Чем отличается потенциальная и кинетическая энергия

Чем отличается кинетическая энергия от потенциальной? — Всё просто

Чем отличается потенциальная и кинетическая энергия

/ разница между / Разница между кинетической энергией и потенциальной энергией

Энергия подразумевает как способность объекта выполнять работу. Это то, что не может быть создано или уничтожено, но может быть только преобразовано.

Объект теряет свою энергию, когда он выполняет работу, тогда как он получает энергию, когда работа над ним выполняется. Энергия широко классифицируется как кинетическая энергия и потенциальная энергия.

В то время как кинетическая энергия – это энергия, которую содержит объект из-за определенного движения.

С другой стороны, потенциальная энергия – это запасенная энергия из-за состояния покоя. Поскольку обе эти формы энергии измеряются в джоулях, люди легко путаются между этими двумя. Итак, прочитайте статью, которая поможет вам понять разницу между кинетической и потенциальной энергией.

Сравнительная таблица

Основа для сравненияКинетическая энергияПотенциальная энергия
Имея в виду Кинетическая энергия относится к энергии, присутствующей в объекте, из-за его свойства быть в движении. Энергия, содержащаяся в объекте в силу его положения, называется потенциальной энергией.
перемещаемость Можно переносить между объектами. Не может быть передан между объектами.
Измерено от Поместите себя Низ
Экологически относительное Относительно окружающей среды объекта. Не относится к окружающей среде объекта.
Уравнение 0, 5 mv 2, где m = масса, а v = скорость мг, где м = масса, г = сила тяжести и ч = высота

Определение кинетической энергии

Проще говоря, энергия движения – это кинетическая энергия. Работа, необходимая для ускорения объекта определенной массы, от состояния покоя до движения.

Чтобы ускорить объект, мы применяем силу, посредством которой энергия передается от одного объекта к другому, заставляя объект двигаться с новой и постоянной скоростью.

Передаваемая энергия называется кинетической энергией, определяемой скоростью и массой объекта, т.е. чем больше масса и скорость, тем больше кинетической энергии она содержит.

Кинетическая энергия объекта, находящегося в движении с определенной скоростью, такая же, как и работа над ним.

Все объекты, которые находятся в движении или действии, независимо от горизонтального или вертикального движения, обладают кинетической энергией. Это энергия, которую объект приобретает благодаря состоянию его движения.

Например, падение кокоса, течение реки, движение автомобиля или автобуса и т. Д. Различные формы кинетической энергии:

  • Колебательная энергия
  • Энергия вращения
  • Трансляционная энергия

Определение потенциальной энергии

Термин потенциальная энергия подразумевает энергию, которая хранится в объекте в состоянии покоя вследствие его положения относительно нулевого положения.

Энергия накапливается в физическом теле благодаря преодолению сил природы. Он присутствует в каждом объекте, который имеет положение и массу в силовом поле.

Например, тетрадь на столе, мяч на вершине холма, натянутая резинка и т. Д.

Когда состояние объекта изменяется от покоя к движению, потенциальная энергия преобразуется в кинетическую энергию.

Он заставляет объект возвращаться в исходное положение, то есть в состояние покоя, потому что он работает против любого смещения, поэтому он известен как восстановление энергии.

С увеличением скорости движущегося объекта потенциальная энергия уменьшается, и наоборот. Различные типы потенциальной энергии:

  • Гравитационная энергия
  • Упругая энергия
  • Электроэнергия
  • Химическая энергия
  • Ядерная энергия

Ключевые различия между кинетической и потенциальной энергией

Точки, приведенные ниже, заслуживают внимания, поскольку речь идет о разнице между кинетической и потенциальной энергией:

  1. Энергия, связанная с объектами в движении или действии, называется кинетической энергией. Потенциальная энергия определяется как энергия, содержащаяся в объекте, в результате его состояния покоя.
  2. Кинетическая энергия может передаваться между объектами. С другой стороны, потенциальная энергия не может передаваться между объектами.
  3. В то время как кинетическая энергия измеряется от самого места, потенциальная энергия измеряется снизу.
  4. Кинетическая энергия относительно окружающей среды движущегося тела. В отличие от этого, потенциальная энергия не связана с окружающей средой физического тела.
  5. Кинетическая энергия может быть определена скоростью / скоростью или массой движущегося объекта. И наоборот, факторами, определяющими потенциальную энергию, являются масса, сила тяжести и высота / расстояние от объекта.

Заключение

Подводя итог, можно сказать, что потенциальная энергия связана с положением, в то время как кинетическая энергия фокусируется на движении. Первый готов к выпуску, а второй уже в движении. Кинетическая энергия зависит от двух факторов, которые являются скоростью и массой объекта, но потенциальная энергия зависит от положения и состояния объекта.

Источник: https://vseprostdo.ru/chem-otlichaetsya-kineticheskaya-energiya-ot-potencialnoj.html

15 лучших примеров потенциальной энергии

Чем отличается потенциальная и кинетическая энергия

Термин «потенциальная энергия» был придуман шотландским инженером-механиком Уильямом Рэнкином в 19 веке. Вскоре она стала одной из самых влиятельных переменных в формулах, описывающих нашу известную вселенную.

Что такое Потенциальная Энергия?

Потенциальная энергия — это энергия, накопленная внутри объекта. Эта накопленная энергия основана на состоянии, расположении или положении объекта.

В качестве альтернативы, вы можете представить ее как энергию, которая имеет «потенциал» для работы. При изменении состояния, расположения или положения объекта накопленная энергия высвобождается.

В то время как потенциальную энергию можно определить как скрытую энергию, накопленную в веществе в состоянии покоя, другая ее форма, называемая кинетической энергией, выражается веществом, находящимся в движении.

Типы потенциальной энергии

Существуют различные типы потенциальной энергии, каждый из которых связан с определенным типом силы.

Четыре основных типа:

  1. Гравитационная Потенциальная Энергия: энергия в объекте, когда она удерживается вертикально на некоторой высоте.
  2. Упругая потенциальная энергия: энергия, запасенная в объекте, когда он растягивается или сжимается.
  3. Потенциальная электрическая энергия: энергия в объекте за счет его заряда.
  4. Химическая потенциальная энергия: энергия, запасенная в химических связях вещества.

Каждый из них измеряется по-разному. Например, потенциальная энергия гравитации (PE) пропорциональна массе (m) объекта, силе тяжести (g) и высоте (h), на которой удерживается объект.

PE = m. g. h

Чем больше масса объекта и чем выше он удерживается, тем больше будет его потенциальная энергия. Как и все другие формы энергии, потенциальная энергия измеряется в килограммах-метрах в квадрате за секунду в квадрате (кг м2 / С2 ) или Джоуле (Дж).

Чтобы лучше объяснить этот феномен, мы собрали несколько интересных примеров потенциальной энергии, которую вы видите в своей повседневной жизни.

1. Маятник

Тип: Гравитационная потенциальная энергия

В простом маятнике, груз прикреплен к концу почти безмассовой нити, которая качается вокруг оси. Когда маятник качается взад и вперед, энергия превращается между потенциальной энергией и кинетической энергией.

Груз несет на одном конце максимальную потенциальную энергию. По мере того, как он под действием силы тяжести качается в самую нижнюю точку, его потенциальная энергия начинает преобразовываться в кинетическую энергию.

Потенциальная энергия груза достигает нуля (а кинетическая энергия достигает максимума) в самой нижней точке. К тому времени, когда он достигает другого конца, его кинетическая энергия полностью преобразуется в потенциальную энергию.

Процесс повторяется несколько раз, пока маятник не остановится. Поскольку часть энергии теряется в тепле и трении, вам нужна внешняя энергия, чтобы поддерживать движение маятника.

2. Камень на краю скалы

Тип: Гравитационная потенциальная энергия

Камень, расположенный на краю скалы, обладает потенциальной энергией, которая пропорциональна массе камня и высоте скалы. Если вы столкнете его с утеса, та же самая потенциальная энергия будет преобразована в кинетическую энергию.

Как вы можете видеть на изображении, тяжелый валун из песчаника опасно лежит на крутом склоне. Он обладает потенциальной энергией относительно склона, так как кажется, что он готов упасть в любой момент и скатиться на несколько метров в долину внизу.

3. Вода за плотинами

Тип: Гравитационная потенциальная энергия

Вода за плотиной гидроэлектростанции хранит огромную потенциальную энергию, так как она находится на гораздо более высоком уровне, чем вода с другой стороны плотины. Когда ворота таких плотин открываются, вода начинает падать, и накопленная потенциальная энергия преобразуется в кинетическую энергию, которая превращает турбины для производства электроэнергии.

Помимо производства электричества, водные плотины также строятся с целью контроля речного стока и регулирования наводнений.

4. Ветви деревьев

Тип: Гравитационная потенциальная энергия

Ветви деревьев обладают потенциальной энергией, потому что они могут упасть на землю. Чем тяжелее ветка и чем выше она находится к земле, тем больше потенциальной энергии она имеет.

Аналогичным образом, плод, свисающий с верхней ветви, также обладает некоторой потенциальной энергией. Когда плод падает, его энергия положения (потенциальная энергия) преобразуется в энергию движения (кинетическую энергию). И когда он ударяется о землю, кинетическая энергия преобразуется в тепловую энергию.

5. Американские горки

Тип: Гравитационная потенциальная энергия

Большинство американских горок используют гравитацию для перемещения вагонов по трассе. Большая цепь (прицепленная к нижней части вагонов) тянет вагоны на вершину первого холма, который является самой высокой точкой на американских горках. Как только вагоны достигают вершины холма, они освобождаются от цепи.

В американских горках работают две формы энергии: потенциальная энергия и кинетическая энергия. Одна из них преобразуется в другую на протяжении всей поездки, в то время как значительное количество энергии теряется из-за сопротивления воздуха и трения.

Потенциальная гравитационная энергия вагонов наименьшая в самой низкой точке американских горок и наибольшая в самой высокой точке.

6. Пружина

Тип: Эластичная потенциальная энергия

Энергия, накопленная в сжимаемых/растягивающихся объектах, называется эластичной потенциальной энергией. Чем больше объект может сжиматься/растягиваться, тем более упругая потенциальная энергия (U) у него есть. Она пропорциональна константе силы пружины (k) и длине струны сжатия/растяжения (x) в метрах.

Когда пружина растягивается или сжимается, она получает определенное количество потенциальной энергии. Это равно кинетической энергии, которая использовалась для растяжения или сжатия пружины.

Как только пружина высвобождается, потенциальная энергия снова преобразуется в кинетическую энергию. Однако процесс преобразования энергии не является полностью эффективным, так как значительная часть энергии теряется при нагревании и трении.

7. Лук и стрелы

Тип: Эластичная потенциальная энергия

Лук и стрела — это традиционная система оружия дальнего боя, которая состоит из упругого пускового инструмента (лук) и длинноствольных снарядов (стрел).

Лучник использует свои мышцы для приложения силы к струне, сгибая конечности назад. Сила, которую он оказывает на струну, известна как «вытягивание веса». Упругая энергия теперь является потенциальной энергией, которая может быть использована для запуска стрелки (путем освобождения струны).

Чем больше вы деформируете конечности, оттягивая их назад, тем больше вы увеличиваете накопленную потенциальную энергию. Очевидно, есть предел тому, сколько силы вы можете приложить, чтобы натянуть лук и сколько силы лук может выдержать без трещин.

8. Растянутые резинки

Тип: Эластичная потенциальная энергия

В тебя когда-нибудь стреляли из резинки? Если да, то вы знаете, что она содержит достаточно энергии, чтобы ударить в руку и вызвать боль.

Когда вы натягиваете резинку, вы вводите в нее определенное количество потенциальной энергии. А когда вы его высвобождаете, эта потенциальная энергия быстро преобразуется в кинетическую (двигательную) энергию.

9. Электрическая цепь

Тип: Электрическая потенциальная энергия

Когда мы соединяем электричество с электрическими цепями и устройствами, мы преобразуем энергию из одной формы в другую. Электронные схемы хранят (потенциальную) энергию и передают ее в другие формы, такие как свет, тепло или движение.

Подобно тому, как объекты под действием силы тяжести обладают гравитационной потенциальной энергией, заряды в электрическом поле обладают электрической потенциальной энергией.

Электрическая потенциальная энергия заряда показывает, сколько энергии он содержит. При приведении в движение электростатической силой эта накопленная энергия становится кинетической, и заряд действительно работает (что измеряется в джоулях).

Для любого заряда в электрическом поле его электрическая потенциальная энергия зависит от типа (отрицательного или положительного), количества заряда и его положения в поле.

10. Пища, которую мы едим

Тип: Химическая потенциальная энергия

Пища, которую мы едим, накапливает потенциальную химическую энергию. Когда она достигает нашего желудка, та же самая энергия превращается в другие формы, которые использует наше тело.

По мере того как связи между атомами в пище разрываются или ослабевают, происходит химическая реакция, образующая новые соединения. Энергия, генерируемая этой реакцией, поддерживает наше тепло, помогает нам двигаться и расти. Различные продукты питания содержат разное количество энергии.

11. Сухая древесина

Тип: Потенциальная химическая энергия

Сухие лесоматериалы содержат химическую энергию. Когда они сжигаются в камине, они высвобождают эту химическую энергию, которая в конечном итоге преобразуется в светлую и тепловую энергию. После химической реакции древесина превращается в новое вещество — золу.

12. Батареи АА

Тип: Химическая потенциальная энергия

Обычные батареи, такие как набор батарей типа АА, обладают потенциальной химической энергией, которая может быть преобразована в электрическую энергию.

Каждая батарея состоит из двух электродов (один катод и один анод). Между этими электродами находится гелеобразное вещество, называемое электролитом. Он состоит из заряженных частиц или ионов, которые соединяются с материалами электрода, вызывая химические реакции, которые позволяют батарее производить электрический ток.

ЭТО ИНТЕРЕСНО:  Что такое плотность тока в чем измеряется

Различные электроды и электролиты создают разные химические реакции, которые определяют эффективность батареи (сколько энергии она может хранить и ее напряжение).

13. Динамит

Тип: Химическая потенциальная энергияДинамит является еще одним ярким примером химической потенциальной энергии. Он состоит из нитроглицерина (очень нестабильного вещества), сорбентов (таких как порошкообразные оболочки или глина) и стабилизаторов.

При воспламенении нитроглицерин в динамите быстро взрывается, выделяя огромное количество азота и других газов вместе с теплом.

14. Бензин

Тип: Химическая потенциальная энергия

Когда вы заправляете свой автомобиль бензином, вы снабжаете его химической потенциальной энергией. Эта энергия содержится в различных химических веществах (в основном, органических соединениях, полученных путем фракционной перегонки нефти), которые составляют бензин.

Энергия высвобождается, когда бензин сжигается контролируемым образом в двигателе транспортного средства. Это потенциальное выделение энергии делает две вещи: часть энергии преобразуется в работу, которая используется для движения транспортного средства, а часть преобразуется в тепло, что делает двигатель автомобиля очень горячим.

15. Атомные электростанции

Тип: Ядерная потенциальная энергия

Ядерная потенциальная энергия-это потенциальная энергия субатомных частиц (таких как протоны и нейтроны), присутствующих внутри ядра атома. Она удерживает протоны и нейтроны вместе, образуя ядро.

Когда два или более атомных ядра объединяются, чтобы сформировать большое ядро (ядерный синтез), высвобождается огромное количество энергии. Точно так же, когда одно ядро распадается на два меньших ядра (деление ядер), оно высвобождает большое количество энергии.

Атомные электростанции используют такие ядерные реакции (в основном ядерное деление урана и плутония) для получения тепла, которое затем используется в паровых турбинах для производства электроэнергии.

По сравнению с другими источниками энергии атомные электростанции используют меньшее количество сырья, имеют нулевой выброс, являются более мощными и эффективными.

Источник: https://new-science.ru/15-luchshih-primerov-potencialnoj-energii/

Различия между потенциальной энергией и кинетической: что объединяет два вида энергии, в чём отличие одной от другой

Чем отличается потенциальная и кинетическая энергия

Одной из величин, характеризующих любое тело на Земле, является энергия. Предмет обладает ею, и сохраняя неподвижность, и совершая движение. При этом, чтобы заставить тело двигаться, требуется приложить какие-то усилия, для чего, в свою очередь, необходимо совершить работу. Измеряемая в Джоулях [Дж], эта величина может быть потенциальной и кинетической. Что объединяет эти понятия и в чём их отличие?

Потенциальная

Характеризующая тела, находящиеся в состоянии покоя, потенциальная энергия, является одной из составляющих механической. Она зависит от положения предметов в системе относительно друг друга и изменяется в процессе работы, совершаемой при их перемещении.

Ею наделено каждое тело, находящееся на определённом расстоянии от поверхности земли. Она проявляется в результате воздействия силы тяжести или упругости. Другими словами, физический смысл имеет не само значение потенциала, а происходящее с ним изменение.

Например, любой предмет, находящийся в руках, обладает потенциалом со знаком «+», а в результате падения, под воздействием силы тяжести эта величина становится отрицательной.

И, наоборот, при поднятии предмета, потенциал со знаком «–» превратится в положительный. Примером аналогичного процесса под воздействием силы упругости, может служить распрямление пружины.

Обозначениями рассматриваемого понятия, служат символы U или Ер.

Кинетическая

Энергия, которую приобретает тело, совершающее движение, называется кинетической. Она зависит от массы и скорости. На увеличение её значения влияет работа всех сил, которые участвуют в перемещении. Следовательно, в состоянии покоя эта величина равна 0.

Приобретает данный вид энергии любой, находящийся в движении предмет — например, едущий транспорт или катящийся с горы камень.

Что объединяет два вида энергии

Потенциал неподвижного тела, вместе с энергией, приобретаемой этим телом в движении, образует полную энергию, которая характеризует его способность производить механическую работу. Результатом различных процессов, происходящих в природе, быту или на производстве является переход этой величины из одного вида в другой и обратно.

Неподвижный предмет обладает потенциалом — его энергия только готовится к выпуску, она может воздействовать на окружающие тела, только в процессе превращения в другие виды. Приходя в движение, под воздействием определённого усилия, предмет становится обладателем кинетической энергии.

Человек, стоящий на месте, вода на закрытой дамбе, бутерброд, лежащий на столе — обладают потенциалом. Человек идущий, освобождённая от плотины вода, падающий со стола бутерброд — предметы, обладающие «кинетикой» или движением.

В чём отличие потенциальной энергии от кинетической

Потенциальной можно назвать нереализованную энергию предмета, который покоится — находится в неподвижном состоянии. Ею наделены взаимодействующие тела, между которыми есть расстояние. Кинетическая величина — характеристика тела, находящегося в движении. Это и определяет различия между понятиями.

Согласно закону сохранения, энергия никуда не исчезает и не может быть уничтожена. Две её силы, характеризующие предмет, отражают его текущее состояние и преобразуются одна в другую попеременно.

Источник: https://otlichaet.com/nauka-i-obrazovanie/potencialnaja-jenergija-i-kineticheskaja-jenergija-razlichija/

Чем отличается кинетическая энергия от потенциальной?

Для приведения любого тела в движение обязательным условием является произведение работы. При этом, для выполнения данной работы необходимо израсходовать некоторую энергию.

Энергия характеризует тело с точки зрения возможности производить работу. Единицей измерения энергии является Джоуль, сокращенно [Дж].

Полная энергия любой механической системы эквивалентна суммарному значению потенциальной и кинетической энергии. Поэтому, принято выделять потенциальную и кинетическую энергию в качестве разновидностей механической энергии.

Если речь ведется о биомеханических системах, то полная энергия таких систем состоит дополнительно из тепловой и энергии обменных процессов.

В изолированных системах тел, когда на них действуют лишь сила тяжести и упругости, величина полной энергии неизменна. Это утверждение является законом сохранения энергии.

Что же из себя представляет и тот, и другой вид механической энергии?

О потенциальной энергии

Потенциальная энергия это энергия, определяемая взаимным положением тел, либо составляющих этих тел, взаимодействующих друг с другом. Иными словами, эта энергия определяется величиной расстояния между телами.

К примеру, когда тело падает вниз и приводит в движение окружающие тела на пути падения, сила тяжести производит положительную работу. И, наоборот, в случае поднятия тела вверх, можно говорить о производстве отрицательной работы.

Формула потенциальной энергии

Следовательно, каждое тело при нахождении на определенном расстоянии от земной поверхности обладает потенциальной энергией. Чем больше высота и масса тела, тем больше значение работы, совершаемой телом. В то же время, в первом примере, при падении тела вниз, потенциальная энергия будет отрицательной, а при поднятии потенциальная энергия положительна.

Это объясняется равенством работы силы тяжести по значению, но противоположностью по знаку изменению потенциальной энергии.

Также примером возникновения энергии взаимодействия может служить предмет, подверженный упругой деформации — сжатая пружинка: при распрямлении ей будет производиться работа силы упругости. Здесь речь идет о совершении работы вследствие изменения расположения составляющих тела относительно друг друга при упругой деформации.

Подытожив информацию, отметим, что абсолютно каждый предмет, на который воздействует сила тяжести или сила упругости, будет обладать энергией разницы потенциалов.

О кинетической энергии

Кинетической является энергия, которой начинают обладать тела вследствие совершения процесса движения. Исходя из этого, кинетическая энергия тел, находящихся в покое, равняется нулю.

Формула кинетической энергии

Величина данной энергии эквивалентна величине работы, которую нужно совершить для выведения тела из состояния покоя и заставить его, тем самым, двигаться. Иными словами, кинетическую энергию можно выразить как разницу между полной энергией и энергией покоя.

Работа поступательного движения, которую производит движущееся тело, напрямую зависит от массы и скорости в квадрате. Работа вращательного движения зависит от момента инерции и квадрата угловой скорости.

Полная энергия движущихся тел включает в себя оба вида производимой работы, ее определяют, согласно следующему выражению: . Основные характеристики кинетической энергии:

  • Аддитивность – определяет кинетическую энергию как энергию системы, состоящую из совокупности материальных точек, и равную суммарной кинетической энергии каждой точки этой системы;
  • Инвариантностьотносительно поворота системы отсчета — кинетическая энергия независима от положения и направления скорости точки;
  • Сохранение – характеристика указывает, что кинетическая энергия систем неизменна при любых взаимодействиях, в случаях изменения только механической характеристики.

Примеры тел, обладающих потенциальной и кинетической энергией

Все предметы, поднятые и находящиеся на некотором расстоянии от земной поверхности в неподвижном состоянии, способны обладать потенциальной энергией. Как пример, это бетонная плита, поднятая краном, которая находится в неподвижном состоянии, взведенная пружина.

Кинетическую энергию имеют движущиеся транспортные средства, а также, в целом, любой катящийся предмет.

При этом, в природе, бытовых вопросах и в технике потенциальная энергия способна переходить в кинетическую, а кинетическая, в свою очередь, наоборот, в потенциальную энергию.

Мяч, который бросают с некоторой точки на высоте: в самом верхнем положении потенциальная энергия мячика максимальна, а значение кинетической энергии равно нулю, поскольку мяч не движется и пребывает в состоянии покоя. При снижении высоты потенциальная энергия соответственно постепенно уменьшается. Когда мячик достигнет земной поверхности, то он покатится; в данный момент кинетическая энергия увеличивается, а потенциальная будет равна нулю.

Некоторые тела могут обладать в одно и то же время обоими разновидностями механической энергии. В качестве примера приведем воду, которая падает вниз с плотины, маятники, летящие стрелы.

Вывод — чем отличается кинетическая энергия от потенциальной?

Подводя итог, отметим, что и та, и другая энергия являются разновидностями механической энергии. Главное их отличие: потенциальной энергией является энергия взаимодействующих тел, находящихся на расстоянии, а кинетическая представляет собой энергию движения данных тел.

Источник: https://vchemraznica.ru/chem-otlichaetsya-kineticheskaya-energiya-ot-potencialnoj/

Пояснение, чем кинетическая энергия отличается от потенциальной

Любое тело на Земле, имеющее вес, обладает энергией. Предмет располагает ею не только при наличии скорости движения, но и при ее отсутствии. Как это получается, в чем кинетическая энергия отличается от потенциальной, что они из себя представляют и есть ли связь между ними?

Физические тела на нашей планете пребывают в двух состояниях: покоя и движения. Каждое из этих положений характеризуется противоположными видами механической энергии: в первом случае – потенциальной, во втором случае – кинетической. Ее расход необходим при совершении работы по перемещению объекта в пространстве. В международной системе СИ единицей измерения признан Джоуль, сокращенно Дж.

Состояние покоя

Для понимания, чем кинетическая энергия отличается от потенциальной, определимся с сущностью каждой из них. Потенциальная энергия определяется расположением тел и его составляющих относительно друг друга. Она проявляется при влиянии силы тяжести или упругости на какое-либо физическое тело. В формуле выражается так:

Кинетическая энергия увеличивается с ростом веса тела и высоты предмета относительно наблюдаемой системы отсчета, которой чаще всего выступает Земля.

При нахождении тела над землей потенциальная энергия будет положительной (при отрицательной работе силы тяжести), а при падении тела — отрицательной (при отрицательной работе силы тяжести). В горизонтальном направлении она наблюдается при рассмотрении силы упругости, появляющейся при распрямлении пружины. Примерами тел, обладающих ею, являются любые поднятые над землей объекты: яблоко, мяч, бетонная плита. По значению равна силе тяжести или упругости с противоположным знаком.

Состояние движения

Для детального пояснения, чем потенциальная энергия отличается от кинетической, обозначим природу тел в состоянии движения. Кинетическая энергия появляется у физического тела в результате движения. При поступательном движении формула ее нахождения выглядит так:

Это свидетельствует о присутствии зависимости от скорости движения и массы тела. При скорости, равной 0 (что соответствует состоянию покоя), ее значение будет составлять 0. Она тождественно равна работе, совершаемой при движении тела.

Помимо поступательного движения, существует вращательный тип передвижения, при котором работа определяется моментом инерции и угловой скоростью.

Объект может обладать кинетической энергией при пребывании на Земле в положении покоя, если в качестве системы отсчета взят другой объект Солнечной системы вместо Земли (Луна, Солнце).

Примерами тел с кинетической энергией являются перемещающиеся транспортные средства, любое катящееся физическое тело.

Одновременное сосуществование двух сил

Значения кинетической и потенциальной энергии для некоторых тел одновременно могут быть ненулевыми.

В целом можно проследить переход из одной в другую и наоборот. Например, мальчик отпускает мяч сверху вниз. В момент покоя над землей в руках мальчика кинетическая энергия равняется 0, а потенциальная энергия имеет максимальное значение по модулю, так как движение полностью отсутствует. При падении в самой нижней точке около земли, перед ударом, их значения поменяются на противоположные.

Летающие стрелы, маятники, падающая с плотины вода выступают наглядными примерами сосуществования двух сил.

Ключевое отличие между силами покоя и движения

Между определениями кинетической и потенциальной энергии существует разница, и она заключается в сущности самих разновидностей механических сил. Потенциальная энергия характеризует нереализованную сторону предмета в состоянии покоя, а кинетическая энергия описывает предмет в состоянии движения.

Согласно закону сохранения энергии, эти две силы, характеризующие состояние физического предмета, никуда не исчезают, а попеременно переходят из одной в другую. Это и является объяснением того, чем кинетическая энергия отличается от потенциальной.

Источник: https://www.nastroy.net/post/poyasnenie-chem-kineticheskaya-energiya-otlichaetsya-ot-potentsialnoy

Энергия — это Потенциальная и кинетическая энергия. Что такое энергия в физике?

Энергия – это то, благодаря чему существует жизнь не только на нашей планете, но и во Вселенной. При этом она может быть очень разной. Так, тепло, звук, свет, электричество, микроволны, калории представляют собой различные виды энергии.

ЭТО ИНТЕРЕСНО:  Что такое синусоидальное напряжение

Для всех процессов, происходящих вокруг нас, необходима эта субстанция. Большую часть энергии все сущее на Земле получает от Солнца, но имеются и другие ее источники.

Солнце передает ее нашей планете столько, сколько бы выработали одновременно 100 млн самых мощных электростанций.

Что такое энергия?

В теории, выдвинутой Альбертом Эйнштейном, изучается взаимосвязь материи и энергии. Этот великий ученый смог доказать способность одной субстанции превращаться в другую. При этом выяснилось, что энергия является самым важным фактором существования тел, а материя вторична.

Энергия – это, по большому счету, способность выполнять какую-то работу. Именно она стоит за понятием силы, способной двигать тело или придавать ему новые свойства.

Что же означает термин «энергия»? Физика – это фундаментальная наука, которой посвятили свою жизнь многие ученые разных эпох и стран. Еще Аристотель использовал слово «энергия» для обозначения деятельности человека.

В переводе с греческого языка «энергия» — это «деятельность», «сила», «действие», «мощь». Первый раз это слово появилось в трактате ученого-грека под названием «Физика».

В общепринятом сейчас смысле данный термин был введен в обиход английским ученым-физиком Томасом Юнгом. Это знаменательное событие произошло в далеком 1807 году. В 50-х годах XIX в. английский механик Уильям Томсон впервые использовал понятие «кинетическая энгергия», а в 1853 г. шотландский физик Уильям Ренкин ввел термин «потенциальная энергия».

Сегодня эта скалярная величина присутствует во всех разделах физики. Она является единой мерой различных форм движения и взаимодействия материи. Другими словами, она представляет собой меру преобразования одних форм в другие.

Единицы измерения и обозначения

Количество энергии измеряется в джоулях (Дж). Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:

  • W – полная энергия системы.
  • Q – тепловая.
  • U – потенциальная.

Виды энергии

В природе существует множество самых разных видов энергии. Основными из них считаются:

  • механическая;
  • электромагнитная;
  • электрическая;
  • химическая;
  • тепловая;
  • ядерная (атомная).

Есть и другие виды энергии: световая, звука, магнитная. В последние годы все большее число ученых-физиков склоняются к гипотезе о существовании так называемой «темной» энергии. Каждый из перечисленных ранее видов данной субстанции имеет свои особенности. Например, энергия звука способна передаваться при помощи волн.

Они способствуют возникновению вибрации барабанных перепонок в ухе людей и животных, благодаря которой можно слышать звуки. В ходе различных химических реакций высвобождается энергия, необходимая для жизнедеятельности всех организмов.

Любое топливо, продукты питания, аккумуляторы, батарейки являются хранилищем этой энергии.

Наше светило дает Земле энергию в виде электромагнитных волн. Только так она может преодолеть просторы Космоса. Благодаря современным технологиям, таким как солнечные батареи, мы можем использовать ее с наибольшим эффектом. Излишки неиспользованной энергии аккумулируются в особых энергохранилищах. Наряду с вышеперечисленными видами энергии часто используются термальные источники, реки, приливы и отливы океана, биотопливо.

Механическая энергия

Этот вид энергии изучается в разделе физики, называемом «Механикой». Она обозначается буквой Е. Ее измерение осуществляется в джоулях (Дж).

Что собой представляет эта энергия? Физика механики изучает движение тел и взаимодействие их друг с другом либо с внешними полями.

При этом энергия, обусловленная движением тел, называется кинетической (обозначается Ек), а энергию, обусловленную взаимодействием тел или внешних полей, именуют потенциальной (Еп). Сумма движения и взаимодействия представляет собой полную механическую энергию системы.

Для расчета обоих видов существует общее правило. Для определения величины энергии следует вычислить работу, необходимую для перевода тела из нулевого состояния в данное состояние. При этом чем больше работа, тем большей энергией будет обладать тело в данном состоянии.

Разделение видов по разным признакам

Существует несколько видов разделения энергии. По разным признакам ее делят на: внешнюю (кинетическую и потенциальную) и внутреннюю (механическую, термическую, электромагнитную, ядерную, гравитационную). Электромагнитная энергия в свою очередь подразделяется на магнитную и электрическую, а ядерная – на энергию слабого и сильного взаимодействия.

Закон сохранения энергии

Одним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии.

Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее – в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет.

После этого энергия уходит в окружающее пространство.

Закон энергии способен объяснить многие физические явления. Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой.

В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени — величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени.

Особенности энергии

Энергия – это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент импульса, импульс. Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени.

Внутрення энергия тел

Она представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы.

Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы.

Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях.

Внутренняя энергия газа

Помимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве.

Использование энергии

С каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к невозобновимым ресурсам.

К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях.

Невозобновляемые ресурсы имеют следующие запасы (в джоулях):

  • ядерная энергия – 2 х 1024;
  • энергия газа и нефти – 2 х 10 23;
  • внутренне тепло планеты – 5 х 1020.

Годовая величина возобновляемых ресурсов Земли:

  • энергия Солнца – 2 х 1024;
  • ветер – 6 х 1021;
  • реки — 6,5 х 1019;
  • морские приливы — 2,5 х 1023.

Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии.

Источник: https://FB.ru/article/238418/energiya---eto-potentsialnaya-i-kineticheskaya-energiya-chto-takoe-energiya-v-fizike

Потенциальная энергия, ее определение, виды и формулы

Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии.

А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения.

Это нам пригодится в дальнейшем для вывода формул различных видов энергии.

Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.

Виды потенциальной энергии

Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.

Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.

Знакомьтесь: наш мир. Физика всего на свете.

Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

Купить

Формулы потенциальной энергии

Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается.

К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается.

Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.

А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:

А = F*s = mg*s = mg*(h1 — h2) = mgh1 — mgh2 = Eп1 — Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.

Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп < 0.

Отметим также и то, что в формуле работы отсутсвовал cosa. Это не случайно. Ведь если тело движется по сложной траектории, то, какой бы сложной она ни была, её можно разбить на множество вертикальных и горизонтальных участков. Но на горизонтальных участках работа силы тяжести будет равна нулю, так как угол между силой тяжести и перемещением будет прямым, а значит работа будет совершаться только на вертикальных участках траектории, для которых cosa = 1 или cosa = −1.

Тогда можно сделать ещё один важный вывод — работа силы тяжести не зависит от формы траектории, а только от расположения начальной и конечной точки. А это не случайность — это свойство любых сил, сообщающих телам потенциальную энергию. Такие силы называют потенциальными и сила тяжести — одна из них. К потенциальным силам относится и сила упругости.

Б) Чтобы вывести формулу потенциальной энергии упругой деформации, рассмотрим, какую работу нужно совершить, чтобы растянуть пружину, изменив её длину на х (х = l — l0):

А = –Fупр(ср.)*s,

Во-первых, знак минус в формуле стоит потому, что угол между силой упругости и перемещением свободного конца пружины равен 180 градусов и cosa = −1.

Во-вторых, возникающая при растяжении пружины сила упругости является переменной силой, в отличие от силы тяжести, поэтому в формуле работы стоит средняя сила упругости. При этом величина силы упругости, в соответствии с законом Гука, прямо пропорциональна изменению длины пружины, а значит её среднее значение можно определить так:

Fупр(ср.) = (Fупр(нач.) + Fупр(конеч.))/2

И так как Fупр(нач.) = 0, а Fупр(конеч.) = kх, то:

А = —kх*s/2

Но s = x, поэтому: А = —kx2/2 = 0 — kх2/2 = Еп1 — Еп2.

В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx2/2.

Методические советы учителям

1) Обязательно обратите внимание учащихся на связь энергии и работы.

2) Не давайте учащимся формулы потенциальной энергии без вывода.

3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.

4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.

5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/potentsialnaya-energiya/

Пояснение, чем кинетическая энергия отличается от потенциальной :

Любое тело на Земле, имеющее вес, обладает энергией. Предмет располагает ею не только при наличии скорости движения, но и при ее отсутствии. Как это получается, в чем кинетическая энергия отличается от потенциальной, что они из себя представляют и есть ли связь между ними?

Физические тела на нашей планете пребывают в двух состояниях: покоя и движения. Каждое из этих положений характеризуется противоположными видами механической энергии: в первом случае – потенциальной, во втором случае – кинетической. Ее расход необходим при совершении работы по перемещению объекта в пространстве. В международной системе СИ единицей измерения признан Джоуль, сокращенно Дж.

ЭТО ИНТЕРЕСНО:  Как узнать силу тока по мощности

Потенциальная энергия пружины и кинетическая – что это, какая формула?

Во многих механизмах используется потенциальная и кинетическая энергия пружины. Их используют для выполнения различных действий.

В отдельных узлах они фиксируют детали в определенном положении, не позволяя смещать в какую-либо сторону (барабан револьвера относительно корпуса).

Другие пружинные системы возвращают исполнительный механизм в исходное положение (курок ручного огнестрельного оружия). Есть устройства, где узлы с гибкими свойствами совершают перемещения в устойчивое положение (механические стабилизаторы).

Работа связана с изменением геометрических параметров упругого тела. Прилагая нагрузку, заставляют эластичную деталь сжиматься (растягиваться или изгибаться). При этом наблюдается запасание энергии. Возвратное действие сопровождается набором скорости. Попутно возрастает кинетическая энергия.

Потенциальная энергия пружины

Рассматривая в качестве накопителя энергии пружину, следует отметить ее отличительные свойства от иных физических тел, которые могут накапливать энергетический потенциал. Традиционно понимается следующее: для накопления потенциала для последующего движения необходимо совершение движения в силовом поле:

Еп = F ⋅ l, Дж (Н·м),

где Еп– потенциальная энергия положения, Дж;
F – сила, действующая на тело, Н;
l – величина перемещения в силовом поле, м.

Энергия (работа) измеряются в Джоулях. Величина представляет произведение силы (Н) на величину перемещения (м).

Если рассматривать условие в поле тяготения, то величина силы находится произведением ускорения свободного падения на массу. Здесь сила веса находится с учетом g:

Еп = G ⋅ h = m ⋅ g ⋅ h, Дж

здесь G – вес тела, Н;
m – масса тела, кг;
g – ускорение свободного падения. На Земле эта величина составляет g = 9,81 м/с².

Если расстраивается пружина, то силу F нужно определять, как величину, пропорциональную перемещению:

F = K ⋅ x, Н,

где k – модуль упругости, Н/м;
х – перемещение при сжатии, м.

Величина сжатия может изменяться по величине, поэтому математики предложили анализировать подобные явления с помощью бесконечно малых величин (dx) .

При наличии непостоянной силы, зависящей от перемещения, дифференциальное уравнение запишется в виде:

dEп = k ⋅ x ⋅ dx

здесь dEп – элементарная работа, Дж;
dx – элементарное приращение сжатия, Н.

Интегральное уравнение на конечном перемещении запишется в виде. Ниже вывод формулы:

Пределами интегрирования является интервал от до х. Деформированная пружина приобретает запас по энергетическим показателям

Окончательно формула для расчета величины потенциальной энергии сжатия (растягивания или изгиба) пружины запишется формулой:

Закон сохранения механической энергии

Закон сохранения энергии существует независимо от желания наблюдателя. Все физические законы имеют статистический характер: существуют только подтверждения их выполнения, нет ни одного адекватно выполненного опыта, при котором наблюдается нарушение этой закономерности. Природные явления только подтверждают сохранность работы и энергозатрат, затраченных на ее выполнение.

На основании изложенного сформулировано положение:

где Ек – кинетическая энергия, Дж.

Рассматривая перемещения тела, наблюдаются изменения потенциальной и кинетической энергий. При этом сумма значений остается постоянной.

Проще всего проследить за изменениями между разными видами энергетических показателей при рассмотрении движения маятника.

Из крайнего положения (шарик на нити отклонился в одну из сторон, Еп = max) тело движется под действием силы тяжести. При этом снижается запасенная энергия. Движение сопровождается увеличением скорости. Поэтому нарастают показатели динамического перемещения Ек.

В нижней точке не остается никаких запасенных эффектов от положения шарика. Он опустился да минимума. Теперь Ек =max.

Поучается, при совершении гармонических колебаний маятник поочередно накапливает то один, то другой вид энергии. Механические превращения из одного вида в другой налицо.

Кинетическая энергия

Движущееся тело характеризуется скалярной величиной (масса) и векторная величина (скорость). Если рассматривать реальное перемещение в пространстве, то можно записать уравнение для определения кинетической энергии:

здесь v – скорость движения тела, м/с.

Использование кинетического преобразования можно наблюдать при колке орехов.

Приподняв камень повыше, далекие предки создавали необходимый потенциал для тяжелого тела.

Приподняв камень на максимальную высоту, разрешают ему свободно падать.

Двигаясь с высоты h, он набирает скорость

Поэтому в конце падения будет получена кинетическая энергия

Рассматривая входящие величины, можно увидеть, как происходит преобразование величин. В конце получается расчетная формула для определения потенциальной энергии.

Даже на уровне вывода зависимостей можно наблюдать выполнение закона сохранения энергии твердого тела.

Использование энергии пружины на практике

Явление преобразования потенциальной энергии пружины в кинетическую используется при стрельбе из лука.

Натягивая тетиву, стреле сообщается потенциал для последующего движения. Чем жестче лук, а также ход при натягивании тетивы, тем выше будет запасенная энергия. Распрямляясь дуги этого оружия, придадут метательному снаряду значительную скорость.

В результате стрела полетит в цель. Ее поражающие свойства определятся величиной кинетической энергии (mv²/2).

Для гашения колебаний, возникающих при движении автомобиля, используют амортизаторы. Основным элементом, воспринимающим вертикальную нагрузку, являются пружины. Они сжимаются, а потом возвращают энергию кузову. В результате заметно снижается ударное воздействие. Дополнительно устанавливается гидроцилиндр, он снижает скорость обратного движения.

Рассмотренные явления используют при проектировании механизмов и устройств для автоматизации процессов в разных отраслях промышленности.

закон Гука и энергия упругой деформации.

Источник: https://metmastanki.ru/energiya-pruzhiny

Кинетическая и потенциальная энергия — определение, теоремы и формулы расчетов

Ещё в древности энергию определяли как свойство или способность, которые тела и вещества должны производить вокруг себя и которые во время преобразований обмениваются через два механизма: в форме работы или тепла.

Правда, тогда еще не знали, что таким образом выполняется закон сохранения энергии.

Но кроме физических изменений, проявляющихся, например, в подъёме объекта, его транспортировке, деформации или нагревании, энергия также присутствует в химических изменениях, таких как сжигание куска дерева или разложение воды электрическим током.

Энергия — это способность тела работать, а также сила, которая выполняет работу. Она может быть представлена в виде различных переходных форм:

  • тепловой;
  • механической;
  • химической;
  • электрической;
  • ядерной.

В физике самая важная форма называется механической энергией. Это сумма и определение потенциальной и кинетической энергии, формула которой: E = Ek + Wp.

Энергия движения

Кинетическая энергия тела — это та, которой тело обладает благодаря своему движению. Её определяют как силу, необходимую для ускорения тела определённой массы от покоя до максимальной указанной скорости. Как только достигается ускорение, тело сохраняет энергию, если скорость не изменяется. Чтобы тело вернулось в состояние покоя, необходима отрицательная работа той же величины.

Единица измерения кинетической энергии — джоуль. Обычно она обозначается буквой E c или E k. Расчёт мощности измеряется по-разному. Для того чтобы найти её количество можно использовать онлайн-калькулятор.

История и определение

Прилагательное «кинетический» в названии произошло от древнегреческого слова кίνησις kinēsis, что означает «движение».

Идею связи классической механики и кинематической энергии впервые выдвинули Готфрид Вильгельм Лейбниц и Даниэль Бернулли. Учёный Грейвсанд из Нидерландов предоставил экспериментальное подтверждение этой связи.

Но первые теоретические выкладки этих идей приписаны Гаспар-Гюстав Кориолису, который в 1829 году опубликовал статью, где была изложена математика этого процесса. Сам термин появился в 1849 году благодаря Уильяму Томсону, более известному как лорд Кельвин.

Теорема о кинетической энергии гласит: изменение кинетической силы тела равно работе равнодействующей всех сил, действующих на тело. Эта теорема справедлива независимо от того, какие силы действуют на тело.

Часто различают кинетическую силу поступательного и вращательного движения. Как и любая физическая величина, которая является функцией скорости, она не только зависит от внутренней природы этого объекта, но также зависит от отношений между объектом и наблюдателем (в физике наблюдатель формально определяется классом определённая система координат, называемая инерциальной системой отсчёта).

Эта энергия деградирует и сохраняется в каждой трансформации, теряя способность совершать новые трансформации, но она не может быть создана или разрушена, только трансформирована, поэтому её сумма во вселенной всегда постоянна.

Кинематика системы частиц

Для частицы или для твёрдого тела, которое не вращается, кинетическая энергия падает до нуля, когда тело останавливается. Однако для систем, которые содержат много частиц с независимыми движениями, это не совсем верно.

Для твёрдого тела, которое вращается, полная кинетическая сила может быть разбита на две суммы: энергия перемещения, связанная со смещением центра масс тела в пространстве, и вращения (с вращательным движением с определённой угловой скоростью).

Потенциальная энергия

Этот термин был введён в XIX веке учёным Уильямом Ренкином и связан с механической энергией, которая зависит от расположения тела в силовом поле (гравитационное, электростатическое и т. д. ) или с наличием силового поля внутри тела.

Теорема о потенциальной энергии утверждает, что она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Независимо от силы, её порождающей, потенциальная энергия, которой обладает физическая система, хранится благодаря своему положению и / или конфигурации, в чём и заключается её различие с кинетической энергией.

Значение потенциала всегда зависит от нахождения или конфигурации, выбранной для её измерения, поэтому иногда говорят, что физически имеет значение только его изменение отношений между двумя конфигурациями.

Потенциальная энергия присутствует не только в классической физике, но также в релятивистской и квантовой физике. Эта концепция также была распространена на физику элементарных частиц.

Смысл потенциальной силы связан с работой, выполняемой силами физической системы для перемещения её из одного состояния в другое. А её функция будет существенно зависеть от типа силового поля или взаимодействия, действующего на систему.

Это относится, например, к атомной физике при получении электронных состояний атома или к молекулярной физике для получения таких состояний молекулы, как:

  • электронных;
  • вибрационных;
  • вибрационно-вращательных;
  • вращательных.

В других более общих формулировках физики потенциальная функция также играет важную роль. Среди них лагранжева и гамильтонова формулировки механики.

Гравитационная сила

Потенциальной гравитацией обладают тела в силу того, что они имеют массу и находятся на определённом взаимном расстоянии. Среди огромных масс действуют силы притяжения.

Применительно, например, к планетарному движению, основная масса солнечной системы состоит из массы Солнца, которая создаёт гравитационное силовое поле, воздействующее на малые массы планет.

В свою очередь, каждая планета создаёт такое же поле, которое воздействует на второстепенные тела, находящиеся на её поверхности. Зависимость силы тяжести от высоты можно изобразить на графике. При увеличении массы тела линейно увеличивается и она.

Энергия упругой деформации

Эластичность — это свойство определённых материалов, благодаря которому, будучи деформированными, растянутыми или отделёнными от своего исходного положения, они могут восстановить своё первоначальное состояние или равновесие. Восстановительными силами, ответственными за восстановление, являются силы упругости, как в случае пружин, резиновых полос или струн музыкальных инструментов.

Многие древние военные машины использовали эти силы для запуска объектов на расстоянии, таких как дуга, которая стреляет стрелой, арбалет или катапульта. Вибрации или колебания материальных объектов, вызванные упругими силами, являются источником звуковых волн. Силы восстановления, когда объект восстанавливает свою первоначальную форму практически без какого-либо демпфирования или деформации, являются консервативными, и может быть получена упругая сила.

Пружина является примером упругого объекта, который точно восстанавливает первоначальную форму: при растяжении он создаёт упругую силу, стремящуюся вернуть его к первоначальной длине. Экспериментально подтверждено, что эта восстановительная сила пропорциональна растянутой длине пружины. Способ выразить эту пропорциональность между силой и растянутой суммой — через закон Гука.

Коэффициент пропорциональности при этой деформации зависит от типа материала и рассматриваемой геометрической формы. Для твёрдых тел сила упругости обычно описывается в терминах величины деформации, вызванной растягивающей силой, возникающей в результате этого растяжения, называемого упругостью или модулем Юнга. Для жидкостей и газов это выражается изменением давления, способного вызвать изменение объёма, и называется модулем сжимаемости.

Одним из свойств упругости твёрдого тела или жидкости при растяжении или деформации является то, что растяжение или деформация пропорциональны приложенному усилию. То есть для создания двойного растяжения потребуется двойная сила. Эта линейная зависимость смещения от приложенной силы известна как закон Гука.

Прикладное значение

Потенциальная электростатическая энергия может храниться с помощью конденсаторов. Конденсатор — это устройство, которое накапливает её внутри. Чтобы сохранить электрический заряд, он использует две проводящие поверхности, как правило, в форме листов или пластин, разделённых диэлектрическим материалом (изолятором). Эти платы являются электрически заряженными при подключении к источнику питания.

Две пластины имеют одинаковую величину, но с разными знаками, причём величина нагрузки пропорциональна приложенной разности потенциалов. Константа пропорциональности между зарядом, приобретённым конденсатором, и разностью потенциалов, достигнутой между двумя пластинами, называется ёмкостью конденсатора:

Области применения конденсаторов многочисленны в области электроники, и, следовательно, они также предназначены для бытовых приборов. В современных технологических приложениях их используют:

  • в компьютерах;
  • в средствах связи;
  • в видео, аудиоплеерах и т. д.

В этих применениях современной технологии конденсаторы способны накапливать электростатическую энергию в течение коротких периодов времени и с не слишком высокими значениями.

Источник: https://nauka.club/fizika/kinetichesk%D0%B0y%D0%B0-i-potentsialn%D0%B0y%D0%B0-energi%D1%83%D0%B0.html

Понравилась статья? Поделиться с друзьями:
Электрогенератор
Как образуется молния кратко

Закрыть