напряжения в электросети

Ток в сети по естественным причинам непостоянен и изменяется в определенных показателях.

Что влияет на сетевое колебание поставки энергии и потери напряжения:

  1. Одним из самых распространенных причин является устаревание оборудования, в том числе счетчиков, электрощитов, кабелей проводки и так далее;
  2. Значительные погрешности отмечаются и в плохо обслуживаемой сети;
  3. Ошибки при планировке и выполнении прокладочных работ в доме;
  4. Значительный рост показателей энергопотребления, превышающих установленный стандарт.

Как уже отмечалось, приемлемы перепады в сети на +-5%. Так, например, по поставляемому показателю в 220 вольт, допустимо отклонение в сети, равное 209 В и наибольшее превышение, равное 231 В.

Посадка напряжения в домашней сети

Так называемая посадка напряжения может быть чревато многими нежелательными последствиями. Причем нежелательными как самими жителями, так и организацией-поставщиком, ведь именно она будет восполнять все непредвиденные расходы. По объективным причинам, описанным ранее, посадка электроэнергии может достигать рекордных показателей.

При отсутствии желания исправлять неисправности это является основанием для подачи искового заявления в суд.

Чем чревато превышение или значительное снижение установленных норм поставки напряжения в доме:

  • Быстрее перегорают лампочки;
  • Особенно это пагубно для холодильника, стиральной машинки и прочих электробытовых приборов, требующих мощное и постоянное напряжение;
  • Срок службы любой электротехнической техники, в том числе микроволновки, тостера, телевизора, компьютеров и так далее.

Таким образом становится очевидно, что все классы электротехники страдают от сильных перепадов напряжения.

Особенно это влияние деструктивно сказывается, если в сети именно низкое напряжение. И обязанность обеспечить бесперебойным, стабильным и качественным током принадлежит именно организации, которая занимается поставкой и согласно договору, должна обеспечивать ее качественное обслуживание.

ЭТО ИНТЕРЕСНО:  Что такое полярность в электричестве

Величина допустимого падения напряжения: ПУЭ

Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи.

Нормальное падение работы напряжения в сети:

  1. В так называемых воздушных линиях – до 8%;
  2. В кабельных линиях электроснабжения – до 6%;
  3. В сетях на 220 В – 380 В – в районе 4-6%.

При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.

Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.

Обязательное регулирование напряжения в электрических сетях

Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.

Для регулировки напряжения в электрической сети используют специальные приборы

Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:

  1. Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
  2. Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
  3. Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
  4. Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.

Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети.

Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.

На счетчиках пишется показатель сетевого напряжения, который должен учитывать каждый житель дома. Следите за своими электроприборами правильно и вовремя обращайтесь в нужные инстанции.

Источник: http://prorabkin.com/electro/dopustimoe-napryazhenie-v-seti

Номинальные напряжения электрических сетей

Важнейшей характеристикой любой электрической сети является её номинальное напряжение (U ном.). Именно на это напряжение производится расчет всего оборудования ЭС. Определяется номинальное напряжение электросети переправляемой активной мощностью и протяженностью ЛЭП.

Согласно стандартам принята линейка номинальных межфазных напряжений ЭС (электросети) и ЭП (электроприёмников) до 1000 Вольт, а именно: 220 Вольт, 380 Вольт, 660 Вольт. (гост 21128_75).

Для ЭС и ЭП переменного тока выше 1000 Вольт, установлена следующая линейка межфазных напряжений: 380 В, 3000 В, 6000 В, 10000 В, 20000 В, 35000 В, 110000 В, 150 000 В, 220 000 В, 330 000 В, 500 000 В, 750000 В, 1150000 В. (гост 721_77)

Классы электросетей по напряжению

В таблице видим классы электросетей по напряжению. Как видим сети делятся на: электросети низкого (НН), среднего (СН), высокого (ВН), сверх высокого (СВН), ультра высокого (УВН) напряжений.

Условия нормальной работы электрической сети

Для стабильной работы электроприёмников, должно соблюдаться следующее правило равенства напряжений: номинальное напряжение электроприемников должно равняться номинальному напряжению электросети. Uном.эп =Uном.сети. Но обеспечить такое равенство, при котором не будет, ни потерь, ни убытков на практике не возможно.

Нагрузка электроприёмников не может быть постоянной, она меняется и отклоняется от номинального значения. Принята допустимая зона отклонения напряжения электроприёмника в ±5%.

Кроме этого, протяженность ЛЭП предполагает потерю напряжения на линии, а это значит, что напряжение у приёмника будет меньше, напряжения у источника. Разница напряжений и будет величина потерь.  Это учитывается при проектировании и по ГОСТ, напряжения (ном.) вырабатываемые генераторами, должны быть на 5% больше необходимого напряжения сети.

Напряжения на обмотках трансформаторов ЭС

Повышающие трансформаторы на первичных обмотках должны иметь напряжение равное напряжению генераторов. Напомню, повышающие трансформаторы стоят сразу после генераторов электроэнергии на ТЭЦ или ГЭС.

Первичные обмотки понижающих трансформаторов по отношению к сети являются потребителями, поэтому напряжение на них должно равняться номинальному напряжению сети.  

Посмотрим на вторичные обмотки трансформаторов. Они, у обоих типов трансформаторов, являются источником напряжения для питаемой электросети. Поэтому, напряжение вторичных обмоток трансформаторов должно быть на 5%, а иногда и на 10% больше нужного напряжения  сети.

Все эти 5-10 % нужны для компенсации падения напряжений в электрической сети. Иллюстрация компенсации и падения напряжения смотрим на эпюре напряжений.

Вводы

Суммируя всё вышесказанное, делаем выводы:

  • U ген. должно быть на 5% больше U ном. сети;
  • U первичных обмоток повышающих трансф-ов должно совпадать с напряжением генераторов, а следовательно должно быть на 5% больше U ном. сети;
  • U вторичных обмоток повышающих трансф-ов должно быть на 5-10% быть больше U ном. сети;
  • U первичных обмоток понижающих трансф-ов должно равняться U ном. сети;
  • U вторичных обмоток понижающих трансф-ов должно быть на 5-10% быть больше U ном. сети.

Elesant.ru

Другие статьи раздела: Электрические сети

Источник: https://elesant.ru/teoriya-elektrosetej/elektricheskie-seti/nominalnye-napryazheniya-elektricheskikh-setej

Основные понятия электрических сетей: номинальные напряжения, режимы работы нейтрали

На отечественных электростанциях вырабатывается электроэнергия трехфазного переменного тока частотой 50 Гц. Постоянный ток получают в основном от преобразователей, поэтому энергия постоянного тока всегда дороже энергии переменного тока на величину стоимости преобразования.

Для достижения наилучших технических и экономических показателей работы и обеспечения потребителей электроэнергией электростанции объединяют в энергосистемы (районные, объединенные и др.)

Производство электроэнергии в зависимости от применяемых генераторов, передача и распределение в зависимости от величин передаваемых мощностей и расстояний, на которые они передаются, использование электроэнергии в зависимости от применяемых электроприемников осуществляются на различных номинальных напряжениях.

Под номинальным напряжением генераторов, трансформаторов, линий электропередачи, электроприемников понимается напряжение, на которое они рассчитаны в нормальных длительных условиях работы, сопровождающихся наивысшими технико-экономическими показателями.

По признаку напряжения все электроустановки подразделяются на две группы: до 1 кВ и выше 1 кВ.

Для согласования работы всех электроустановок энергосистем, систем электроснабжения — от генераторов станций и до электроприемников — номинальные напряжения стандартизированы. Величины номинальных напряжений для электроустановок до 1 кВ приведены в табл. 1.1, в табл. 1.2 — для электроустановок выше 1 кВ. Для источников и преобразователей указаны междуфазные напряжения трехфазного тока.

ГОСТ 21128-83 для специальных целей предусматривает применение дополнительных номинальных напряжений, например, для электрических сетей и приемников тока: 24, 42, 127 В.

Шкала номинальных напряжений определяется уровнем развития народного хозяйства и с течением времени корректируется. Так, в последних ГОСТах введены напряжения 0,66 и 20 кВ, которые для питания крупных узлов нагрузок и электроприемников более экономичны, чем напряжения 0,38 и 10 кВ.

Передача больших мощностей на значительное расстояние обусловила необходимость использования высоких и сверхвысоких напряжений (500, 750, 1150 кВ).

На электростанциях электрическая энергия производится на напряжении (3,15); (6,3); 10,5; 21 кВ. Эти номинальные напряжения называются генераторными.

Номинальные напряжения вторичных обмоток трансформаторов, питающих электрические сети, и номинальные напряжения генераторов на 5 10 % выше номинальных напряжений сети. Это предусмотрено с целью компенсировать потери напряжения в линиях и трансформаторах.

Важным при работе электрической сети является режим ее нейтрали, а также возможность иметь линейные (междуфазные) и фазные напряжения для электроприемников до 1 кВ.

Под нейтралью электрической сети понимается совокупность нейтральных точек обмоток трансформатора (нулевой потенциал обмоток, соединенных в звезду) и соединяющих их проводников. Нейтраль может быть изолирована от земли, соединена с землей через активные или реактивные сопротивления, а также глухо заземленной.

Выбор режима работы нейтрали

Выбор режима работы нейтрали определяется надежностью и экономичностью работы электроустановок, безопасностью их обслуживания. Электроустановки напряжением до 1 кВ выполняются с изолированной или глухозаземленной нейтралью.

Глухое заземление нейтрали может выполняться на напряжении 220/ 127, 380/220, реже — 660/380 В. Нулевой провод в четырехпроводной сети обеспечивает равенство фазных напряжений при неравномерной загрузке фаз от однофазных электроприемников.

Трехфазные сети с заземленной нейтралью позволяют питать совместно трех- и однофазные нагрузки, например, трехфазные — на линейном напряжении 380 В, однофазные — на фазном напряжении 220 В.

: Установки с изолированной нейтралью применяются в условиях с повышенными требованиями к безопасности (торфяные разработки, угольные шахты, передвижные электроустановки), Электроустановки напряжением выше 1 кВ по виду режима нейтрали подразделяются на: электроустановки в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю); в сетях с изолированной нейтралью (с малыми токами замыкания на землю).

В электрических сетях напряжением 110 кВ и выше используется эффективное заземление нейтрали.

Электрической сетью с эффективно заземленной нейтралью называется трехфазная электрическая сеть выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4. Коэффициентом замыкания на землю называется отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой (или двух других) фазы к разности потенциалов между фазой и землей в этой точке до замыкания.

Электрические сети напряжением 6—35 кВ выполняются с изолированной или компенсированной, т.е. соединенной, например, через индуктивность (дугогасящую катушку), нейтралью.

В сетях с изолированной нейтралью при замыкании на землю через место повреждения будут проходить емкостные токи, обусловленные напряжением и емкостью неповрежденных фаз.

Включение в нейтраль активных или реактивных сопротивлений вызвано необходимостью ограничения емкостных токов на землю.

Так, эти токи не должны превышать в нормальных режимах: в сетях 3—20 кВ, имеющих железобетонные и металлические опоры на воздушных линиях, и во всех сетях 35 кВ — 10 А; в сетях, не имеющих железобетонных и металлических опор на воздушных линиях: при напряжении 3—6 кВ — 30 А, при 10 кВ — 20 А, при 15—20 кВ — 15 А.

Особенности сетей с изолированной нейтралью

  1. При неравномерной загрузке фаз трехпроводной электрической сети имеет место напряжение смещения нейтрали, при этом каждая из фаз будет находиться под напряжением, отличным от фазного. Особенно это важно учитывать для сетей напряжением до 1 кВ.
  2. Замыкание одной фазы на землю считается не аварийным, а лишь анормальным режимом.

    При его возникновении сеть и поврежденная линия могут оставаться включенными и в течение некоторого времени продолжать работу. Замыкание на землю практически не влияет на систему междуфазных напряжений и режим работы электроприемников. Таким образом увеличивается надежность электроснабжения потребителей.

  3. При замыкании на землю одной фазы напряжение двух других фаз относительно земли увеличивается в л/3 раз.

    В связи с этим изоляция всех фаз предусмотрена на линейное напряжение. При напряжении до 35 кВ это не вызывает существенного удорожания сети.

  4. При больших токах однофазного замыкания дуга в месте короткого замыкания устойчиво и длительно горит, вызывая перенапряжения, опасные для изоляции неповрежденных фаз, и переход однофазного короткого замыкания в междуфазное.

При глухом заземлении нейтрали всякое замыкание одной фазы на землю является однофазным коротким замыканием и должно привести к срабатыванию защитных аппаратов, отключающих поврежденный участок от сети.

Системы электроснабжения сооружаются на нескольких напряжениях. Критерием оптимально принятой системы электроснабжения служит минимум приведенных затрат на ее сооружение и последующую эксплуатацию. Затраты на сооружение системы электроснабжения во многом определяются количеством трансформаций напряжения и используемыми номинальными напряжениями. Обычно в системах электроснабжения применяется 2— 3 трансформации напряжения.

Источник: https://pue8.ru/elektricheskie-seti/30-nominalnye-napryazheniya-i-rezhim-neytrali-seti.html

Таблица номинальных напряжений. Номинальные напряжения элементов электрических сетей

Каждая электрическая сеть характеризуется номинальным напряжением,на которое рассчитывается её оборудование. Номинальное напряжение обеспечивает нормальную работу электропотребителей (ЭП), должно давать наибольший экономический эффект и определяется передаваемой активной мощностью и длиной линии электропередачи.

ГОСТ 21128-75 введена шкала номинальных междуфазных напряжений электрических сетей и приёмников до 1000 В переменного тока: 220,380, 660 В.

ГОСТ 721-77 введена шкала номинальных междуфазных напряжений электрических сетей переменного тока свыше 1000 В:

0,38, 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150.

В табл. 2.1. представлена классификация электрических сетей, где показано деление на сети низшего (НН), среднего (СН), высшего (ВН), сверхвысокого (СВН) и ультравысокого (УВН) напряжения.

Нагрузка ЭП не остаётся постоянной, а меняется в зависимости от из­менения режима работы (например, в соответствии с ходом технологическо­го процесса производства), поэтому напряжение в узлах сети постоянно от­клоняется от номинального значения, что снижает качество электроэнергии и влечёт за собой убытки. Исследования показали, что для большинства электроприёмников устойчивая зона ограничена значениями отклонений напряжения

Исследования показали, что для большинства элек­троприёмников устойчивая зона ограничена значениями отклонений напря-

Как правило, напряжение в начале линии больше напряжения в конце и отличается на величину потерь напряжения

Для приближения напряжения потребителя U 2 к номинальному напря­жению электрической сети и обеспечения качественной энергией номинальные напряжения генераторов напряжения сети установлены ГОСТом на 5 % больше номинального

Так как первичные обмотки повышающих трансформаторов непосред­ственно должны быть одинаковыми подключены к зажимам генераторов, то их номинальные напряжения

Первичные обмотки понижающих трансформаторов являются потреби­телями по отношению к сетям, от которых они питаются, поэтому должно выполняться условие

В последнее время промышленность выпускает понижающие транс­форматоры напряжением 110-220 кВ с напряжением первичной обмотки на 5 % больше номинального напряжения сети

Вторичные обмотки как понижающих, так и повышающих трансфор­маторов являются источниками по отношению к питаемой ими сети. Номи­нальные напряжения вторичных обмоток имеют значения на 5-10 % больше номинального напряжения этой сети

Это делается для того, чтобы компенсировать падение напряжения в питае­мой сети. На рис. 2.1 представлена эпюра напряжения, которая наглядно ил­люстрирует вышесказанное.

2.2. Режимы нейтралей электрических сетей

Нулевая точка (нейтраль) трехфазных электрических сетей может быть заземлена наглухо (рис. 2.2, а), заземлена через высокоомное сопротивление (рис. 2.2, б) или же изолирована от земли (рис. 2.2, в).

Режим нейтрали в электрических сетях до 1000 В определяется безо­пасностью обслуживания сетей, а в сетях выше 1000 В — бесперебойностью электроснабжения, экономичностью и надежностью работы электроустано­вок. Правилами устройства электроустановок (ПУЭ) работа электроустано­вок напряжением до 1000 В допускается как с глухозаземленной, так и с изо­лированной нейтралью.

Конец работы —

Эта тема принадлежит разделу:

ЛЕКЦИЯ 1. ОБЩАЯ ХАРАКТЕРИСТИКА СИСТЕМ ПЕРЕДАЧИ И РАСПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ СИСТЕМ

План Основные понятия и определения

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Характеристика системы передачи электрической энергии
Основу системы передачи электрической энергии от электрических станций, её производящих, до крупных районов электропотребления или распределительных узлов ЭЭС составляют развитые се

Характеристика систем распределения электрической энергии
Назначение распределительных сетей — доставка электроэнергии непосредственно потребителям напряжением 6-10 кВ, распределение электроэнергии между подстанциями 6-110/0,38-35 кВ район

Система передачи и распределения электрической энергии
В п. 1.3 приведена характеристика систем передачи и распределения ЭЭ. Рассмотрим взаимосвязи этих систем на примере. В качестве примера рассмотрим упрощённую принципиальную

Режим нейтрали сетей до 1000 В с глухозаземленной нейтралью
Наиболее распространенные — четырёхпроводные сети трехфазного то­ка напряжением 380/220, 220/127, 660/380 (рис. 2.3) (числитель соответствует линейному напряжению, а знаменатель — фазному напряжени

Низковольтные сети с изолированной нейтралью
Это трёхпроводные сети, которые нашли применение для питания осо­бо ответственных потребителей при малой разветвленности сетей при обес­печении в сетях контроля фазной изоляции. Это

Высоковольтные сети с изолированной нейтралью
Потребитель включен на линейное напряжение, нейтраль и земля в симметричном режиме совпадают. Напряжение, которое должна выдержи­вать изоляция, — это напряжение между фазой и землей

Высоковольтные сети с компенсированной нейтралью
Эти сети также относят к сетям с малым током замыкания на землю (рис. 2.9).

Высоковольтные сети с глухозаземленной нейтралью
К таким сетям относятся сети с номинальным напряжением 110 кВ и выше и большим током замыкания на землю (&g

Вопросы для самопроверки
1. Что такое номинальное напряжение? 2. Каков номинальный ряд напряжений электрических сетей? 3. Какова классификация электрических сетей по напряжению, охвату территории, назначе

ЛЕКЦИЯ 3. ПРИНЦИПЫ КОНСТРУКТИВНОГО ИСПОЛНЕНИЯ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ
План 1. Назначение воздушных линий электропередачи. 2. Конструктивное исполнение воздушных линий. 3. Опоры ВЛ. 4. Провода ВЛ. 5. Грозоза

Воздушные линии электропередачи
Воздушными называются линии, предназначенные для передачи и рас­пределения ЭЭ по проводам, расположенным на открытом воздухе и под­держиваемым с помощью опор и изоляторов. Воздушные

Кабельные линии электропередачи
Кабельная линия (КЛ) — линия для передачи электроэнергии, состоящая из одного или нескольких параллельных кабелей, выполненная каким-либо способом прокладки (рис 3.12). Кабельные ли

Вопросы для самопроверки
1. Как классифицируются линии электропередачи по конструктивному исполнению? 2. Какими факторами определяется выбор типа ЛЭП? 3.Каким требованиям должны удовле

Активное сопротивление
Обусловливает нагрев проводов (тепловые потери) и зависит от мате­риала токоведущих проводников и их сечения. Для линий с проводами не­большого сечения, выполненных цветным металлом

ЛЭП со стальными проводами
Основное достоинство стальных проводов — их высокие механические свойства. В частности, временное сопротивление на разрыв стальных прово­дов достигает 600-700 МПа (60-70 кг/мм2

Вопросы для самопроверки
1.Для каких целей используют схемы замещения? Назовите преимущества и недостатки этих схем. 2. Какова физическая сущность активного сопротивления ЛЭП? 3. Как и в к

ЛЕКЦИЯ 5. ПАРАМЕТРЫ И СХЕМЫ ЗАМЕЩЕНИЯ ДВУХОБМОТОЧНЫХ ТРАНСФОРМАТОРОВ
План 1. Назначение, условные обозначения, схемы соединения обмоток и векторные диаграммы напряжений трансформаторов. 2.Двухобмоточные трансформаторы.

Двухобмоточные трансформаторы
При расчётах режимов трёхфазных электрических сетей с равномерной загрузкой фаз трансформаторы в расчётных схемах представляются схемой замещения для одной фазы.

Виды и назначения устройств
Рассматриваются устройства, компенсирующие реактивную мощность: статические конденсаторные батареи, шунтирующие реакторы, статические тиристорные компенсаторы (СТК) и синхронные ком

Номинальные напряжения электрических сетей общего назначения переменного тока в РФ установлены действующим стандартом (табл. 4.1). Таблица 4.1

Международная электротехническая комиссия (МЭК) рекомендует стандартные напряжения выше 1000 В для систем с частотой 50 Гц, указанные в табл. 4.2. Таблица 4.2

Известен ряд попыток определить экономические зоны применения электропередач разных напряжений. Удовлетворительные результаты для всей шкалы номинальных напряжений в диапазоне от 35 до 1150 кВ дает эмпирическая формула, предложенная Г. А. Илларионовым:
где L — длина линии, км, P — передаваемая мощность, МВт.В России получили распространение две системы напряжений электрических сетей переменного тока (110 кВ и выше): 110-330-750 кВ — в ОЭС Северо-Запада и частично Центра — и 110-220-500 кВ — в ОЭС центральных и восточных регионов страны (см. также п. 1.2). Для этих ОЭС в качестве следующей ступени принято напряжение 1150 кВ, введенное в ГОСТ в 1977 г. Ряд построенных участков электропередачи 1150 кВ временно работают на напряжении 500 кВ.На нынешнем этапе развития ЕЭС России роль системообразующих сетей выполняют сети 330, 500, 750, в ряде энергосистем — 220 кВ. Первой ступенью распределительных сетей общего пользования являются сети 220, 330 и частично 500 кВ, второй ступенью — 110 и 220 кВ; затем электроэнергия распределяется по сети электроснабжения отдельных потребителей (см. пп. 4.5–4.9).Условность деления сетей на системообразующие и распределительные по номинальному напряжению заключается в том, что по мере роста плотности нагрузок, мощности электростанций и охвата территории электрическими сетями увеличивается напряжение распределительной сети. Это означает, что сети, выполняющие функции системообразующих, с появлением в энергосистемах сетей более высокого напряжения постепенно «передают» им эти функции, превращаясь в распределительные. Распределительная сеть общего назначения всегда строится по ступенчатому принципу путем последовательного «наложения» сетей нескольких напряжений. Появление следующей ступени напряжения связано с ростом мощности электростанций и целесообразностью ее выдачи на более высоком напряжении. Превращение сети в распределительную приводит к сокращению длины отдельных линий за счет присоединения к сети новых ПС, а также к изменению значений и направлений потоков мощности по линиям.При существующих плотностях электрических нагрузок и развитой сети 500 кВ отказ от классической шкалы номинальных напряжений с шагом около двух (500/220/110 кВ) и постепенным переходом к шагу шкалы около четырех (500/110 кВ) является техническии экономически обоснованным решением. Такая тенденция подтверждается опытом передовых в техническом отношении зарубежных стран, когда сети промежуточного напряжения (220–275 кВ) ограничиваются в своем развитии. Наиболее последовательно такая техническая политика проводится в энергосистемах Великобритании, Италии, Германии и других стран. Так, в Великобритании все шире используется трансформация 400/132 кВ (консервируется сеть 275 кВ), в Германии — 380/110 кВ (ограничивается в развитии сеть 220 кВ), в Италии — 380/132 кВ (консервируется сеть 150 кВ) и т. д.Наибольшее распространение в качестве распределительных получили сети 110 кВ как в ОЭС с системой напряжений 220–500 кВ, так и 330–750 кВ. Удельный вес линий 110 кВ составляет около 70 % общей протяженности ВЛ 110 кВ и выше. На этом напряжении осуществляется электроснабжение промышленных предприятий и энергоузлов, городов, электрификация железнодорожного и трубопроводного транспорта; они являются верхней ступенью распределения электроэнергии в сельской местности. Напряжение 150 кВ получило развитие только в Кольской энергосистеме и для использования в других регионах страны не рекомендуется.Напряжения 6-10–20-35 кВ предназначены для распределительных сетей в городах, сельской местности и на промышленных предприятиях. Преимущественное распространение имеет напряжение 10 кВ; сети 6 кВ сохраняют значительный удельный вес по протяженности, но, как правило, не развиваются и по возможности заменяются сетями 10 кВ. К этому классу примыкает имеющееся в ГОСТ напряжение 20 кВ, получившее ограниченное распространение (в одном из центральных районов г. Москвы).Напряжение 35 кВ используется для создания ЦП сетей 10 кВ в сельской местности (реже используется трансформация 35/ 0,4 кВ).

Источник: https://electricianprof.ru/theory/table-of-nominal-voltages-nominal-voltages-of-electrical-network-elements/

Стандартизированный ряд напряжений[ | ]

Установки до 1000 В

Ряд номинальных напряжений трехфазных четырехпроводных или трехпроводных систем переменного тока 50 Гц, В[1]

Установки свыше 1000 ВРяд номинальных напряжений (наибольших рабочих напряжений) для сети и приёмники электрической энергии, кВ[2]

НоминальноенапряжениеНаибольшеерабочеенапряжение
3 3,6
6 7,2
10 12
15 17,5
20 24
35 40,5
110 126
150 172
220 252
330 363
400 420
500 525
750 787
1150 1200

Номинальные напряжения для электрических генераторов, , вторичных обмоток силовых трансформаторов приняты на 5-10 % выше номинальных напряжений соответствующих сетей, чем учитываются потери напряжения при протекании тока по линиям.

Примечания[ | ]

  1. ГОСТ 29322-2014
  2. ГОСТ 721-77

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%9D%D0%BE%D0%BC%D0%B8%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5

Номинальное напряжение аккумулятора: как избежать путаницы

Категория: Поддержка по аккумуляторным батареям 11.04.2016 15:32 Abramova Olesya

Электрическая батарея является электрохимическим устройством, которое создает потенциал напряжения при помещении металлов с различным сродством к электрону в кислотный раствор (электролит). Напряжение разомкнутой цепи, которое возникает вследствие электрохимической реакции, зависит от используемых металлов и электролита.

Подключение нагрузки или зарядного устройства помещает батарею в состояние замкнутой цепи. Разрядные процессы снижают напряжение батареи, а зарядные — повышают. Поведение батареи под нагрузкой или при зарядке определяются током и внутренним сопротивлением батареи. Низкое внутреннее сопротивление оказывает малое влияние на напряжение под нагрузкой или при зарядке, высокое же вносит существенные коррективы.

Зарядные и разрядные процессы ежесекундно влияют на напряжение, не оставляя его значение одинаковым каждый момент времени. Такие перепады могут быть не видны глазу и существенно не влиять на работу аккумулятора, но тем не менее они присутствуют. Для полной стабилизации напряжения, аккумулятору необходимо порядка 24 часов.

На напряжение также имеет влияние температура — холодная понижает напряжение, а теплая повышает.

Производители классифицируют электрические батареи согласно номинальному напряжению, значение которого в большинстве случаев стандартизировано. Ниже приведены наиболее распространенные номиналы напряжений в зависимости от электрохимической системы.

Свинцово-кислотные элементы

Номинальное напряжение свинцово-кислотных элементов составляет 2 В, однако если измеряется напряжение разомкнутой цепи, то значение должно быть 2,1 В. Падение напряжения ниже этого значения может привести к сульфатации [BU-804b]. В режиме подзарядки к свинцово-кислотному элементу может прикладываться напряжение в 2,25 В, что выше, чем при обычной зарядке.

Элементы на основе никеля

В версиях для потребительского пользования, NiCd и NiMH элементы имеют напряжение 1,20 В, а в моделях для промышленной, военной и авиационной сфер — 1,25 В. Существенной разницы между такими элементами нет, отличается лишь маркировка.

Литий-ионные элементы

Номинальное напряжение литий-ионного элемента составляет 3,60 В. Некоторые производители маркируют свои батареи напряжением в 3,70 В на элемент.

Этот трюк больше дает маркетинговое преимущество, так как более высокое напряжение позволяет указывать и более высокую мощность в ватт-часах (мощность равна напряжению умноженной на силу тока).

Напряжение в 3,70 В также приводит к формированию странных значений напряжений при последовательном подключении трех или четырех элементов — 11,10 В и 14,80 В вместо привычных 10,80 В и 14,40 В. Производители оборудования, в свою очередь, придерживаются номинального значения напряжения литий-ионного элемента в 3,60 В.

Как же удается достичь этого более высокого напряжения? Дело в том, что конструктивно максимальное значение напряжения литий-кобальтового элемента равно 4,20 В, но оно специально понижается до более безопасного значения в 3,60 В.

А для литий-марганцевой технологии минимальный уровень безопасного напряжения чуть выше — 3,70 В, но для стандартизации оно также сводится к общепринятому значению в 3,60 В.

Следует отметить, что элементы с таким небольшим отклонением напряжения не будут влиять на работу устройств или требовать особого зарядного устройства.

Другие литий-ионные технологии имеют другие значения номинального напряжения, литий-фосфатная — от 3,20 до 3,30 В и литий-титанатная — 2,4 В. Эта разница напряжения делает их несовместимыми с другими литий-ионными системами, соответственно, им нужен особый алгоритм зарядки и формирования конфигураций соединения.

Источник: https://best-energy.com.ua/support/battery/bu-303

Что такое номинальная мощность

С термином «номинальная мощность» мы сталкиваемся практически ежедневно. Выбираем ли электрический чайник или лампу накаливания – везде указано это значение. Единицей измерения являются ватты или киловатты. Казалось бы – что может быть проще в этом вопросе? Ведь еще со школьного курса физики всем известно, что для определения мощности (P) достаточно перемножить значения тока и напряжения.

Но что скрывается за словами «номинальная мощность»? Под термином «номинальный» понимают определенное значение чего-либо, не учитывающее внешних корректирующих факторов. Таким образом, номинальная мощность – указанное производителем значение, которое может быть получено только при предусмотренных расчетных параметрах. Это общее понятие. В каждом же конкретном случае необходимо учитывать свои специфичные особенности.

Приведем пример с лампой накаливания. На ее стеклянной колбе отмечено: 230 В, 100 Вт. То есть, 100 Вт может быть достигнуто только при напряжении в 230 В. Номинальная мощность – это те самые 100 Вт. Ее значение уменьшается со снижением напряжения и увеличивается с повышением так как эти параметры находятся в прямой зависимости друг от друга (P=I*U).

    Как правило, для большинства электроприборов есть ограничение по верхней границе, обычно 5-10%. Другими словами, допустима работа при 230 В + 23 В = 253 В. Нижний предел может не указываться, как в случае с лампой. Более сложное оборудование ограничено по паспортным параметрам как сверху, так и снизу.

К примеру, как понять термин «номинальная мощность двигателя»? Существует два равноправных определения – одно с точки зрения электричества, а другое исходя из расчетной механической нагрузки на валу. Хотя они непосредственно взаимосвязаны, второе более простое для понимания. Мы приведем оба. На табличке с паспортными данными всегда указано значение мощности.

Она численно равна потребляемой из электрической сети при расчетной механической нагрузке, причем температура корпуса должна находиться в допустимых пределах (подразумевается продолжительный режим работы). То есть, можно считать, что паспортное значение равно номинальному.

Если же электропривод работает в повторно-кратковременном режиме (ПВ не равно 100%), то такое соответствие не выполняется, так как времени работы недостаточно для перехода в установившийся режим, когда увеличение нагрева компенсируется температурой окружающего воздуха. В этом случае потребуется нагрузочный график: номинальная мощность будет равна произведению паспортного значения P и корня квадратного из подобранного по графику коэффициента.

Все вышесказанное верно для электрической составляющей. Согласно другому определению, номинальная мощность принимается равной механической, развиваемой двигателем при расчетном значении напряжения и температурном режиме, соответствующем паспортному. Таким образом, если напряжение (U) уменьшается, то изменяется и момент силы, хотя скорость вращения вала может остаться прежней.

Как было сказано, производителем закладывается в изделие определенный «запас прочности»: колебания U в пределах +-5% позволяет двигателю развивать расчетный момент (при неизменности частоты сети). Для частоты такой запас составляет всего 2,5%. А вот номинальная мощность трансформатора учитывает только температурный режим. Если посмотреть в паспорт устройства, то там указаны две температуры: номинальная и окружающего воздуха.

Если при работе первая не превышает своего расчетного значения, а вторая отличается от паспортных данных незначительно, то в этом режиме трансформатор выдает номинальную мощность. Любое повышение электрической нагрузки вызывает рост тока и температуры, поэтому вполне достаточно контроля последней. Как и в случае с двигателями, допускается небольшое превышение.

Выбирая генератор, потребитель обращает внимание на различные параметры установки – вес, запас моторесурса, мобильность, наличие дополнительного функционала, цену, и т.д. Но в первую очередь необходимо выбирать установку, ориентируясь на ее мощность. Как правильно рассчитать этот показатель и на что обратить внимание?

Чтобы было понятней, разберем эту ситуацию на простом примере. Допустим, в нашем пользовании имеются такие бытовые приборы: пылесос, калорифер, морозильник. Мощность этих бытовых приборов составляет соответственно 1 кВт, 2 кВт и 0,3 кВт. Получается, чтобы обеспечить работу этих приборов, нам необходим генератор мощностью не менее 3 кВт. Чтобы понять это, разберемся в таком понятии, как номинальная мощность генератора.

Номинальная, или, как ее еще называют, реальная мощность установки, существенно отличается от максимальной. В технической документации производители чаще всего указывают именно максимальные показатели по мощности для данной модели генератора.

Стоит отметить, что с такой нагрузкой установка без критических последствий может работать очень непродолжительное время – в некоторых случаях это секунды, иногда 1-2 минуты. В то же время реальная, или номинальная мощность несколько ниже максимального показателя. Для ее расчета необходим коэффициент мощности cos φ.

Этот показатель определяется отношением активной мощности к полной.

Пример

Допустим, в нашем распоряжении генератор с показателями мощности в 3 кВА и cos φ, равным 0,8. В таком случае номинальная мощность данной установки будет равна:

3 кВА х 0,8=2,4 (кВт)

Теперь можно понять, почему мощность может указываться в тех или иных единицах измерения, в ваттах (Вт) или Вольт Амперах (ВА).

Некоторые производители, чтобы избавить потребителя от необходимости проведения вычислений, просто указывают в сопроводительной документации оба значения мощности – номинальной и максимальной.

Встречаются также варианты, когда производителем указывается только одна из мощностей и приводится значение коэффициента мощности. Некоторые недобросовестные компании могут скрывать коэффициент мощности от потребителя. Это делается с целью выдать генератор за более мощную, чем на самом деле, установку.

Учет вида нагрузки

Для бытовых электроприборов характерны два вида нагрузки:

Активная (омическая) нагрузка потребляется приборами, которые преобразуют получаемую энергию в тепло. Это электрическая плита, утюг, фен, калориферы и т.д. Реактивную нагрузку потребляют остальные электроприборы, преобразующие в тепло только незначительную часть энергии. Основная часть потребляемой энергии используется с другой целью. Примерами таких приборов могут быть холодильник, пылесос, телевизор, компьютер и т.д.

Если вам нужна помощь в выборе мощности генератора для вашего дома, производственного цеха или любого другого объекта, обратитесь за квалифицированной консультацией к нашим специалистам.

Источник: https://www.tecnuvo.ru/articles/chto-takoe-nominalnaya-moshchnost/

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как снимать показания со счетчика электроэнергии Меркурий 200 02

Закрыть