Чем характеризуется электромагнитное поле

Электромагнитное излучение: источники, влияние и защита — Asutpp

Чем характеризуется электромагнитное поле

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение — это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля,  позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Шкала электромагнитных излучений

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты,  ядерного синтеза в недрах солнца — все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Приборы источники электромагнитного излучения

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Как влияет электромагнитное излучение на людей.

Источник: https://www.asutpp.ru/elektromagnitnoe-izluchenie.html

Электромагнитное поле — Гипермаркет знаний

Чем характеризуется электромагнитное поле

Гипермаркет знаний>>Физика и астрономия>>Физика 9 класс>>Физика: Электромагнитное поле

Электромагнитное поле

Электромагнитное поле относится к такому виду материи, которая возникает вокруг движущихся зарядов. Оно состоит из электрического, а также магнитного полей. Их существование взаимосвязано, так как существовать отдельно и независимо друг от друга они не могут, потому что, одно поле порождает другое.

А теперь попробуем подойти к теме электромагнитного поля более подробно. Из определения можно сделать вывод, что в случае изменения электрического поля появляются предпосылки к возникновению магнитного поля. А так как электрическое поле имеет свойство со временем изменяться и его нельзя назвать неизменным, то магнитное поле также является переменным.

При изменении одного поля, порождается другое. И независимо от того, каким будет последующее поле, источником будет служить предыдущее поле, то есть проводник с током, а не первоначальный его источник.

И даже в том случае, когда в проводнике будет отключен ток, все равно электромагнитное поле никуда не исчезнет, а будет продолжать существовать и распространятся в пространстве.

Теория Максвелла. Вихревое электрическое поле

Джеймсом Клерком Максвеллом, известным британским физиком в 1857 году была написана работа, в которой он привел доказательства того, что такие поля, как электрическое и магнитное тесно связаны между собой.

По его теории следовало, что переменное магнитное поле имеет свойство создавать такое новое ЭП, которое отличается от предыдущего электрического поля, созданного при помощи источника тока, так как это новое электрическое поле является вихревым.

И здесь мы с вами видим, что вихревым электрическим полем является такое поле, у которого силовые линии являются замкнутыми. То есть, следует отметить, что у электрического поля линии такие же замкнутые, как и у магнитного поля.

Из этого следует вывод, что переменное магнитное поле способно создавать вихревое электрическое поле, а вихревое электрическое поле имеет способность заставить двигаться заряды. И в итоге мы получаем индукционный электрический ток.Из работы Максвелла следует, что такие поля, как электрическое и магнитное тесно существуют друг с другом.

То есть, для существования магнитного поля необходим движущийся электрический заряд. Ну а электрическое поле создается благодаря покоящемуся электрическому заряду. Вот такая прозрачная взаимосвязь существует между полями. Из этого мы можем сделать еще один вывод, что в разных системах отсчета можно наблюдать различные виды полей.

Если следовать теории Максвелла, то можно подвести итог, что переменные электрические и магнитные поля не способны существовать по отдельности, ведь при изменении магнитное поле порождает электрическое, а меняющееся электрическое поле порождает магнитное.

Природные источники электромагнитных полей

Для современного человека не является секретом тот факт, что электромагнитные поля хоть и остаются невидимыми нашему глазу, но окружают нас повсюду.

К природным источникам ЭМП относятся:

• Во-первых, это постоянное электрическое и магнитное поло Земли.• Во-вторых, к таким источникам относятся радиоволны, преобразовывающие такие космические источники, как Солнце, звезды и т.д.• В-третьих, этими источниками выступают и такие атмосферные процессы, как разряды молний и т.д.

Антропогенные (искусственные) источники электромагнитных полей

Кроме природных источников появления ЭМП, они еще возникают и благодаря антропогенными источниками. К таким источникам можно отнести рентгеновские лучи, которые используют в медицинских учреждениях. Они используются и для передачи информации при помощи различных радиостанций, станций мобильной связи и также ТВ антенн. Да и электричество, которое есть в каждой розетке, также образовывает ЭМП, но правда, более низкой частоты.

Влияние ЭМП на здоровье человека

Современное общество в настоящее время не мыслит своей жизни, без таких благ цивилизации, как присутствие различной бытовой техники, компьютеров, мобильной связи. Они, конечно же, облегчают нашу жизнь, но создают вокруг нас электромагнитные поля. Естественно, мы с вами ЭМП не можем видеть, но они нас окружают повсюду. Они присутствуют в наших домах, на работе и даже в транспорте.

Можно смело сказать, что современный человек живет в сплошном электромагнитном поле, которое, к сожалению, оказывает огромное влияние на здоровье человека.

При длительном влиянии электромагнитного поля на организм человека, появляются такие неприятные симптомы, как хроническая усталость, раздражительность, нарушение сна, внимания и памяти.

Такое продолжительное воздействие ЭМП способно вызвать у человека головную боль, бесплодие, нарушения в работе нервной и сердечной систем, а так же появление онкологических заболеваний.

Источник: https://edufuture.biz/index.php?title=%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5

Электромагнитное поле, его влияние на человека, измерение и защита

Чем характеризуется электромагнитное поле

  • Что такое электромагнитное поле, как оно влияет на здоровье человека и зачем его измерять — вы узнаете из этой статьи. Продолжая знакомить вас с ассортиментом нашего магазина, расскажем о полезных приборах — индикаторах напряженности электромагнитного поля (ЭМП). Они могут применяться как на предприятиях, так и в быту. 

    Что такое электромагнитное поле?

    Современный мир немыслим без бытовой техники, мобильных телефонов, электричества, трамваев и троллейбусов, телевизоров и компьютеров. Мы привыкли к ним и совершенно не задумываемся о том, что любой электрический прибор создает вокруг себя электромагнитное поле. Оно невидимо, но влияет на любые живые организмы, в том числе и на человека.Электромагнитное поле — особая форма материи, возникающая при взаимодействии движущихся частиц с электрическими зарядами. Электрическое и магнитное поле взаимосвязаны друг с другом и могут порождать одно другое — именно поэтому, как правило, о них говорят вместе как об одном, электромагнитном поле.

    К основным источникам электромагнитных полей относят:

    — линии электропередач;— трансформаторные подстанции;— электропроводку, телекоммуникации, кабели телевидения и интернета;— вышки сотовой связи, радио- и телевышки, усилители, антенны сотовых и спутниковых телефонов, Wi-Fi роутеры;— компьютеры, телевизоры, дисплеи;— бытовые электроприборы;— индукционные и микроволновые (СВЧ) печи;— электротранспорт;— радары.

Влияние электромагнитных полей на здоровье человека

Электромагнитные поля влияют на любые биологические организмы — на растения, насекомых, животных, людей.

Ученые, изучающие влияние ЭМП на человека, пришли к выводу, что длительное и регулярное воздействие электромагнитных полей может привести к:— повышенной утомляемости, нарушениям сна, головным болям, снижению давления, снижению частоты пульса;— нарушениям в иммунной, нервной, эндокринной, половой, гормональной, сердечно-сосудистой системах;— развитию онкологических заболеваний; — развитию заболеваний центральной нервной системы;

— аллергическим реакциям.

Защита от ЭМП

Существуют санитарные нормы, устанавливающие максимально допустимые уровни напряженности электромагнитного поля в зависимости от времени нахождения в опасной зоне — для жилых помещений, рабочих мест, мест возле источников сильного поля.

Если нет возможности уменьшить излучение конструкционно, например, от линии электромагнитных передач (ЭМП) или сотовой вышки, то разрабатываются служебные инструкции, средства защиты для работающего персонала, санитарно-карантинные зоны ограниченного доступа.

Различные инструкции регламентируют время пребывания человека в опасной зоне. Экранирующие сетки, пленки, остекление, костюмы из металлизированной ткани на основе полимерных волокон способны снизить интенсивность электромагнитного излучения в тысячи раз. По требованию ГОСТа зоны излучения ЭМП ограждаются и снабжаются предупреждающими табличками «Не входить, опасно!» и знаком опасности электромагнитного поля.

Специальные службы с помощью приборов постоянно контролируют уровень напряженности ЭМП на рабочих местах и в жилых помещениях. Можно и самостоятельно позаботиться о своем здоровье, купив портативный прибор «Импульс» или комплект «Импульс» + нитрат-тестер «SOEKS».

Зачем нужны бытовые приборы измерения напряженности электромагнитного поля?

Электромагнитное поле негативно влияет на здоровье человека, поэтому полезно знать, какие места, в которых вы бываете (дома, в офисе, на приусадебном участке, в гараже) могут представлять опасность. Вы должны понимать, что повышенный электромагнитный фон могут создавать не только ваши электрические приборы, телефоны, телевизоры и компьютеры, но и неисправная проводка, электроприборы соседей, промышленные объекты, расположенные неподалеку.

Специалисты выяснили, что кратковременное воздействие ЭМП на человека практически безвредно, но длительное нахождение в зоне с повышенным электромагнитным фоном опасно. Вот такие зоны и можно обнаружить с помощью приборов типа «Импульс». Так, вы сможете проверить места, где проводите больше всего времени; детскую и свою спальню; рабочий кабинет.

В прибор занесены значения, установленные нормативными документами, так что вы сразу сможете оценить степень опасности для вас и ваших близких.

Возможно, что после обследования вы решите отодвинуть компьютер от кровати, избавиться от сотового телефона с усиленной антенной, поменять старую СВЧ-печь на новую, заменить изоляцию дверцы холодильника с режимом No Frost.

Источник: https://pcgroup.ru/blog/elektromagnitnoe-pole-ego-vliyanie-na-cheloveka-izmerenie-i-zaschita/

Электромагнитные поля в производственной среде

Источники электромагнитных полей (ЭМП) чрезвычайно разнообразны — это системы передачи и распределения электроэнергии (линии электропередачи — ЛЭП, трансформаторные и распределительные подстанции) и приборы, потребляющие электроэнергию (электродвигатели, электроплиты, электронагреватели, холодильники, телевизоры, видеодисплейные терминалы и др.).

К источникам, генерирующим и транслирующим электромагнитную энергию, относятся радио- и телевизионные вещательные станции, радиолокационные установки и системы радиосвязи, самые разнообразные технологические установки в промышленности, медицинские приборы и аппаратура (аппараты для диатермии и индуктотермии, УВЧ-терапии, приборы для микроволновой терапии и др.

).

Работающий контингент и население может подвергаться воздействию изолированной электрической или магнитной составляющих поля или их сочетанию. В зависимости от отношения облучаемого лица к источнику облучения, принято различать несколько видов облучения — профессиональное, непрофессиональное, облучение в быту и облучение, осуществляемое в лечебных целях.

Профессиональное облучение характеризуется многообразием режимов генерации и вариантов воздействия электромагнитных полей (облучение в ближней зоне, в зоне индукции, общее и местное, сочетающееся с действием других неблагоприятных факторов производственной среды).

В условиях непрофессионального облучения наиболее типичным является общее облучение, в большинстве случаев в волновой зоне.

Электромагнитные поля, генерируемые теми или иными источниками, могут воздействовать на все тело работающего человека (общее облучение) или отдельной части тела (местное облучение).

При этом, облучение может носить характер изолированного (от одного источника ЭМП), сочетанного (от двух и более источников ЭМП одного частотного диапазона), смешанного (от двух и более источников ЭМП различных частотных диапазонов), а также комбинированного (в условиях одновременного воздействия ЭМП и других неблагоприятных физических факторов производственной среды) воздействия.

Электромагнитная волна — это колебательный процесс, связанный с изменяющимися в пространстве и во времени взаимосвязанными электрическими и магнитными полями.

Электромагнитное поле — это область распространения электромагнитных волн.

Характеристика электромагнитных волн

Электромагнитное поле характеризуется частотой излучения f, измеряемой в герцах, или длиной волны X, измеряемой в метрах. Электромагнитная волна распространяется в вакууме со скоростью света (3*108 м/с), и связь между длиной и частотой электромагнитной волны определяется зависимостью

f = с/л,

где с — скорость света.

Скорость распространения волн в воздухе близка к скорости их распространения в вакууме.

Электромагнитное поле обладает энергией, а электромагнитная волна, распространяясь в пространстве, переносит эту энергию. Электромагнитное поле имеет электрическую и магнитную составляющие (Таблица № 35).

Таблица № 35. Единицы измерения интенсивности ЭМП в Международной системе единиц (СИ)

ДиапазонНазвание величиныОбозначение единиц
Постоянное магнитное поле Магнитная индукция Напряженность поля Ампер на метр, А/м Тесла, Тл
Постоянное электрическое (электростатическое) поле Напряженность поля Потенциал Электрический заряд Вольт на метр, В/мКулон, КлАмпер на метр, А/м
Электромагнитное поле до 300 МГц Напряженность магнитного поля Напряженность электрического поля Ампер на метр, А/м Вольт на метр, В/м
Электромагнитное поле до 0,3-300 ГГц Плотность потока энергии Ватт на квадратный метр, Вт/м2

Напряженность электрического поля Е — это характеристика электрической составляющей ЭМП, единицей измерения которой является В/м.

Напряженность магнитного поля Н (А/м) — это характеристика магнитной составляющей ЭМП.

Плотность потока энергии (ППЭ) — это энергия электромагнитной волны, переносимой электромагнитной волной в единицу времени через единичную площадь. Единицей измерения ППЭ является Вт/м.

Для отдельных диапазонов электромагнитных излучений — ЭМИ (световой диапазон, лазерное излучение) введены другие характеристики.

Классификация электромагнитных полей

Частотный диапазон и длина электромагнитной волны позволяют классифицировать электромагнитное поле на видимый свет (световые волны), инфракрасное (тепловое) и ультрафиолетовое излучение, физическую основу которых составляют электромагнитные волны. Эти виды коротковолнового излучения оказывают на человека специфическое воздействие.

Физическую основу ионизирующего излучения также составляют электромагнитные волны очень высоких частот, обладающие высокой энергией, достаточной для того, чтобы ионизировать молекулы вещества в котором распространяется волна (Таблица № 36).

Таблица № 36. Международная классификация электромагнитных волн

№ диапазонаНазвание диапазона по частотМетрическое подразделение длин волнДлина волныСокращенное буквенное обозначение
1 3-30 Гц Декамегаметровые 100-10 мм Крайне низкие, КНЧ
2 30-300 Гц Мегаметровые 10-1 мм Сверхнизкие, СНЧ
3 0,3-3 кГц Гектокилометровые 1000-100 км Инфранизкие, ИНЧ
4 от 3 до 30 кГц Мириаметровые 100-10 км Очень низкие, ОНЧ
5 от 30 до 300 кГц Километровые 10-1 км Низкие частоты, НЧ
6 от 300 до 3000 кГц Гектометровые 1-0,1 км Средние, СЧ
7 от 3 до 30 МГц Декаметровые 100-10 м Высокие, ВЧ
8 от 30 до 300 МГц Метровые 10-1 м Очень высокие, ОВЧ
9 от 300 до 3000 МГц Дециметровые 1-0,1 м Ультравысокие, УВЧ
10 от 3 до 30 ГГц Сантиметровые 10-1 см Сверхвысокие, СВЧ
11 от 30 до 300 ГГц Миллиметровые 10-1 мм Крайне высокие, КВЧ
12 от 300 до 3000 ГГц Децимиллиметровые 1-0,1 мм Гипервысокие, ГВЧ

Радиочастотный диапазон электромагнитного спектра делится на четыре частотных диапазона: низкие частоты (НЧ) — менее 30 кГц, высокие частоты (ВЧ) — 30 кГц30 МГц, ультравысокие частоты (УВЧ) — 30300 МГц, сверхвысокие частоты (СВЧ) — 300 МГц750 ГГц.

Особой разновидностью электромагнитных излучений (ЭМИ) является лазерное излучение (ЛИ), генерируемое в диапазоне длин волн 0,11000 мкм. Особенностью ЛИ является его монохроматичность (строго одна длина волны), когерентность (все источники излучения испускают волны в одной фазе), острая направленность луча (малое расхождение луча).

Условно к неионизирующим излучениям (полям) можно отнести электростатические поля (ЭСП) и магнитные поля (МП).

Электростатическое поле — это поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними.

Статическое электричество — совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках.

Магнитное поле может быть постоянным, импульсным, переменным.

В зависимости от источников образования электростатические поля могут существовать в виде собственно электростатического поля, образующегося в разного рода энергетических установках и при электротехнических процессах.

В промышленности ЭСП широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов.

Изготовление, испытание, транспортировка и хранение полупроводниковых приборов и интегральных схем, шлифовка и полировка футляров радиотелевизионных приемников, технологические процессы, связанные с использование диэлектрических материалов, а также помещения вычислительных центров, где сосредоточена множительная вычислительная техника характеризуются образованием электростатических полей. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Электромагниты, соленоиды, установки конденсаторного типа, литые и металлокерамические магниты сопровождаются возникновением магнитных полей.

В электромагнитных полях выделяют три зоны, которые формируются на различных расстояниях от источника электромагнитных излучений.

Зона индукции (ближняя зона) — охватывает промежуток от источника излучения до расстояния, равного примерно л/2п = л/6. В этой зоне электромагнитная волна еще не сформирована и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо (первая зона).

Зона интерференции (промежуточная зона) — располагается на расстояниях примерно от л/2п до 2пл. В этой зоне происходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие (вторая зона).

Волновая зона (дальня зона) — располагается на расстояниях свыше 2пл. В этой зоне электромагнитная волна сформирована, электрическое и магнитное поля взаимосвязаны. На человека в этой зоне воздействует энергия волны (третья зона).

Источник: http://ohrana-bgd.ru/med/med1_49.html

Физические характеристики эмп

Электромагнитные поля являются видом материи и обладают массой и энергией, которые перемещаются в пространстве в виде электромагнитных волн.

Они состоят из электрической (Е) и магнитной (Н) составляющих, которые перпендикулярны друг к другу и направлению распространения.

Основными параметрами электромагнитных волн являются частота (f), длина волн (1) и скорость распространения (с), которые связаны между собой соотношением f = с/1, справедливым для свободного пространства, где с = 3х108 м/с (скорость света).

Частота обычно выражается в герцах (Гц), килогерцах (кГц), мегагерцах (мГц) и гигогерцах (гГц), а длина волны — в километрах, метрах, дециметрах, сантиметрах и миллиметрах. Если скорость света выражена в м/с, частота — в мГц. то длину волн в метрах можно определить по форм.ле: 1 = 300/f.

В электромагнитной волне, распространяющейся от источника излучения, в зависимости от расстояния различают три условные зоны: ближнюю, промежуточную и дальнюю. Ближняя — это зона не сформировавшейся волны с неоднородной структурой электромагнитного поля.

Поэтому напряженность электрической и электромагнитной составляющей должна оцениваться раздельно. Дальняя зона характеризуется сформировавшейся электромагнитной волной, где соотношение между Е и Н постоянно (ЕВ/м =377 хНА/м).

Размеры этих зон зависят от типов антенн, длины волны излучения и площади раскрытия антенны.

К дальней зоне относится область, находящаяся на расстоянии от источника излучения более 2l2/1. где е — максимальный линейный размер источника

Не менее важным для взаимодействия с биологическими объектами является поляризация электромагнитной волны, которую определяет положение векторов Е и Н в пространстве.

https://www.youtube.com/watch?v=MZcauS_uK4Y\u0026list=PLPk7oQJkoSNAx7pi_D8YSNSmRMyrKqMbc

Энергия квантов электромагнитного поля в диапазоне частот от долей Гц до 300 ГГц достаточна низка и не способна вызывать ионизацию атомов или молекул веществ. Поэтому этот участок электромагнитных излучений относится к не ионизирующим.

Интенсивность электромагнитного поля в диапазоне от долей Гц до 300 МГц оценивается раздельно по электрической составляющей Е в вольтах на метр (В/м) и по магнитной Н в амперах на метр (А/м).

В диапазоне частот от 300 мГц до 300 гГц интенсивность электромагнитного поля оценивается плотностью потока энергии (ППЭ), единицей измерения которого является ватт на квадратный метр (Вт/м ) или (мВт/см2, мкВт/см ).

Интенсивность магнитных полей измеряется также в теслах (Тл), милитеслах (мТл), микротеслах (мкТл) и нанотеслах (нТл)

Для передачи или приема информации несущую электромагнитную волну модулируют. Различают модуляцию амплитудную, частотную фазовую.

Источник: https://portaleco.ru/gigiena-i-ekologija-cheloveka/fizicheskie-harakteristiki-emp.html

Электромагнитные поля на рабочем месте

Думаю найдутся единицы пользователей разной бытовой техники не знающие, что любая техника, подключённая к обычной бытовой электросети ~220В 50Гц, является источником электромагнитного поля(ЭМП). Да, ЭМП есть, но немногие знают, превышает оно предельно-допустимые нормы(ПДН) или нет.

Я являюсь работником одной лаборатории в составе организации, занимающийся Аттестацией рабочих место по условиям труда, возможно, многие слышали, у кого-то она проводилась. В последние пару лет, когда меня допустили до проведения измерений повидал многие рабочие места. Где-то отлично, где-то ужасно. По просьбам трудящихся, расскажу о некоторых результатах измерения ЭМП.

Сразу оговорюсь, что не являюсь физиком по образованию и уж совсем тонкостей ЭМП не знаю, тем не менее техническое образование имею.

Итак, средство измерения: Измеритель параметров электрического и магнитного полей «ВЕ-метр-АТ-002», не является супер точным прибором.

Прибор позволяет делать одновременные измерения электрической и магнитной составляющих электромагнитного поля в двух полосах частот: от 5 Гц до 2 кГц и от 2 кГц до 400 кГц. Документ, в котором указаны ПДН при работе на компьютере СанПиН 2.2.2/2.4.1340-03.

Предельно-допустимые нормы ЭМП

Напряженность электрического поля
в диапазоне частот 5 Гц — 2 кГц, Е1 25 В/м
в диапазоне частот 2 кГц — 400 кГц, Е2 2,5 В/м
Плотность магнитного потока
в диапазоне частот 5 Гц — 2 кГц, В1 250 нТл
в диапазоне частот 2 кГц — 400 кГц, В2 25 нТл

В теории если бытовая техника заземлена, то показания ЭМП должны соответствовать ПДН. На практике оно в большинстве случаев так и бывает. Но даже при наличии заземления попадаются исключения.

Пример 1

Имеем контур заземления во всём здании. В каждом кабинете по два-три компьютера. Когда мы начали измерять, то сразу заметили, что показания в общем укладываются в ПДН, но находятся, так сказать, на грани. На некоторых рабочих местах отдельные показатели превышали в два, а то и три раза. Не сразу было понятно в чём дело.

Каждый компьютер подключен через источник бесперебойного питания, некоторые беспербойники были включены в сеть через удлинители(Пилоты). На некоторых рабочих местах количество удлинителей доходило до трёх штук))). Сами бесперебойники в основном располагались под ногами у работников, а где и на самом системном блоке.

В начале избавились от удлинителя, показания не изменились. Решили попробовать подключить компьютер в обход бесперебойника и О чудо, показания в норме. Недавно эта организация закупила большую партию бесперебойников фирмы APC, на вид они выглядят подобным образом im2-tub-ru.yandex.net/i?id=81960965-39-72 Было непонятно почему от бесперебойника такой уровень ЭМП.

Вроде сам имеет заземляющий провод, все розетки также с заземлением. Тем не менее итог таков.

Пример 2

Та же организация, тоже здание. Во многих кабинетах, чтобы скрасить серые будни работников стояли простенькие FM-радиоприёмнки с питанием от электросети, шнур питания без заземления. Некоторые стояли поодаль от компьютеров, какие-то стояли на рабочем столе, рядом с монитором.

Проработав некоторые время на замерах уже набираешь опыт и при каких либо отклонениях начинаешь проверять подключение, искать потребителей тока без заземления. Так вот отключив приёмник, показания пришли в норму. Ещё один интересный случай с приёмником там же. Сам радиоприёмник находился от компьютера метрах в двух.

Мне непонятно каким образом были распределены электромагнитные поля, но на расстоянии двух метров показания превышали в два раза. Повторили измерения три раза и без изменений. Выключив радиоприёмник, показания пришли в норму.

Пример 3

Другая организация. Ситуация похожая на Пример 2. Обычная ситуация на каждом рабочем месте стоит настольная лампа. В случае даже когда лампа выключена, есть превышения ПДН. Выключаем лампу из розетки, всё приходит в норму. У нас в офисе два типа ламп, одни дают превышение в 2 раза, другие в 1.5. Это при условии, что они подключены в электрическую сеть, но выключены.

Специально для Вас продемонстрирую результаты с лампой на рабочем месте и без. Используется энергосберегающая лампа. Лампы накаливания в наличии нет.

E1, В/м E2, В/м B1, нТл B2, нТл
Настольная лампа не работает, но включена в электрическую сеть
139 0.39 10 1
122 0.4 10 3
133 0.38 10 3
Настольная лампа работает (увеличение показаний связано с «разогревом» люминисцентной лампы после включения)
66 8.9 10 3
79 11.4 10 4
86 12.9 10 4
Лампа отключена от сети. Показания работающего монитора
4 0.02 10 1

Пример 4

Есть такие беспроводные мышки, более того без питания. Так называемая индукционная мышь. Она работает с помощью специального индукционного коврика, и питаются индукционным способом. При замере я можно сказать офигел, потому что никогда не видел таких показаний по магнитной составляющей. Превышение в 15 раз. Отключаем мышь, т.е. коврик и показания в норме. Если не ошибаюсь, многие графические планшеты работают на том же принципе.

Излучение от телефона

Несколько слов про это. Прибор: Измеритель уровней электромагнитных излучений «ПЗ-31». Делали измерения чисто для себя.

В момент соединения базовой станции с телефоном, телефон в этот момент ещё не подаёт признаков звонка, идёт сильное превышение, далее через несколько секунд излучение приходит в норму.

Вывод один, при наборе номера, в первые секунды не стоит держать телефон у головы. Да, время воздействия достаточно мало, но лично мне теперь боязно сразу же после набора номера прислонять телефон к уху.

Итог

Я привёл наиболее частые и интересные примеры. Часто встречается такой вариант, есть заземляющий контур, но компьютеры подключены через обычный удлинитель без земли, соответственно присутствуют превышения. Меняем на удлинитель с землёй и всё приходит в норму.

Не могу высказать никаких предпочтений по поводу качественных удлинителей с землёй, все они в той или иной мере справляются со своими задачами. Как видите, существуют проблемы с источниками бесперебойного питания и с настольными лампами. Даже звуковые колонки не вносят таких помех как настольные лампы.

Тут тоже не выскажу ни каких рекомендаций, так как каждый образец нужно исследовать отдельно. По поводу ЖК мониторов и с ЭЛТ. Если заземление имеется, то неважно, какой тип монитора, показатели должны быть в норме. Без заземления у мониторов с ЭЛТ показатели несколько выше ЖК мониторов.

Специально для трудящихся из поста, которые подкинули идею написать эту статью, померил розетку, куда подключены свитч и роутер. Конечно, применение ПДН для мониторов чисто условно. Сделал только по одному замеру, чтобы хотя бы оценить величину.

E1, В/м E2, В/м B1, нТл B2, нТл
Включены роутер и свитч
36 0.15 1330 8
Включён только роутер
23 0.01 520 2
Отключены оба
1 0.01 10 1

Источник: https://habr.com/post/140431/

Электромагнитное поле, его виды, характеристики и классификация

  • Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.
  • Электрическое поле – создается электрическими зарядами и заряженными частицами в пространстве. На рисунке представлена картина силовых линий (воображаемых линий, используемых для наглядного представления полей) электрического поля для двух покоящихся заряженных частиц:
  • Магнитное поле – создается при движении электрических зарядов по проводнику. Картина силовых линий поля для одиночного проводника представлена на рисунке:

Физической причинойсуществования электромагнитного поляявляется то, что изменяющееся во времениэлектрическое поле возбуждает магнитноеполе, а изменяющееся магнитное поле –вихревое электрическое поле. Непрерывноизменяясь, обе компоненты поддерживаютсуществование электромагнитного поля.Поле неподвижной или равномернодвижущейся частицы неразрывно связанос носителем (заряженной частицей).

Однако при ускоренномдвижении носителей электромагнитноеполе «срывается» с них и существует вокружающей среде независимо, в видеэлектромагнитной волны, не исчезаяс устранением носителя (например,радиоволны не исчезают при исчезновениитока (перемещения носителей – электронов)в излучающей их антенне).

2.2 Основные характеристики электромагнитного поля

Электрическоеполехарактеризуетсянапряженностьюэлектрического поля(обозначение«E», размерность СИ – В/м,вектор).Магнитное полехарактеризуетсянапряженностью магнитного поля(обозначение «H», размерностьСИ – А/м, вектор). Измерению обычноподвергается модуль (длина) вектора.

Электромагнитные волныхарактеризуютсядлиной волны(обозначение «»,размерность СИ — м), излучающий их источник–частотой(обозначение – «»,размерность СИ — Гц). На рисунке Е –вектор напряженности электрическогополя,H– вектор напряженностимагнитного поля.

https://www.youtube.com/watch?v=92oRQ3-K9hc\u0026list=PLPk7oQJkoSNAx7pi_D8YSNSmRMyrKqMbc

При частотах 3 – 300Гц в качестве характеристики магнитногополя может также использоваться понятиемагнитной индукции(обозначение«B», размерность СИ — Тл).

2.3 Классификация электромагнитных полей

Наиболее применяемойявляется так называемая «зональная»классификация электромагнитных полейпо степени удаленности от источника/носителя.

По этой классификацииэлектромагнитное поле подразделяетсяна «ближнюю» и «дальнюю» зоны.«Ближняя» зона (иногда называемаязонойиндукции) простирается до расстоянияот источника, равного 0-3,где- длина порождаемойполем электромагнитной волны. При этомнапряженность поля быстро убывает(пропорционально квадрату или кубурасстояния до источника). В этой зонепорождаемая электромагнитная волнаеще не полностью сформирована.

«Дальняя» зона –это зона сформировавшейся электромагнитнойволны. Здесь напряженность поля убываетобратно пропорционально расстоянию доисточника. В этой зоне справедливоэкспериментально определенное соотношениемежду напряженностями электрическогои магнитного полей:

E= 377H

где377 – константа, волновое сопротивлениевакуума, Ом.

Электромагнитныеволныпринято классифицировать почастотам:

Наименование частотного диапазона Границы диапазона Наименование волнового диапазона Границы диапазона
Крайние низкие, КНЧ [3..30] Гц Декамегаметровые [100..10] Мм
Сверхнизкие, СНЧ [30..300] Гц Мегаметровые [10..1] Мм
Инфранизкие, ИНЧ [0,3..3] Кгц Гектокилометровые [1000..100] км
Очень низкие, ОНЧ [3..30] Кгц Мириаметровые [100..10] км
Низкие частоты, НЧ [30..300] Кгц Километровые [10..1] км
Средние, СЧ [0,3..3] МГц Гектометровые [1..0,1] км
Высокие, ВЧ [3..30] МГц Декаметровые [100..10] м
Очень высокие, ОВЧ [30..300] МГц Метровые [10..1] м
Ультравысокие, УВЧ [0,3..3] ГГц Дециметровые [1..0,1] м
Сверхвысокие, СВЧ [3..30] ГГц Сантиметровые [10..1] см
Крайне высокие, КВЧ [30..300] ГГц Миллиметровые [10..1] мм
Гипервысокие, ГВЧ [300..3000] ГГц Децимиллиметровые [1..0,1] мм

Измеряют обычнотолько напряженность электрическогополя E. При частотах выше300 МГц иногда измеряетсяплотностьпотока энергииволны, или векторПойтинга (обозначение «S»,размерность СИ – Вт/м2).

Источник: https://studfile.net/preview/940743/page:2/

1. Основы теории электромагнитного поля. Электромагнитные поля и волны

1.1. Информативность различных диапазонов волн

1.2. Диапазон сверхвысоких частот (СВЧ)

1.3. Поля или цепи? Условие квазистационарности

1.4. Векторные характеристики электромагнитного поля

1.5. Материальные уравнения среды

1.6. Методы описания физических явлений и расчета

1.1. Информативность различных диапазонов волн

В последнее время все большее количество людей переходят из сферы материального производства в сферу обработки, хранения и передачи информации. Информацию можно излучать, либо передавать по кабельным линиям, волноводам, световодам и т.д. Количество информации непрерывно растет. Ограничением является количество каналов. Любой канал может передать только определенную информацию.

Рассмотрим диапазоны метровых волн (КВ).

Если в этом диапазоне вести телевидение, то можно организовать четыре канала или 6000 телефонных каналов.

Диапазон УКВ.

число телевизионных каналов — 40
число телефонных каналов — 6*104

Сантиметровый диапазон:

nтелев. = 4000, nтелеф. = 6*106

Миллиметровый диапазон

Если посмотреть на оптический диапазон,

то можно удовлетворить все потребности технического прогресса. С ростом частоты увеличивается информативность. Наращивание каналов связи — это освоение более высокочастотных диапазонов.

1.2. Диапазон сверхвысоких частот (СВЧ)

Диапазон СВЧ : 1 ГГц — 100 Ггц 1 ГГц = 109 Гц

1.2.1. Особенности СВЧ диапазона

  1. Остронаправленность излучения при сравнительно небольших размерах излучателей.
  2. Большая информативность.
  3. Квазиоптический характер распространения волн.

1.3. Поля или цепи? Условие квазистационарности

Аппарат теории цепей есть, он могучий. Зачем нужна теория электромагнитного поля? Противопоставлять теорию цепей и теорию поля нельзя. В одних условиях лучше одна теория, в других другая. Рассмотрим простейшую схему.

Вопрос: Какие показания будут давать амперметры ? Одинаковые или нет в любой фиксированный момент времени?

Ответ: Да, если Т >> tзап. Запаздыванием процесса колебании от одной точки к другой можно пренебречь. Т — период колебаний источника;

tзап — время запаздывания при распространении сигнала в цепи.

Предположим l — линейные размеры цепи, С — скорость света, тогда tзап = .
Если Т >> Т С >> 1, т.к. Т С = , следовательно:

>> 1 — условие квазистационарности. (1.3.1.)

Если условие квазистационарности выполняется, то можно пользоваться теорией цепей. Когда условие квазистационарности не выполняется, нужен другой анализ. В сантиметровом и оптическом диапазонах используется теория поля.

1.4. Векторные характеристики электромагнитных полей

Для полного описания свойств электромагнитных полей нужно знать положение, величину и направление в пространстве четырех векторов.

— вектор напряженности электрического поля.

(х, у,z,t) [В/м]

— вектор электрического смещения

(x,y,z,t) [кл/м2]

— вектор напряженности магнитного поля.

(х,у,z,t) [А/М]

— вектор магнитной индукции

(x,y,z,t) [Вб/м2]

, — характеризуют силовые характеристики полей.

, — характеризуют источники ЭМП

1.5. Материальные уравнения среды

Материальные уравнения устанавливают связь между векторными характеристиками электромагнитных полей одинаковой природы. Рассмотрим связь между векторами D и Е, В и Н.

Электромагнитные процессы могут протекать в самых разных условиях. Электромагнитные волны пронизывают ионосферу (от спутника до земной антенны). От свойств среды, зависят условия распространения. Физики подробно дают ответ на такие вопросы (физика твердого тела, физика плазмы и т.д.). В простом представлении (грубая модель) среды

разделяют на диэлектрические и магнитные. Диэлектрические среды состоят из зарядов одинаковой величины и противоположных по знаку (диполей).

Многочисленные эксперименты и строгие теоретические выводы подтверждают связь:

=

где — абсолютная диэлектрическая проницаемость среды.

Для вакуума = = 8,85 * 10-12 [Ф/м].

Вводят понятие относительной диэлектрической проницаемости: =

=

В справочной литературе указаны значения . Для магнитных веществ ситуация аналогичная:

=

— абсолютная магнитная проницаемость.

Для вакуума:

= = 4 * 10-7

Для удобства расчетов вводят понятие относительной магнитной проницаемости :

=

Выражения (1.5.1.) называют материальными уравнениями среды.

=

=

=

(1.5.1.)

— плотность тока проводимости []

— удельная проводимость среды [].

1.6. Методы описания физических явлений и расчета устройств СВЧ диапазона

  • Электродинамика, как основа описания физических явлений в СВЧ диапазоне.
  • Уравнения Максвелла, как обобщение экспериментальных законов электричества и магнетизма.

Источник: https://siblec.ru/telekommunikatsii/elektromagnitnye-polya-i-volny/1-osnovy-teorii-elektromagnitnogo-polya

Методы защиты от электромагнитного излучения

Работу электрических машин и установок, линий ЛЭП и электротранспорта, бытового оборудования сопровождает электромагнитное излучение. Учитывая возросшее количество подобных приборов и устройств, возникает вопрос — какое воздействие оказывает электромагнитное излучение на человека и как защитить себя в быту или на производстве.

Что такое электромагнитное излучение

Электромагнитное излучение — это электромагнитные волны, возникающие при возмущение магнитного или электромагнитного поля. В вакууме распространяется со скоростью света, в средах показатель может отличаться, причём по существующим научным теориям как в меньшую, так и в большую сторону. Характеризуется поляризацией, длиной и частотой волны.

Теоретические свойства, способы проявления и другие показатели электромагнитного излучения обосновываются квантовой электродинамикой. Но в научной среде существуют и другие теории, которые также принимают к сведению.

Не стоит думать, что электромагнитное излучение играет только отрицательную роль, оказывая негативное влияние на организм человека. С его помощью реализованы многие технологические решения — беспроводная связь и интернет, медицинское оборудование, вооружение, простые микроволновки и другие простые устройства. Главное — соблюдать правила безопасности.

Бытовые источники электромагнитного излучения

Виды электромагнитного излучения

Основная классификация электромагнитного излучения связана с частотой волны:

  • Наиболее распространённый тип — радиоволны с частотой до 300 тысяч кГц. Возникают в результате деятельности человека и природных явлений. Больше всего переживаний у пользователей возникает по поводу сетей мобильной связи, высокоскоростного интернета, тем более сейчас, когда начинается ввод в действие сетей 5G.
  • Тепловое (инфракрасное) излучение, которое считается основой жизни человечества. Частота таких волн достигает показателя 429 ТГц. Вопросы по безопасности воздействия чаще всего связаны с востребованными сейчас инфракрасными обогревателями, которые можно встретить не только на дачах, но и в многолюдных общественных местах.
  • Видимый свет, частотные характеристики расположены в диапазоне 385–790 ТГц. Именно за счёт его наличия происходит процесс фотосинтеза у растений. Даже с видимым спектром электромагнитных излучений могут быть связаны проблемы. Например, перебои в выработке организмом человека мелатонина, что вызывает нарушения сна.
  • Ультрафиолетовое излучение отличается частотой до 30 ПГц. В обычной жизни с такими источниками можно столкнуться, наблюдая работу электросварщика, или посещая медицинские учреждения во время дезинфекции отдельных помещений и палат.
  • К жёсткому излучению относят рентгеновские лучи, гамма-волны, частотные характеристики которых ещё на несколько порядков выше. Самый известный пример — радиация, но с таким излучением в повседневной жизни вряд ли придётся встретиться.

Также читайте:  Регулирования напряжения под нагрузкой — РПН трансформатора

Практически у каждого типа электромагнитного излучения есть опасные свойства и факторы. Обычный видимый свет вполне может стать причиной повреждения сетчатки глаз, такой же эффект проявляется и в результате воздействия ультрафиолетовых лучей (обычная сварка).

На что влияет

Больше всего вопросов приходится на радиочастотный диапазон магнитного излучения. Сразу скажем, что для жилых помещений безопасным считается показатель напряжённости электрического поля 0,5–1 кВ/м и магнитного до 80 А/м.

Возможный вред здоровью во многом зависит непосредственно от частоты излучения. При постоянном нахождении в зонах, когда параметры напряжённости превышают предельно допустимые уровни, возможны следующие негативные последствия для здоровья:

  1. Нарушения деятельности нервной системы, которые становятся причиной депрессий, головных болей, появления беспричинного страха.
  2. Проблемы с сердечно-сосудистой системой, выливающиеся в общую усталость, изменение состава крови.
  3. Страдают и другие системы организма, в том числе и мочеполовая, наблюдается общее снижение иммунитета.
  4. Особо опасным считаются сверхчастотные излучения (более 300 МГц), которые становятся причиной появления различных патологий, включая и злокачественные опухоли.
  5. Опасность рентгеновского, гамма-излучения общеизвестна, именно они становятся причиной лучевой болезни.

Не стоит недооценивать возможные риски длительного нахождения в зонах распространения электромагнитного поля. Конечно, шапочки из фольги при нахождении дома — это перебор, но, как ни странно, и в этом решении есть рациональное зерно.

Действующие способы защиты

Самым эффективным способом защиты считается снижение мощности излучающих источников или простой уход из зоны его воздействия. Но если в домашних условиях, благодаря действующим СНиП и СанПиН, показатели напряжённости редко превышают действующие нормативы, то в производственных условиях избежать такого воздействия удаётся не всегда.

Уменьшение мощности источника может быть достигнуто несколькими способами:

  1. Применение поглощающих экранов и защитных конструкций.
  2. Установка блокирующих или отражающих устройств.

Также читайте:  Почему моргает светодиодная лампочка при выключенном свете

Все подобные средства относят к коллективной защите, в дополнение к ним применяют и СИЗ (средства индивидуальной защиты).

Большинство средств защиты от электромагнитного поля предназначены для промышленных условий. В их число входят:

  • Отражающие экраны, козырьки и другие сооружения, из металлической сетки, арматуры, металлических листов. На практике получили более дешёвые конструкции из стали, цветных металлов и их сплавов. Все эти конструкции должны быть обязательно заземлены. Принцип действия основан на появлении в материалах экранов токов Фуко (вихревых токов), которые по амплитуде имеют сходное значение, но находятся в противофазе. В результате результирующее поле теряет свою напряжённость и не может пройти через защитную конструкцию.
  • Поглощающие конструкции делают с применением полимерных материалов — пенополистирол, различные виды резины, поролон. Хорошие показатели и пропитанной специальными составами древесины, используют и пластины из ферромагнитных сплавов, но это уже более дорогой результат.
  • Чтобы придать различным конструкциям защитные свойства, применяют токопроводящие краски на основе порошкового графита, оксидов металлов, сажи, коллоидного серебра. В этом случае получают отражающие элементы защиты от электромагнитного излучения.
  • Получили распространение и ионизаторы, которые позволяют нейтрализовать заряды статического напряжения, возникающего под воздействием электрического и магнитного поля. Такие устройства применяются и в быту.

К индивидуальным средствам защиты относят:

  • Спецодежда и обувь, изготовленная из тканей с вплетением металлических нитей.
  • Защитные очки с металлизированными покрытиями, обладающими отражающими свойствами.
  • Для предотвращения воздействия инфракрасного излучения применяют стандартные теплоизолирующие костюмы.
  • Воздействие ультрафиолетового излучения нейтрализуют защитной одеждой и очками или маской со светофильтрами. Простой пример — комплект спецодежды электросварщика.

Привели только распространённые решения, которые дают возможность нейтрализовать или минимизировать воздействие электромагнитного излучения. Но в бытовых условиях такие варианты малоприменимы.

Также читайте:  На каком расстоянии не опасно жить рядом с ТЭЦ

Практическое применения методов защиты

Решение домашних проблем, связанных с воздействием электромагнитного поля, нужно начинать решать с банальной проверки. Для этого необходимо определить уровень напряжённости магнитного и электрического поля в квартире или доме. Если показатели не выходят за предельно допустимые уровни, о которых говорили, то не стоит переживать, они рассчитаны с многократным запасом.

Если же проблема имеется, то для уменьшения воздействия электромагнитных волн используют проверенные способы:

  1. Проверьте наличие и подключение розеток к заземляющим контурам. Рекомендуется применение этих элементов со специальными контактами РЕ проводника.
  2. Микроволновки и другие потенциально опасные бытовые устройства комплектуются корпусами с защитным экранированием. Не допускается эксплуатация даже в частично разобранном состоянии.
  3. Стационарное оборудование должно быть заземлено, по этой причине и важно наличие розеток с соответствующими контактами.

Среди других общеизвестных методов защиты от излучения порекомендуем располагать возможные источники на максимально возможном удалении. Не стоит спать рядом с микроволновкой, да и мобильным телефоном лучше пользоваться с применением гарнитуры. Но это прописные истины, поэтому на них останавливаться не будем.

Ещё раз напомним — переживать о воздействии электромагнитного излучения стоит только в том случае, если инструментальная проверка выявила повышенный уровень напряжённости поля. Насыщенная электроприборами квартира не причина для паники, при допустимых нормах никакой угрозы здоровью нет. А шапочку из фольги можно использовать только в качестве экстравагантного аксессуара.

Источник: https://OFaze.ru/teoriya/zashhita-ot-elektromagnitnogo-izlucheniya

Электромагнитное излучение. Виды и применение. Влияние

Электромагнитное излучение представлено одноименными волнами, которые приводятся в возбуждение под воздействием различных объектов излучения в виде молекулярных, атомных и заряженных частиц.

Существует несколько его разновидностей:

  • Видимый свет. Это излучение, способное восприниматься человеческим зрением. Волновая длина достаточно короткая и варьируется в пределах 380-780 нанометров.
  • Инфракрасное. Представляет собой что-то среднее между световым излучением и волнами радио.
  • Радиоволны. Отличаются наибольшей длиной и вмещают в себя все разновидности излучения, волны которых характеризуются длиной от полумиллиметра.
  • Ультрафиолетовое. Излучение, приносящее вред живому организму.
  • Рентгеновское. Производится электронными частицами и нашло широкое применение в медицине.
  • Гамма-излучение. Имеет самую короткую длину волн, представляя высокий уровень опасности для человеческого организма.

Характеристику любой электромагнитной волны составляют три основных параметра:

  1. Частота. Выражает количество гребней волны, проходящих в течение одной секунды. Мера измерения -герцы.
  2. Поляризация. Описывает колебания электромагнитных волн в поперечном направлении. Поляризованным излучение становится при волновых колебаниях, происходящих в одной плоскости. На практике данное явление можно встретить в кинотеатрах на сеансах 3Д.

    Посредством поляризации в 3Д-очках происходит разделение картинки.

  3. Длина. Представляет собой расстояние, соединяющее точки электромагнитного излучения, которые колеблются в пределах одной фазы.

Распространение электромагнитного излучения возможно в любой среде, начиная плотным веществом и заканчивая вакуумом. При этом скорость распространения волны в вакуумном пространстве достигает 300 тысяч км в секунду.

К примеру звуковые волны, в вакууме не распространяются.

Принцип действия

Электромагнитное излучение имеет энергию, основной характеристикой которой является ее напряженность. Существует постоянное и переменное поле электромагнитных волн.

Первое — характеризуется напряженностью, которая обуславливается силой, оказывающей каталитическое действие на токовый проводник. В качестве единицы напряжения выступает ампер. Переменная разновидность совмещает в себе магнитную и электрическую разновидности магнитных полей, которые расширяются в пространстве в виде волн.

Область распространения включает в себя три зоны:

  • Ближнюю – индукционную.
  • Промежуточную – интерференционную.
  • Дальнюю — волновую.

Свойства

Известно, что для электромагнитных волн характерны определенные свойства, о которых впервые заговорил Максвелл. Эти свойства обуславливаются различиями и зависимостью от параметра длины. Именно в соответствии с этими параметрами волны электромагнитных полей подразделяются на диапазоны, которые, в свою очередь, имеют достаточно условную шкалу, поскольку расположенные рядом частоты накладывают свои свойства друг на друга.

К таковым — относятся:

  • Высокая проникающая способность.
  • Быстрая скорость растворения в веществе.
  • Негативное и благотворное влияние на человека.

Применение и влияние

Свое широкое применение электромагнитное излучение получило только в конце 19-го века, когда активно развивалась радиосвязь, посредством которой стало возможно общение на далеком расстоянии.

В качестве главных электромагнитных источников выступают крупные объекты промышленного масштаба, а также различные электрические линии передач. Помимо этого, рассматриваемый вид излучения получил активное применение в военной сфере. Там они представлены радарами и другими электрическими приборами, имеющих сложное устройство.

В медицинской области для лечения разнообразных болезней применяется инфракрасное излучение. кроме этого:

  • Посредством рентгеновского обследования становится возможным выявление внутренних повреждений в человеческом организме.
  • Лазер позволяет проводить операции, которые требуют ювелирной точности и т.п.

Однако, несмотря на перечисленную выше пользу, электромагнитное излучение может спровоцировать возникновение ряда негативных признаков:

  • Повышенную усталость.
  • Боли в голове.
  • Тошнотные позывы и т.п.

Повышенное воздействие определенных видов электромагнитных волн способно привести к повреждениям органов, расположенных внутри, и мозговой центральной нервной системы, что впоследствии чревато психическими расстройствами.

Во избежание столь отрицательных влияний существуют определенные стандарты, которые регулируют безопасность электромагнитного воздействия. Так, для каждого из видов электромагнитного излучения разработаны конкретные документы регулирующего характера в виде гигиенических норм и радиационных стандартов.

Электромагнитное излучение влияет на человеческий организм и остается до конца неизученным, по причине чего рекомендуется свести к минимуму его воздействие.

Достоинства и недостатки

Главным преимуществом ЭМИ является его активное применение в медицинской сфере. Посредством рентгеновского и инфракрасного излучений становится возможным обследование внутренних органов с последующим выявлением возможных заболеваний.

К недостатку же электромагнитного излучения следует отнести негативное воздействие на организм человека в случаях, когда это влияние превышает нормы. По возможности его необходимо избегать. Более того, известен накопительный эффект биологического влияния излучения: чем он длительней, тем более негативнее последствия.

Многолетнее воздействие способно привести к:

  • Серьезным сбоям в гормональной системе.
  • Злокачественным заболеваниям.
  • Болезням крови и т.п.

Простым обывателям может быть непонятна схожесть между разными, на первый взгляд, объектами электромагнитного излучения, к примеру:

  • Трубка рентгена.
  • Печка, от которой исходит тепло.
  • Фотопленка.
  • Радиоприемник.
  • Антенна телевизора.

Первые объекты — электромагнитные источники, вторые — представлены приемниками. Также отличается и влияние определенных видов излучения на живой организм, к примеру:

  • Рентген и излучение гамма-частицами провоцируют повреждение тканевых структур и внутренних органов.
  • Видимый свет при определенных условиях может негативно повлиять на зрение.
  • Инфракрасные лучи могут оказывать чрезмерный нагрев на организм.
  • При этом радиоволны практически никак не ощущаются.

Однако перечисленные выше отличия выступают различными аспектами одного явления. Электромагнитное излучение обладает волнами, которые имеют схожую распространительную скорость в пространстве. При этом количество колебаний в течение временной единицы может измеряться в широких диапазонных значениях.

Окружающее нас пространство насыщено электромагнитным излучением, которое связано не только с радиоволнами, но и с окружающими телами.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/elektromagnitnoe-izluchenie/

Электромагнитное поле и ее основные характеристики

Рассмотрим с позиций «Электромагнитной экологии» некоторые аспекты современного состояния проблемы «Воздействия электромагнитных излучений на окружающую среду и человеческий организм».

Прежде всего необходимо отметить иную, чем в прошлом веке, электромагнитную обстановку на рабочих местах персонала и в окружающей среде. Это обусловлено быстрым темпом появления новых источников ЭМП с иными видами модуляции и спектра излучаемых сигналов. При этом понятие «новое» к техническому устройству быстро становится вчерашним днем.

Особенно наглядно это видно на примере систем мобильной связи, где за короткий период на рынок пришло третье поколение G3 и уже на подходе G4. Биологическое действие электромагнитных излучений (ЭМИ), создаваемых новыми источниками, до настоящего времени детально не изучено, хотя уже получены убедительные свидетельства отрицательного влияния на здоровье людей, например, мобильных телефонов.

В Европе появились первые данные об отрицательном действии ЭМИ подвижной связи TETRA. В настоящее время практически во всем радиочастотном диапазоне происходит изменение технологии радиовещания.

Внедрение методов и средств цифровой обработки, хранения и передачи сообщений позволяет превратить радиовещание в систему информационного обслуживания, осуществляющую вещание аудио- и мультимедийных сообщений. При этом в радиовещательных системах информационного обслуживания существенно изменяется как спектр, так и занимаемая ими ширина полосы излучаемых сигналов.

Существенно отличаются от прежних характеристики электромагнитных излучений новых радиолокационных станций. Научными исследованиями доказана существенная роль в биологическом воздействии таких характеристик электромагнитных волн (ЭМВ), как длительность и частота следования импульса, модуляция сигнала и т.д.

В случаях воздействия ЭМИ малой интенсивности их роль в биологических эффектах становится определяющей.

Таким образом, очевидно, что действующие сегодня, например, предельно допустимые уровни (ПДУ) ЭМИ, нуждаются в уточнении и совершенствовании.

Поэтому обучение специалистов, особенно работающих на транспорте, электромагнитной и акустической экологиям особенно важно для обеспечения высокого уровня безопасности как на рабочих местах, так и в окружающей среде проживания населения.

Электромагнитное поле

Под электромагнитным полем (ЭМП) понимают особый вид материи, передающий взаимодействие между неподвижными или движущимися зарядами. ЭМП описывается тремя основными векторными характеристиками: напряженностью электрического поля, вектором магнитной индукции (напряженностью магнитного поля) и вектором плотности потока мощности.

Силовая характеристика электрического поля

Силовой характеристикой электрического поля (ЭП) является вектор, определяемый как сила, с которой электрическое июле действует на точечный положительный единичный заряд.

Следовательно, между вектором и кулоновской силой, действующей на точечный заряд q, существует простая связь. .Заряд q должен быть достаточно малым, чтобы можно было пренебречь изменением распределения зарядов, создающих исследуемое поле.

В системе СИ сила измеряется в ньютонах (Н), а заряд — в кулонах (К), поэтому вектор измеряется в вольтах на метр.

С вектором связан вектор электрического смещения.

Силовая характеристика магнитного поля

Сила, с которой электромагнитное поле воздействует на точечный электрический заряд, зависит не только от местоположения и величины заряда, но также от скорости его движения. Результирующую силу обычно раскладывают на две составляющие: электрическую и магнитную. Электрическая сила не зависит от движения заряда и определяется законом Кулона.

Здесь — вектор магнитной индукции, характеризующий силовое воздействие магнитного поля на движущийся заряд. Магнитная индукция численно равна силе, с которой магнитное поле действует на единичный точечный положительный заряд, движущийся с единичной скоростью перпендикулярно линиям вектора. Магнитная индукция измеряется в «веберах на квадратный метр» (Вб/м2).

Магнитное поле действует, конечно, не только на отдельные движущиеся заряды, но и на проводники, по которым течет электрический ток (представляющий совокупность движущихся зарядов в проводнике). Например, сила, с которой однородное магнитное поле действует на прямолинейный проводник длиной l с током, определяется экспериментально установленным законом Ампера.

Источник: http://www.1435mm.ru/ecology/elektromagnitnoe-pole-i-ee-osnovnye-xarakteristiki.html

ЭТО ИНТЕРЕСНО:  В чем измеряются электромагнитные поля
Понравилась статья? Поделиться с друзьями:
Электрогенератор
Что измеряет люмен

Закрыть